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Abstract

Background: The Appalachian population is distinct, not just culturally and geographically but also in its health care needs,
facing the most health care disparities in the United States. To meet these unique demands, Appalachian medical centers need
an arsenal of analytics and data science tools with the foundation of a centralized data warehouse to transform health care data
into actionable clinical interventions. However, this is an especially challenging task given the fragmented state of medical data
within Appalachia and the need for integration of other types of data such as environmental, social, and economic with medical
data.

Objective: This paper aims to present the structure and process of the development of an integrated platform at a midlevel
Appalachian academic medical center along with its initial uses.

Methods: The Appalachian Informatics Platform was developed by the Appalachian Clinical and Translational Science Institute’s
Division of Clinical Informatics and consists of 4 major components: a centralized clinical data warehouse, modeling (statistical
and machine learning), visualization, and model evaluation. Data from different clinical systems, billing systems, and state- or
national-level data sets were integrated into a centralized data warehouse. The platform supports research efforts by enabling
curation and analysis of data using the different components, as appropriate.

Results: The Appalachian Informatics Platform is functional and has supported several research efforts since its implementation
for a variety of purposes, such as increasing knowledge of the pathophysiology of diseases, risk identification, risk prediction,
and health care resource utilization research and estimation of the economic impact of diseases.

Conclusions: The platform provides an inexpensive yet seamless way to translate clinical and translational research ideas into
clinical applications for regions similar to Appalachia that have limited resources and a largely rural population.

(JMIR Med Inform 2020;8(10):e17962) doi: 10.2196/17962
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Introduction

Background: Unique Challenges in Appalachia
With regard to health care, Appalachia with its predominantly
rural communities is known to have one of the worst outcomes
in the United States [1]. This is especially true of southern and

central rural Appalachia, which face some of the most severe
health disparities in the nation [1]. Over the years, the gap in
the overall health between Appalachia and the nation as a whole
has continued to grow [2,3]. To close this gap, it is critical to
identify the cause of these disparities and direct efforts toward
developing necessary interventions to address them.
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Such an effort necessitates the adoption of modern technologies
such as a centralized research data warehouse to house all data
necessary to obtain a comprehensive picture of the health of the
Appalachian population before analysis to gain actionable
insights can be performed. A centralized data warehouse, once
considered strictly a business tool, has evolved into an important
instrument for cost containment, tracking of patient outcome,
providing clinical decision support at the point of care,
improving prognostic accuracy, and facilitating research [4].
Thus, rural academic medical centers have moved toward
implementing data warehouse systems that feed analytical
systems for research needs [5]. This entails (1) the integration
of data from different types of medical settings (ie,
multi-institutional) such as hospitals, clinics, and specialty
centers; (2) linkage of financial data with clinical data—a
well-established practice proven to be pivotal to high-quality
care and great economic outcomes [6,7]; and (3) integration of
other determinants of health such as environmental [8], social
[9], and spiritual factors [10] to create longitudinal health
records across the care continuum.

However, there are challenges in creating a multi-institutional
data warehouse [11]. The electronic health records (EHRs) do
not easily interact with one another due to the use of nonstandard
terminologies and difficulty in understanding the flow of
information. In addition, significant differences exist between
rural and urban health systems [12-16]. Unlike their urban
counterparts, health care data in Appalachia are typically
fragmented, existing in silos within dissimilar databases,
registries, data collections, and departmental systems. With
innovations in medical technology, the list of data sources
continues to grow, producing unprecedented amounts of data
from all aspects of care, including diagnosis, medication,
procedures, laboratory test results, imaging data, and patient
self-monitoring [17-21]. To complicate matters, the overall
health and health behaviors of Appalachians are strongly
affected by Appalachia’s unique culture, geography, and health
system issues [22-24]. Consequently, Appalachian academic
medical centers face the complex challenge of collecting,
organizing, standardizing, and analyzing these enormous
quantities of heterogeneous data originating from a wide variety
of sources to address the unmet needs of the population they
serve.

Why an Informatics Platform?
Data integration and interoperability have been shown to be
key to unlocking these data for data analytics, enabling the
development of novel patient management strategies for rural
hospitals [25,26] and translational research that leads to new
approaches at the bedside for prevention, diagnosis, and
treatment of disease, which are essential to improving the health
of a population [27-29]. Data analytics, once the domain of the
statistician, has now become an equal partner in clinical research
and research operations [30,31]. Following the data explosion,
data analytics increasingly involves the use of visual analytics
tools such as Tableau (Tableau Software Inc) and Power BI
(Microsoft Corp) to explore data easily and in a self-service

fashion and to clearly and effectively communicate complex
ideas [32], especially to those members of the medical
community who might not have an intimate understanding of
the underlying data. Furthermore, machine learning is gaining
importance, especially in the area of predictive analytics, to
improve the practice of medicine and to infer potentially
innovative risk factors [28,33-35].

However, these applications (eg, data warehouse, data analytics,
statistical analysis, machine learning, visual analytics) are
generally uncoordinated without any overarching governance.
Thus, we developed an informatics platform, that is, a suite of
interconnected, coordinated applications hosted within an
operational environment [36], called the Appalachian
Informatics Platform, in West Virginia—the only state located
entirely in Appalachia—that facilitates interoperable access to
integrated information, data visualization, and data analytics,
thereby functioning as an excellent basis for clinical and
translational research to improve health care.

The goal of this study is to describe the structure and process
of development of the Appalachian Informatics Platform and
demonstrate its value in supporting clinical and translational
research.

Methods

The Appalachian Informatics Platform (Figure 1) is composed
of 4 major components: (1) multi-institutional data
storage—clinical data warehouse (CDW); (2) modeling
(statistical and machine learning); (3) visualization; and (4)
evaluation. Each of these components is described in detail in
separate sections.

The CDW forms an integral part of the Appalachian Informatics
Platform. The Appalachian Informatics Platform, in addition
to the CDW, contains embedded data analytics (modeling and
evaluation) and interactive visualization tools (eg, Tableau
[Tableau Software Inc], Power BI [Microsoft Corp]). Together,
these enable the analysis of Appalachian health information to
speed up the transition of translational research ideas into
clinical practice.

The CDW serves as a secure source of quality data for
descriptive, diagnostic, predictive, and prescriptive analytics
for research and operational needs. The visual analytics tools
enable an initial exploratory analysis of the processed data and
the interactive presentation of analytical findings for further
analysis and review. Depending on the use case, data can be
analyzed using statistical modeling via external (eg, SPSS [IBM
Corp], Stata [StataCorp]) or integrated (eg, R [R Foundation
for Statistical Computing], Python [Python Software
Foundation] in Structured Query Language [SQL]) applications
or machine learning modeling. The performance of the resulting
models was evaluated using appropriate metrics. Once trained
and evaluated, machine learning models can be deployed and
stored in the CDW for future use if needed. Furthermore, the
stored machine learning models can be continuously evaluated
and improved as more data are generated.
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Figure 1. Appalachian informatics platform.

The informatics committee governs the access to and utilization
of the Appalachian Informatics Platform and ensures adherence
to security and privacy rules. In addition, team-building
activities are also incorporated into our clinical informatics
model to foster the development of an effective clinical
informatics team.

Multi-Institutional Data Storage: Appalachian Clinical
and Translational Science Institute-Clinical Data
Warehouse
The Appalachian Clinical and Translational Science Institute
(ACTSI)’s Division of Clinical Informatics solicited buy-in
from different entities, namely, Cabell-Huntington Hospital
(CHH), Edwards Comprehensive Cancer Institute (ECCC),
Marshall Health (MH) practice plan, and Marshall University
Joan C Edwards School of Medicine (MU JCESOM), to build
the Appalachian Clinical and Translational Science
Institute-Clinical Data Warehouse (ACTSI-CDW) in West
Virginia. An agreement was created between these entities that
provided access to both financial and clinical data.

The multi-institutional CDW contains more than 9 years of
billing and clinical data. It comprises relational tables and
dimension and fact tables (Online Analytical Processing [OLAP]
cube), which enable secure data storage and data access.
Designed from the start to facilitate information flow, the CDW
can send out a stream of near real-time data that can be used
for any authorized research purpose. Documentation includes
a data dictionary and flowcharts. Flowcharts follow the patient
from admission (or appointment, if outpatient) to discharge (or
exit, if outpatient). The data dictionary contains the standardized
and source field names, descriptions, and properties along with
the associated metadata for the data contained within the data
warehouse. For instance, (1) the entry of a patient into any
medical service (admission or appointment) was combined with

the single term encounter and (2) a higher level of precision
was introduced by separating patient age into 2 variables, current
age or the age when the procedure was performed.

The CDW process is based on an older data warehouse process
developed at the University of Pittsburgh [37]. The process is
as follows:

1. Data dictionaries are created by recording institutional
source field names and field properties and linking them to
the standardized CDW names and properties found within
the CDW databases. Descriptions of each field (source and
CDW) are included.

2. Individual institutional flowcharts show the workflow of
the data and the location of the people responsible for the
quality of the data, which are also used for quality control
purposes.

3. At present, the CDW contains data from 6 institutional
software packages hosted in various parts of the country
(eg, Cerner data from Kansas City, Missouri; McKesson
data from North Druid Hills, Georgia; etc). The data are
exported in a standard format (ie, ASCII flat file, XML,
etc) and transferred through secure file transfer protocol
(eg, Cerberus [Cerberus, LLC]) to the CDW Development
server.

4. The data are integrated into the Microsoft SQL databases
using Microsoft SQL Server Integration Services (SSIS),
a graphical tool that extracts, transforms, and loads (ETL)
the data to target schemas that will be used to contain the
target data objects: relational tables, dimensions, and cubes.
ETL systems enable a smooth migration from one system
to another irrespective of the underlying storage system.

5. Conformed dimensions were developed, and patient
linkages using various methods (eg, simple heuristics) [38]
were also available and made at this time.
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6. At present, a transactional grain fact table has been
developed, but other fact tables will be created as needed.

7. The CDW contains internal structured billing and EHR data
(ie, demographics, encounter details, vitals, medications,
procedures, diagnoses, orders, immunizations, laboratory
and imaging results, date and time, payee, and provider).
It also contains unstructured EHR data (eg, H&P, admission
notes, discharge summaries, other clinical notes). These
data are received from MH, CHH, and MU JCESOM’s
ECCC as well as from other outside institutions. In addition,
non-EHR data are incorporated using REDCap.

8. Unstructured data are analyzed using text analytics tools,
and classification variables based on text mining are
incorporated into the CDW.

9. The data structure (OLAP cubes and relational tables), once
checked and verified, is transferred from the secure
development server to the secure production server for use.

10. Various security measures (eg, IP and password restrictions)
are in place to prevent unauthorized use.

11. The CDW structure, which stores multi-institutional medical
information, can now provide data for both operational and
research analytical model development (statistical or
machine learning) using very simple deidentified interfaces
(eg, Excel [Microsoft Corp]) or more complex interactive
tools (eg, R [R Foundation for Statistical Computing],
Tableau [Tableau Software Inc], Power BI [Microsoft
Corp], etc). Within the CDW, the data can be manipulated,
cleaned, and prepared before the analysis as needed.

12. Structured and unstructured data currently exist within the
CDW. Image and BioSample data will soon be incorporated
(like the Pittsburgh model), but the full design has not been
finalized yet. An Honest Broker person assumes control of
sample shipping and receiving.

13. Standard Operation Procedures have been developed for
administrative and technical areas.

14. The Health Insurance Portability and Accountability Act
(HIPAA) guidelines are followed, and protocol to protect
patient information has also been implemented.

The CDW is contained within a Microsoft SQL database that
can interact with outside objects using other electronic methods
such as SignalR, a software library for Microsoft ASP.NET that
allows server code to send asynchronous notifications to
client-side web applications and SqlDependency, an object that
represents a query notification dependency between an
application and an instance of SQL server. Objects such as these
provide the ability for the data warehouse to interact in real time
with the outside regional population using the newest
technologies such as Microsoft Machine Learning Server with
embedded R or Python procedure coding.

Data Validation
The information derived from multiple data sources can have
inconsistencies and missing values because of their
heterogeneous nature that needs to be corrected [39-42]. Thus,
for each research study, clinical and translational researchers
using the data warehouse are required to verify a random sample
(calculated on the basis of the size of the study population) of
all extracted study data are directly verified at the original data
source to ensure data accuracy and validity. Identified errors or

omissions are transmitted back to the host systems for correction
or inclusion.

Augmenting the CDW Using REDCap
For certain studies, data available in the CDW may not be
precise enough or include variables needed to perform this study.
For such studies, data can be augmented using data capture
tools. One such tool is the Research Electronic Data Capture,
or REDCap, a workflow methodology and software solution
designed for the rapid development and deployment of electronic
data capture tools to support clinical and translational research
[43-45].

Our institution has deployed and maintains 2 REDCap servers:
secure (located under institutional firewall) and global (outside
the firewall). The secure REDCap system is used for storing
data considered protected health information (PHI) under
HIPAA. The global system, on the other hand, is used to store
deidentified or non-PHI data. These data are then transferred
to and stored within the multi-institutional data warehouse. This
method of augmenting the information pulled from the existing
source systems provides research-grade data from outside
sources that are normally not contained within a data warehouse.

Visualization
Visualization of information is an excellent method of providing
knowledge that can be easily understood by any member of the
health care discipline. Within the informatics platform, Tableau
provides interactive drill-down and drill-up capabilities for
specific projects.

Tableau is a visual analytics tool that provides an interactive
method of exploring multidimensional data, optimized from the
data warehouse and OLAP data sources. Tableau, using either
indexed relational tables or a data cube, can perform associated
operations such as slice, dice, roll-up, and drill-down on the
data, providing detailed interactive visual overlays that range
from the lowest grain of the data to high-level representations
of the data. Tableau charts, graphs, filters, and maps can provide
visualization of the various subgroups of interest using a
storyboard approach that presents a specific question followed
by an interactive dashboard that explores that question in detail.
The use of visual elements such as logos, pictograms, icons, or
pictures into the dashboards, in association with the subgroups,
provides easy-to-reference image aids that provide clarity and
understanding of complex information. The data warehouse
provides the drill-down, drill-up and slice and dice capability,
whereas the hub design connects both financial and clinical data
to provide a full picture.

The developed interactive dashboards are securely shared with
users within a department or a team, as needed, through the use
of Tableau Server [46].

Modeling (Statistics and Machine Learning)
The modeling component of the informatics platform supports
the construction of tailored regional models (statistical or
machine learning) to understand and predict disease and other
medical events within this region. EHR is primarily a billing
system, research only being a secondary function and, thus, is
heterogeneous, incomplete, and noisy [25], leading to
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unrepresentative samples, selection bias, and misclassification
[47]. During the modeling process, these issues are eliminated
or minimized.

To assist in modeling, software packages such as Stata
[StataCorp] and SPSS [IBM Corp] and embedded open-source
machine learning programs (eg, R [R Foundation for Statistical
Computing], Python [Python Software Foundation]) are used.
This enables faster and easier development of classification,
regression, and clustering algorithms for research use. In
addition, we utilize products such as Microsoft’s LINQ to
electronically gather information and directly incorporate that
information into the CDW.

Evaluation
During the modeling process, evaluation of the data set as it
relates to the regional population is carried out. Local experts
native to this region are asked to evaluate the model from a
clinical as well as a financial standpoint. Poverty is endemic
within the Appalachian population, and a model that suggests
the use of a very expensive medication or procedure over an
older but less expensive medication or procedure is unlikely to
be used [48]. Thus, the model must take into account whether
the patient has the means and access to the recommended
medication or procedure [49]. In addition, the willingness of
Appalachian medical institutions and health care providers to
follow the model’s suggestions must also be evaluated.

Once developed, the models were tuned and tested. Location,
time of treatment, outside temperature, and other contributory
factors available within the CDW were employed to fine-tune
the models, as applicable. The performance of the models was
measured using the R programming environment using measures
such as area under curve, sensitivity, specificity, F1 score,
precision, recall, etc.

Security, Privacy, and the Informatics Committee
Data access and usage are permitted only as described in the
mutual agreement between the 3 institutions and are subject to
internal security and privacy rules. All data requests must follow
the standard operating procedure built on the basis of mutual
multi-institutional agreement. Foremost, the researcher must
have appropriate credentials and authorization to be able to
request for data. If the researcher is authorized to make requests,
he or she must obtain the IRB approval for his or her proposed
study and submit the IRB proposal and supporting
documentation for review by the informatics committee. The
informatics committee, independent of the IRB, reviews all
requests for data from the data warehouse to ensure compliance
with the agreement. If the research project is approved, the
research team designated members are scheduled for the
deidentified data extraction process.

Team Building
Integral to the informatics platform is team building that builds
upon previous work [37]. To facilitate effective team meetings

and interprofessional collaboration (local and global) without
the need or expense of constant travel, a permanent clinical
informatics conference room with a fixed connected computer,
an uninterruptable power supply (UPS), a smart board, a camera,
and a speaker system, along with a video conferencing system
(Zoom) connectivity, was built. This ensures adequate
communication among all those involved (ie, team members,
users, leadership, etc) and access to resources that would
otherwise be unavailable.

Results

Since the implementation of the platform, several studies have
been conducted. Each study listed below was approved by the
informatics committee, and the deidentified data and platform
tools were made available securely to the research team.

To evaluate the functionality and value of this platform, we first
analyzed the aggregated data of Medicaid-insured patients across
different health systems using the interconnected applications
within the platform for population health management. Relevant
data were extracted from the CDW, followed by exploratory
analysis using a Tableau dashboard. Due to the isolated nature
of the study population, regional variables such as distance from
the CHH and weather conditions (ie, temperature) were also
included. Errors and missing values were identified using the
dashboard, and data were subsequently cleaned and prepared.
Using these clean data, the regional population was classified
into 3 spend categories: low cost, acute, and persistent subgroups
on the basis of the charges accrued. Next, the Charlson
Comorbidity Index (CCI) was incorporated into the CDW to
predict mortality risk within 1 year of hospitalization for patients
with comorbid conditions within each spend category (Table
1) [50,51]. Of these categories, the persistent group had the
largest percentage of patients with a high risk of mortality,
followed by acute and low cost after excluding the deceased
patients (persistent: 898/1247, 72.01%; acute: 2074/6946,
29.86%; low cost: 5130/102,814, 4.99%). The CCI was not very
sensitive in predicting the risk of mortality but was very specific
and accurate (sensitivity: 896/1512, 59.26%; specificity:
102,905/111,007, 92.7%; accuracy: 103,801/112,519, 92.25%).
The effect of distance and weather on the CCI needs further
investigation that is being conducted. Adjustments are being
made to this standard national index to incorporate other
Appalachian characteristics that could improve the sensitivity
of this risk scoring system.

This way, the platform has been utilized for a variety of purposes
such as increasing knowledge of the pathophysiology of
diseases, risk identification, risk prediction, health care resource
utilization research, and estimation of the economic impact of
diseases to enable data-driven clinical decisions, leading to
improved clinical outcomes. Textbox 1 contains a list of studies
conducted so far.
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Table 1. The 10-year mortality risk predicted using the Charlson Comorbidity Index.

Alive, n (%)Deceased, n (%)Mortality risk

8102 (7.20)896 (0.80)High risk

102,905 (91.46)616 (0.55)Low risk

Textbox 1. Studies conducted using the Appalachian Informatics Platform.

Diagnostic accuracy improvement studies

• Albumin Level as a Risk Marker and Predictor of Peripartum Cardiomyopathy [52]

• Clinical Determinants of Myocardial Injury, Detectable and Serial Troponin Levels Among Patients With Hypertensive Crisis [53]

• Is Fever a Red Flag for Secondary Bacterial Pneumonia During RSV Bronchiolitis [54]

• Metabolic Syndrome: Are Current Colon Cancer Screening Guidelines Enough in a Rural Population? [55]

• Utilization of Appalachian Clinical and Translational Science Institute Data Warehouse to More Accurately Predict Disease Processes Important
for Central Appalachia [56]

Resource utilization and financial impact research studies

• Fueling Dementia Research in Appalachia via Appalachian Informatics Platform: A Longitudinal Study [57]

• Hospital Emergency Department Visits For Non-Traumatic Oral Health Conditions [58]

Studies to understand disease pathophysiology

• Serum Calcium Homeostasis and Volume Dynamics in Alzheimer’s Disease and Diabetes Mellitus-2 [59]

Five studies utilized the platform for risk identification and risk
prediction to improve diagnostic accuracy [52-56]. Sundaram
et al [56] demonstrated the value of ACTSI-CDW as a primary
source to improve the diagnosis of metabolic syndrome, a
diagnosis very relevant to the Central Appalachian population.
The researchers discovered that utilizing billing codes alone
severely underestimated the number of patients with metabolic
syndrome by a factor of more than 10 as compared with looking
at specific criteria that determine this diagnosis [56]. Another
study assessed the relationship between metabolic syndrome
and colorectal cancer and found that patients with metabolic
syndrome, especially those with insulin resistance, were more
likely to have colorectal cancer, indicating the probable need
for earlier screening for colorectal cancer in these patients [55].
Elmore et al [54] examined the role of fever in predicting the
development of secondary bacterial pneumonia in children with
RSV and other viral illnesses. They found that febrile children
were 2 to 8 times (RSV, 47/78 vs 27/100; other bronchiolitis,
54/83 vs 7/88) more likely to have secondary bacterial
pneumonia compared with afebrile children and, thus, may need
to be aggressively evaluated to enable early diagnosis and
treatment [54]. Amro et al [52] studied the relationship between
hypoalbuminemia and peripartum cardiomyopathy and noted
that lower albumin levels were significantly associated with
peripartum cardiomyopathy (P<.001; odds ratio 0.033, 95% CI
0.034-0.865) and could potentially be used as a risk marker for
it. Acosta et al [53] used data from the ACTSI-CDW to identify

risk factors (lower BMI, before CHF, and prior use of aspirin)
that predict myocardial injury, detectable troponin, and increase
in serial troponin levels in patients with hypertensive crisis.

Ferdjallah et al [59] analyzed the data from the ACTSI-CDW
to understand how Alzheimer disease and diabetes mellitus
affect serum calcium homeostasis and extracellular fluid volume.
They observed that acute changes in serum calcium were
significantly correlated with changes in extracellular fluid
volume in both disease states [59].

The platform has also been applied in 2 studies to assess
resource utilization (eg, emergency room, medications, etc) and
the financial impact of the disease. For instance, Bhardwaj et
al [57] utilized the platform to identify the problems associated
with benzodiazepine use in geriatric patients within the health
system, such as a higher number of emergency room visits and
charges in geriatric patients with dementia plus at least one BZD
prescription. In another study [58] that aimed to measure the
volume and cost of emergency room use for these conditions
and identify the factors that predict such use, the researchers
built a dashboard (Figure 2) to easily explore and analyze
relevant data on nontraumatic dental conditions that led to
emergency room visits and to report the key findings of the
study. The authors [58] observed that emergency room visits
by uninsured patients were 4 times more likely and those by
Medicaid insured 2 times more likely to be for dental problems
than Medicare-insured patients.
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Figure 2. Tableau dashboard displaying patterns and trends in charges for non-traumatic dental ER visits at Cabell Huntington Hospital between 2010
and 2018. ER: emergency room.

Discussion

Utility of the Appalachian Informatics Platform
The Appalachian Informatics Platform has supported several
research projects involving the use of different components of
the platform, depending on project needs. The studies described
reported findings that are seldom reported in this region,
enhanced our knowledge of pathophysiology and risk factors,
and helped estimate and analyze resource utilization and
economic burden of certain diseases within Appalachia using
minimal resources (a small IT team and a relatively inexpensive
platform).

Before the implementation of the platform, many research
studies that followed the patient across multiple care settings
or involved analysis of big data were not possible due to the
unavailability of technical and economic resources owing to a
lack of buy-in from rural health care organizations. As the data
existed in silos, there was a lack of standardization and
normalization, which resulted in major data inconsistencies.
Studies conducted using these disjointed data sets often used
unrepresentative small biased samples and had low statistical
power and quality.

The introduction of the platform has helped address these issues.
It is now easier to pinpoint and correct errors and/or missing
values and understand the distribution of data using visual
analysis tools. Further, the time needed to conduct these studies
from start to finish has been greatly reduced owing to the
availability of all applications necessary to complete the study
within the platform. This has been specifically useful because
many researchers do not have the technical skills needed to

perform complex and advanced data analysis, especially on
larger data sets.

The paper also revealed that national models do not necessarily
perform well when applied to the Appalachian population. The
Appalachian Informatics Platform allows for seamless
integration of regional variables into the national model, which
may improve the performance of these models. For each of the
top 10 causes of death in West Virginia in 2017 per the Centers
for Disease Control and Prevention [60], a machine learning
algorithm was used to predict outcomes on a national level:
heart disease [61,62], cancer [63,64], accidents [65,66],
respiratory disease [67,68], stroke [69,70], diabetes [71,72],
Alzheimer disease [73,74], pneumonia [75,76], kidney disease
[77,78], and suicide [79,80]. Each of these cited models could
be modified to fit the characteristics of the Appalachian
population, especially those characteristics that make this region
different in terms of geography, economy, education, and culture
from the rest of the United States. The development of these
regional models could help rural health general practitioners
tackle complex medical conditions without the need for an
expensive specialized health care provider nearby [46].

We hope that this paper will help other rural health care
organizations, such as ours, that serve underserved populations
realize the value and ease of using an informatics platform to
conduct research and improving care for their patients despite
limited resources.

Ongoing Projects and Future Directions
At present, a model that utilizes embedded data analytics to
monitor the side effects of certain types of cancer by ingesting
deidentified statements in the regional variety of English
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language from patients within this region [81,82] is under
development. This model could be used to analyze patient
responses at a certain point in time for a cross-sectional study
or continuously in real time for a long-term longitudinal study
to identify the patients in need of care before their scheduled
follow-up visit. The ongoing results from this model would be
sent to their health care providers for appropriate actions. In
case of an emergency, patient-designated community support
networks such as religious or other support groups may be
intimated to bring the patient to the emergency department so
that the patient can receive timely care.

We plan to expand upon our unified informatics platform to
integrate programming applications for the development of

state-of-the-art applications targeted specifically toward the
unmet health care needs of the Appalachian population.

Conclusions
This paper establishes the value of the Appalachian Informatics
Platform in enabling seamless and secure data access, model
development through an analytics engine to explore novel and
unexpected hypotheses, and simple yet effective communication
of all findings via interactive visualization.

The relatively inexpensive nature of such a platform coupled
with its demonstrated advantages will hopefully encourage small
and midsized rural academic centers, which traditionally have
fewer resources than their urban counterparts, to adopt a research
informatics platform within their institutions using the template
described in this paper as a guide.
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