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Abstract

Background: The cluster detection of health care–associated infections (HAIs) is crucial for identifying HAI outbreaks in the
early stages.

Objective: We aimed to verify whether multisource surveillance based on the process data in an area network can be effective
in detecting HAI clusters.

Methods: We retrospectively analyzed the incidence of HAIs and 3 indicators of process data relative to infection, namely,
antibiotic utilization rate in combination, inspection rate of bacterial specimens, and positive rate of bacterial specimens, from 4
independent high-risk units in a tertiary hospital in China. We utilized the Shewhart warning model to detect the peaks of the
time-series data. Subsequently, we designed 5 surveillance strategies based on the process data for the HAI cluster detection: (1)
antibiotic utilization rate in combination only, (2) inspection rate of bacterial specimens only, (3) positive rate of bacterial
specimens only, (4) antibiotic utilization rate in combination + inspection rate of bacterial specimens + positive rate of bacterial
specimens in parallel, and (5) antibiotic utilization rate in combination + inspection rate of bacterial specimens + positive rate of
bacterial specimens in series. We used the receiver operating characteristic (ROC) curve and Youden index to evaluate the warning
performance of these surveillance strategies for the detection of HAI clusters.

Results: The ROC curves of the 5 surveillance strategies were located above the standard line, and the area under the curve of
the ROC was larger in the parallel strategy than in the series strategy and the single-indicator strategies. The optimal Youden
indexes were 0.48 (95% CI 0.29-0.67) at a threshold of 1.5 in the antibiotic utilization rate in combination–only strategy, 0.49
(95% CI 0.45-0.53) at a threshold of 0.5 in the inspection rate of bacterial specimens–only strategy, 0.50 (95% CI 0.28-0.71) at
a threshold of 1.1 in the positive rate of bacterial specimens–only strategy, 0.63 (95% CI 0.49-0.77) at a threshold of 2.6 in the
parallel strategy, and 0.32 (95% CI 0.00-0.65) at a threshold of 0.0 in the series strategy. The warning performance of the parallel
strategy was greater than that of the single-indicator strategies when the threshold exceeded 1.5.

Conclusions: The multisource surveillance of process data in the area network is an effective method for the early detection of
HAI clusters. The combination of multisource data and the threshold of the warning model are 2 important factors that influence
the performance of the model.
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Introduction

Health care–associated infections (HAIs) are a socially sensitive
and important public health issue that threatens patient safety,
prolongs hospital stays, and increases economic burden. The
incidence of HAIs in developed countries is 2%-6%, and in
developing countries it is 12.6%-18.9% [1]. In China, the extra
medical expenses per HAI patient varied from 9725 to 18,909
RMB (US $1427 to 2775) [2], and the total medical costs due
to HAI have increased by nearly 70% [3]. Outbreaks are the
main manifestation of the risk of HAIs, as HAIs are contagious,
and approximately 2%-10% of HAI cases occur in the form of
outbreaks [4]. In the past 40 years, there have been 465 major
HAI outbreak events in China, with an average of 11.6 outbreak
events annually reported by the media [5,6]. Because a
significant number of HAI outbreaks have not been detected or
reported in a timely manner, the severity of HAI outbreaks in
China is likely to be seriously underestimated.

The key to establishing a methodology for HAI prevention and
control is to develop a reliable outbreak warning system based
on surveillance. To identify HAI outbreaks, HAI clusters must
first be detected and then confirmed through epidemiological
investigations. Therefore, detecting aggregated HAI cases is
crucial to establishing a sound early warning system for HAI
outbreaks. Traditional HAI surveillance is a form of passive
monitoring, which relies on case reports by clinicians. However,
owing to the compliance of clinicians with case reporting and
the delay in HAI diagnosis, the timeliness of surveillance and
warning for HAI outbreaks is limited.

In this paper, process data refer to the continuous, traceable,
and basic information on patients who are admitted to hospitals;
these data can be collected automatically by a search engine
based on the local area network of the hospital. The proposed
process data surveillance would be a form of active monitoring,
which would not rely on delayed case reports. Therefore, the
use of infection-related process data to detect the aggregation
of HAI cases is likely to be a reliable method of early warning
for HAI outbreaks. In recent years, the rapid development of
information technology has led to a noticeable improvement in
process data collection. Consequently, automated surveillance
using process data related to infections has become a widely
researched topic among the researchers of early warning systems
for HAI outbreaks.

Recent studies have used a large amount of process data related
to infections to identify HAI clusters [7-12]. However,
surveillance that relied on a single indicator of process data
limited the accuracy of HAI cluster detection because a solo
process indicator was not sufficiently specific to reflect the
occurrence and progress of infections. Some studies have
confirmed that multisource surveillance for health-related data
could improve the accuracy and timeliness of outbreak warning
for infectious diseases [13,14]. Therefore, we considered that

if a variety of process indicators related to infections could be
combined for surveillance, the accuracy of the detection of HAI
clusters could also be improved.

In a previous study [15], we assessed the performance and
feasibility of automated cluster detection of multidrug-resistant
organism–related HAIs using data on antibiotic use. In this
study, we conducted an integrated surveillance of 3 process
indicators using an electronic records information system based
on the local area network of the hospital, including the antibiotic
utilization rate in combination, inspection rate of bacterial
specimens, and positive rate of bacterial specimens. We then
analyzed the different combinations of the warning signals of
these multisource process surveillance data to verify their early
warning capability for HAI cluster detection.

Methods

Study Design and Setting
This was a retrospective observational study. The time series
data of HAI incidences and the 3 indicators of process data were
collected from 4 HAI high-risk units in Wuhan Union Hospital
(WHUH). WHUH is a tertiary hospital in Wuhan, China, with
a 5000-bed capacity. The process data, in this study, included
the antibiotic utilization rate in combination, inspection rate of
bacterial specimens, and positive rate of bacterial specimens
from the 4 units with the highest HAI incidences. All data
presented are from January 1, 2017, to June 28, 2019. Indicators
were collected weekly at the unit level.

Surveillance and demographic data are available in the
Real-Time Nosocomial Infection Surveillance System
(RT-NISS) database. Briefly, the RT-NISS is seamlessly
connected with several electronic information systems, including
the hospital information system, laboratory information system,
and other information systems in the local area network of the
hospital. The infection-related process data are extracted and
stored in real time in the database. The details of the RT-NISS
database have been previously described [16].

Indicators of Process Data
All indicators in this study were obtained from the RT-NISS
database. The process data associated with antibiotic use and
bacterial culture were automatically extracted from data sets
containing doctor’s advice and nursing records by the RT-NISS
using web mining and web crawler technology. The 3 process
data indicators in this study were calculated weekly within each
unit.

The antibiotic utilization rate in combination was determined
to be the proportion of the number of admitted patients who
used more than 1 antibiotic (n) divided by the total number of
admitted patients (N), that is, antibiotic utilization rate in
combination = n/N × 100%; the inspection rate of bacterial
specimens was calculated as the number of specimens that were
collected for bacterial testing (i) divided by the number of
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admitted patients (N), that is, inspection rate of bacterial
specimens = i/N; the positive rate of bacterial specimens was
calculated as the number of positive specimens with cultured
bacteria (p) divided by the number of specimens collected for
bacterial testing (i), that is, positive rate of bacterial specimens
= p/i × 100%.

Data on the prescribed oral and intravenous antibiotics were
collected, while topical antibiotics were excluded from the data
collection. The sputum of bacterial culture included throat
secretion, urine, blood, stool, pleural effusion, cerebrospinal
fluid, ascites, and venous catheter, among others. Repeated
samples from each individual were excluded. The data extraction
process of the variables (N, n, i, and p) used to calculate the
process indicators is shown in Figure 1.

Figure 1. The flow diagram of data extraction process of the variables used to calculate the process indicators. RT-NISS: Real-time nosocomial infection
surveillance system; AUR: Antibiotic utilization rate in combination; IRS: Inspection rate of bacterial specimens; PRS: Positive rate of bacterial
specimens.

Identification of HAI Cases
HAI cases were identified according to the diagnostic criteria
for HAIs, which were issued by the Ministry of Health of China
in 2001 [17]. The HAI case findings were documented weekly
by a hospital infection management team. The hospital infection
management team comprised clinicians, nurses, and full-time
infection control practitioners. All members within the hospital
infection management team independently reviewed the clinical
records of the patients to include reports of illness, microbiology
data, antibiotic data, imaging reports, and results of clinical
laboratory tests, and HAI cases were identified after the hospital
infection management team members reached a consensus. The
weekly HAI incidence was measured as the number of new HAI
cases in a week divided by the total number of inpatients in that
week.

Warning Detection Model
In this study, the time series data sets of each surveillance
indicator were analyzed using the Shewhart warning model,
which is a common statistical process control for detecting
clusters. We used a 4-week moving average of time series data
in the Shewhart model, considering the inpatient’s average
length of hospitalization and the epidemiologic characteristics
of infected patients. We then used the data from the nearest 4

weeks before the current week as the dynamic warning baseline
of the Shewhart model. Finally, the Shewhart warning statistics
(St) for each week were calculated using the mean and SD of
the dynamic baseline data sets according to the following
formula:

St=(Xt – µt)/σt

where Xt is the observation value at week t; µt and σt are the
mean and SD of the observation values for the warning baseline
from week t–4 to week t–1, respectively. The warning signal
at week t was generated when St exceeded the threshold.

An HAI cluster is considered to exist when a group of HAIs
occurs closely together in a health care unit, so the previous
warning threshold of an HAI cluster was based on the statistical
variations in the frequency. The Shewhart model with a
threshold of 2.0 was used for detecting HAI clusters in WHUH
according to the Guideline of Control of Health Care-Associated
Infection Outbreak [18]. This implies that a warning signal for
an HAI cluster was generated when the 4-week moving average
of HAI incidence at the current week exceeded the mean plus
2 SDs of the past 4 weeks. We used 51 thresholds (0.0-5.0, steps
of 0.1) to detect process data clusters to explore the optimal
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threshold of the Shewhart warning model for process data
warning.

Warning Strategies for Process Data
We designed 5 warning strategies of process indicators based
on the combination of 3 single-indicator warning strategies: (1)
antibiotic utilization rate in combination only, (2) inspection
rate of bacterial specimens only, and (3) positive rate of bacterial
specimens only, and 2 multi-indicator warning strategies, (4)
antibiotic utilization rate in combination + inspection rate of
bacterial specimens + positive rate of bacterial specimens in
parallel, and (5) antibiotic utilization rate in combination +
inspection rate of bacterial specimens + positive rate of bacterial
specimens in series. The parallel warning signal is generated
once any subindicator generates a signal, and the series warning
signal is generated only when all subindicators generate signals
during the same period.

Comparison of Warning Signals of Process Data With
HAI Incidence
We used the consistency of warning signals between the HAI
incidence and process data to evaluate the warning performance
for HAI cluster detection. The warning signals of the process
data were considered as the test and those of the HAI incidences
as references. The early warning signal was defined as the signal
of process data generated earlier than the signal of HAI
incidence within the 4-week period. Accordingly, we calculated
the sensitivity, specificity, and Youden index under each
threshold of process data for the early detection of HAI clusters.
Furthermore, the receiver operating characteristic (ROC) curve
of the process data for the early detection of the signals of HAI

clusters was plotted using sensitivity and 1–specificity under
51 thresholds (0.0 to 5.0, steps of 0.1). Youden index was used
to evaluate the comprehensive warning performance for HAI
cluster detection under each threshold.

Sensitivity = Number of HAI cluster signals detected by the
early warning signals/Total number of HAI cluster signals

Specificity = Number of weeks that signal generated neither in
HAI incidence nor in process indicators/Number of weeks that
no signal generated in the HAI incidence

Youden index = Sensitivity + Specificity–1

Statistical Analysis
The one-way analysis of variance was used to compare the
differences between the mean values, and a chi-square test was
used to compare the differences between the proportions among
the 4 independent units. A statistical evaluation of Youden index
among the warning strategies in each threshold was performed
using the paired samples t test. A P-value of .05 or less was
considered statistically significant in all analyses.

Results

Demographic Characteristics
A total of 23,119 patients were admitted to the 4 HAI high-risk
units in WHUH during the study period. The hospital infection
management team diagnosed 1503 HAI cases. The HAI
incidence in these high-risk units ranged from 5.36% (462/8618
patients) to 9.06% (316/3489 patients). Statistically significant
differences were observed in all demographic characteristics of
patients among the 4 HAI high-risk units (Table 1).
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Table 1. Demographic characteristics of inpatients in the 4 high-risk units in Wuhan Union Hospital during the surveillance period.

P valueHigh-risk unitTotalCharacteristics

Unit 4Unit 3Unit 2Unit 1

348935987414861823,119Participants (N)

<.0012073 (59.4)2117 (58.8)4284 (57.8)4679 (54.3)13,153 (56.9)Male, n (%)

<.00155.6 (19.5)51.1 (15.1)34.1 (25.9)47.3 (16.3)44.9 (21.7)Age in years, mean (SD)

<.00124.6 (34.1)16.1 (13.1)24.1 (15.5)15.2 (32.3)19.6 (26.2)Hospitalization days, mean (SD)

<.0012399 (68.8)1503 (41.8)6386 (86.1)3459 (40.1)13,747 (59.5)Surgical procedure, n (%)

<.0013077 (88.2)227 (6.3)6828 (92.1)371 (4.3)10,496 (45.4)Mechanical ventilation, n (%)

<.0011026 (29.4)450 (12.5)6643 (89.6)353 (4.1)8485 (36.7)Central venous catheter, n (%)

<.0013370 (96.5)1979 (55.0)7051 (95.1)5378 (62.4)17,779 (76.9)Urinary catheter, n (%)

<.001316 (9.1)307 (8.5)418 (5.6)462 (5.4)1503 (6.5)Health care–associated infection, n (%)

<.0013425 (98.2)2749 (76.4)7214 (97.3)4736 (55.0)18,124 (78.4)Antibiotics used, n (%)

<.00117.6 (15.1)10.9 (12.1)13.2 (8.6)5.6 (8.7)10.7 (11.3)Antibiotic days, mean (SD)

<.0012285 (65.5)1166 (32.4)1895 (25.6)1010 (11.7)6356 (27.5)Antibiotics used in combination, n (%)

<.0017.2 (10.3)3.6 (8.1)2.2 (5.2)1.0 (3.5)2.7 (6.6)Antibiotic days in combination used, mean (SD)

<.0011767 (50.6)1262 (35.1)1596 (21.5)1415 (16.4)6040 (26.1)Microbiological test, n (%)

<.0011092 (31.3)632 (17.6)677 (9.1)728 (8.4)3129 (13.5)Microbiological test with positive result, n (%)

16,9535647868511,78543,070Microbiological specimens

<.0014008 (23.6)1927 (34.1)1551 (17.9)2600 (22.1)10,086 (23.4)Positive, n (%)

473323261679307011,808Isolated strains

<.0011886 (39.8)319 (13.7)456 (27.2)769 (25.0)3430 (29.0)Acinetobacter baumannii, n (%)

<.001479 (10.1)535 (23.0)88 (5.2)581 (18.9)1683 (14.3)Staphylococcus aureus, n (%)

<.001507 (10.7)126 (5.4)219 (13.0)362 (11.8)1214 (10.3)Pseudomonas aeruginosa, n (%)

<.001262 (5.5)322 (13.8)166 (9.9)326 (10.6)1076 (9.1)Klebsiella pneumonia, n (%)

<.001309 (6.5)176 (7.6)159 (9.5)148 (4.8)792 (6.7)Saccharomyces albicans, n (%)

<.001204 (4.3)223 (9.6)78 (4.6)119 (3.9)624 (5.3)Escherichia coli, n (%)

<.0011086 (22.9)625 (26.9)513 (30.6)765 (24.9)2989 (25.3)Other, n (%)

Surveillance and Cluster Detection
The time series charts of the 3 process indicators and HAI
incidences for all units are shown in Figure 2, as well as in
Multimedia Appendix 1. The fluctuations of the time series in
the process data are generally synchronous with those in HAI
incidence. For the HAI cluster detection using the Shewhart

warning model in each unit, there were 20 signals generated in
unit 1, 16 signals in unit 2, 18 signals in unit 3, and 16 signals
in unit 4. These HAI cluster signals were compared with those
of the process data warning at each threshold. An example of
signal comparison at the threshold of 2.0 is shown in Multimedia
Appendix 1.
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Figure 2. The time-series charts comparison of process data with HAI incidence in all surveillance units. AUR: Antibiotic utilization rate in combination;
IRS: Inspection rate of bacterial specimens; PRS: Positive rate of bacterial specimens.

Warning Detection Evaluation
According to the definition of early warning signals, the ROC
curves of 5 warning strategies for early detected HAI cluster
signals were plotted using scattered points of 51 thresholds.
Figure 3 depicts the overall ROC curves of process data warning
for detecting HAI cluster signals across the 4 units. Generally,
all ROC curves are located above the standard line, and the area

under the ROC curve is larger in the parallel warning strategy
than in the single-indicator warning strategies and the series
warning strategy.

The optimal Youden index for the early detection of HAI cluster
signals was higher in the parallel warning strategy than in any
other warning strategies. Specifically, the optimal Youden
indexes were 0.48 (95% CI 0.29-0.67) at a threshold of 1.5 for
antibiotic utilization rate in combination only, 0.49 (95% CI
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0.45-0.53) at a threshold of 0.5 for inspection rate of bacterial
specimens only, 0.50 (95% CI 0.28-0.71) at a threshold of 1.1
for positive rate of bacterial specimens only, 0.63 (95% CI
0.49-0.77) at a threshold of 2.6 in the parallel strategy, and 0.32
(95% CI 0.00-0.65) at a threshold of 0.0 in the series strategy.

Figure 4 illustrates the overall curves of the Youden index
variation with the warning thresholds across the 4 units. A
threshold of 1.5 was the demarcation point of Youden index for
judging the superiority between the parallel warning strategy
and the single-indicator warning strategies.

Figure 3. The ROCs of five warning strategies of process data for identifying signals of HAI clusters. Fifty-one thresholds (0.0 to 5.0 step by 0.1) were
used for detecting clusters of process data. Dots indicate the sensitivities and 1-specificities for each threshold. AUR: Antibiotic utilization rate in
combination; IRS: Inspection rate of bacterial specimens; PRS: Positive rate of bacterial specimens.

Figure 4. The curves of Youden index varied with thresholds of Shewhart detection model. AUR: Antibiotic utilization rate in combination; IRS:
Inspection rate of bacterial specimens; PRS: Positive rate of bacterial specimens.
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Table 2 shows the mean difference in Youden index between
the warning strategies. When the threshold of the Shewhart
model was less than or equal to 1.5, Youden indexes in the
single-indicator warning strategies were higher than those in
the parallel warning strategy, and those of inspection rate of
bacterial specimens only and positive rate of bacterial specimens
only were better than that of antibiotic utilization rate in
combination only; however, when the threshold was greater

than 1.5, Youden indexes in the parallel warning strategy were
higher than that in the single-indicator warning strategies, and
Youden index of antibiotic utilization rate in combination only
was better than those of inspection rate of bacterial specimens
only and positive rate of bacterial specimens only. In addition,
under most thresholds, Youden indexes in the series warning
strategy were lower than those in the single-indicator warning
strategies and parallel warning strategy.

Table 2. Threshold-matched comparison of Youden index of early warning detection for health care–associated infection clusters.

P valuedf (n–1)tMean difference of Youden index (95% CI)Threshold and comparison

Overall (from 0.0 to 5.0)

.062203–1.877–0.011 (–0.023 to 0.001)IRSa – PRSb

<.001203–5.206–0.062 (–0.085 to –0.038)IRS – AURc

<.001203–4.797–0.051 (–0.072 to –0.030)PRS – AUR

<.001203–7.856–0.124 (–0.155 to –0.093)IRS – Parallel

<.001203–7.450–0.112 (–0.142 to –0.083)PRS – Parallel

<.001203–5.234–0.062 (–0.085 to –0.038)AUR – Parallel

<.00120318.6430.230 ( 0.206 to 0.254)IRS – Series

<.00120320.7010.241 ( 0.218 to 0.264)PRS – Series

<.00120329.6540.292 ( 0.273 to 0.311)AUR – Series

Threshold ≤ 1.5 (from 0.0 to 1.5)

.878630.1550.002 (–0.019 to 0.023)IRS – PRS

.046632.0330.033 (0.001 to 0.065)IRS – AUR

.009632.7110.031 (0.008 to 0.054)PRS – AUR

<.0016310.6460.161 (0.131 to 0.191)IRS – Parallel

<.0016311.2170.159 (0.131 to 0.187)PRS – Parallel

<.0016310.0370.128 (0.102 to 0.153)AUR – Parallel

<.0016315.8510.309 (0.270 to 0.348)IRS – Series

<.0016314.7500.308 (0.266 to 0.349)PRS – Series

<.0016314.4890.276 (0.238 to 0.314)AUR – Series

Threshold > 1.5 (from 1.6 to 5.0)

.019139–2.368–0.017 (–0.031 to –0.003)IRS – PRS

<.001139–7.388–0.105 (–0.133 to –0.077)IRS – AUR

<.001139–6.614–0.088 (–0.115 to –0.062)PRS – AUR

<.001139–26.475–0.254 (–0.272 to –0.235)IRS – Parallel

<.001139–25.011–0.237 (–0.255 to –0.218)PRS – Parallel

<.001139–15.637–0.148 (–0.167 to –0.130)AUR – Parallel

<.00113913.2170.194 (0.165 to 0.223)IRS – Series

<.00113915.8180.211 (0.184 to 0.237)PRS – Series

<.00113926.2590.299 (0.277 to 0.322)AUR – Series

aIRS: inspection rate of bacterial specimens.
bPRS: positive rate of bacterial specimens.
cAUR: antibiotic utilization rate in combination.
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Discussion

Principal Findings
In this study, we retrospectively analyzed the time series
surveillance data in 4 HAI high-risk units in WHUH to evaluate
the early warning performance of 3 process indicators (antibiotic
utilization rate in combination, inspection rate of bacterial
specimens, and positive rate of bacterial specimens) for detecting
HAI clusters under different warning strategies. The ROC curves
of all warning strategies are located above the standard line,
indicating that surveillance based on process data was able to
detect HAI clusters. Unit-specific results manifested similar
outcomes in the 4 independent high-risk units, suggesting a
universal warning capability of process data surveillance for
HAI cluster detection. However, the accuracy of warnings varied
in different units, mainly owing to the differences in population
characteristics, antimicrobial utilization behaviors, and
pathogenic spectrum.

Based on the correlation between process indicators and
infections, process indicators have been used to detect HAI
cases and outbreaks. In Freeman’s review of research progress
in electronic HAI surveillance [19], 77% (34/44) of studies used
electronic medical records to detect HAI cases. In another
review of the automated detection of HAI outbreaks, 62%
(18/29) of studies used microbiological data to detect HAI
outbreaks [9]. For example, Fournier et al [10] demonstrated
that the consumption of antibiotics for Pseudomonas aeruginosa
infection could identify 3 epidemics of P. aeruginosa infections
in a burn center [10]. Carron et al [20] suggested that the
prospective electronic surveillance of drug consumption could
identify the outbreaks of P. aeruginosa infections in the absence
of routine traditional surveillance. Moreover, a recent
retrospective study in the United States revealed that 9 HAI
outbreaks between 2011 and 2016 were successfully detected
via data mining of the electronic medical records database, and
the earliest warning signal in one of the outbreaks could be
generated when the second HAI patient was diagnosed [12]. In
a study conducted in 2 hospitals in France, researchers used a
space-time permutation scan statistics model to analyze the
microbial data in the WHONET system and successfully
detected several HAI outbreaks [11].

Combining multiple independent indicators together to detect
HAI clusters would be a new research direction for the early
warning of HAI outbreaks. Informatization technology provides
a convenient tool for the real-time surveillance of multisource
process data. Because process indicators are nonspecific for
infections, monitoring a single indicator alone cannot fully
reflect the occurrence and progression of an HAI, which may
limit the accuracy and timeliness of HAI detection. To overcome
this problem, a combination of multiple nonspecific indicators
provides more infection-related information, which could be
expected to improve the early warning performance of HAI
detection. This hypothesis was confirmed in our study. The area
under the ROC curve was higher for the multi-indicator parallel
warning strategy than all other single-indicator warning
strategies, indicating that the combined monitoring of multiple
process indicators improves the performance of HAI cluster

detection. Furthermore, other researchers have proposed similar
views. Spolaore et al [21] suggested that the combination of
multiple surveillance indicators improved the accuracy of
surgical site infection detection. In their study, the positive
predictive values for detecting surgical site infections using
discharge codes alone or microbiology reports alone were only
70%, but the positive predictive value increased to 97% when
these 2 indicators were used in combination.

It is worth mentioning that the combination of multiple
indicators is an important factor that affects the accuracy of
HAI cluster detection. In our study, compared with the
single-indicator warning strategies, the area under the ROC
curve was increased when using the parallel warning strategy
but decreased when using the series warning strategy. The
results of a Youden index comparison exhibited the same
situation: the average value of Youden index under each
threshold in the parallel warning strategy was greater than those
in the single-indicator warning strategies, but the average value
of Youden index under each threshold in the series warning
strategy was lower than those in the single-indicator warning
strategies. In general, the combination of multiple indicators in
parallel could improve the sensitivity of warnings but decrease
their specificity. Conversely, the combination of multiple
indicators in series could improve the specificity of warnings
but reduce their sensitivity. This situation was also examined
by Bouzbid et al [22]. The sensitivity and specificity for HAI
identification using the indicator of a drug prescriptions
algorithm alone were 82.3% and 66.7%, respectively, and those
using the indicator of the microbiological algorithm alone were
94.0% and 77.3%, respectively. Furthermore, when these 2
indicators were combined in parallel, the sensitivity increased
to 99.3%, but the specificity decreased to 58.6%. When these
2 indicators were combined in series, the sensitivity reduced to
77.0%, and the specificity increased to 87.3%.

The threshold of the warning model is another important factor
affecting the performance of HAI cluster detection. In
prospective surveillance and warning, it was necessary to
consider the risk severity and preventive costs of HAI clusters.
The threshold of the warning model should be set according to
the demand for warning sensitivity and the costs for responding
to warning signals. From our results of the Youden index
variation with the thresholds of the warning model in Figure 4,
we found that when the threshold of the Shewhart model was
1.5 or less, the performance of the parallel warnings for HAI
clusters was lower than that of the single-indicator warnings.
Only when the threshold was greater than 1.5, the performance
of the parallel warnings overtook the single-indicator warnings.
Theoretically, a low threshold is prone to higher sensitivity and
lower specificity for warnings, whereas a high threshold is prone
to lower sensitivity and higher specificity. Owing to the
opposing relationship between sensitivity and specificity, the
maximum value of Youden index, which comprehensively
considers sensitivity and specificity, could be regarded as an
alternative criterion for determining the optimal threshold. Our
results indicated that Youden index of parallel warnings was
optimal at a threshold of 2.6. In addition, the optimal Youden
index of parallel warnings exceeded that of single-indicator
warnings; furthermore, the optimal Youden indexes of
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single-indicator warnings were higher than those of the series
warnings. This result again proves that the parallel warning
strategy could improve the performance of HAI cluster
detection, while the series warning strategy reduced it.

Previous studies have reported some available novel methods
for HAI outbreak detection, mainly including (1) exploration
of new monitoring objects, (2) innovation of statistical models,
and (3) application of intelligent algorithms.

A French project consortium confirmed the feasibility of natural
language processing for automatic HAI detection in hospital
facilities by developing a natural language processing solution
for detecting HAI events in electronic medical records. The
overall sensitivity and specificity of the automatic detection of
HAIs were 83.9% and 84.2%, respectively [23]. This detection
efficiency is similar to that of the multisource surveillance of
process data in our study. Another study reported a novel
statistical process control chart using Twitter’s anomaly and
breakout algorithm to detect anomalous HAI surveillance data.
It appeared to work better than the statistical process control
charts in the context of seasonality and autocorrelation, showing
an available algorithm for anomalous HAI detection [24]. In
addition, Adhikari et al [25] introduced an efficient data- and
model-driven algorithm to detect HAI outbreaks. They designed
a near-optimal algorithm to obtain the monitoring data sets and
simulated the spread of Clostridiumdifficile infection in
hospitals. Their algorithm displayed a high sensitivity of 95%
for HAI outbreak detection according to data simulation, better
than many natural heuristics. In addition, researchers in the
Ourense University Hospital Complex (Spain) developed the
InNoCBR system for HAI surveillance based on the
implementation of intelligent diagnosis for HAIs. Similar to
our RT-NISS, the InNoCBR was established using databases
of microbiology and pharmacy, but the difference is that it
integrates an intelligent diagnostic module into the acquisition
process module. The InNoCBR achieved a sensitivity of 70.83%
and a specificity of 97.76%, displaying an acceptable detection
performance for HAI surveillance [26]. In general, exploring
high-quality monitoring data and an intelligent detection model
would be the main direction of HAI detection in future research.

Some limitations regarding the generalizability of the findings
in this study must be addressed. First, a false correlation likely
exists in the warning signals between process data and HAI
incidence. This study was a retrospective analysis based on
historical surveillance data; thus, the correlation of warning
signals between the process data and HAI incidence was judged
according to the signal’s time and place, lacking epidemiological
investigation. Therefore, the applicability of our results requires
further research in prospective surveillance.

Second, the process indicators used in our study were a type of
nonspecific data, which could provide limited information
regarding the occurrence and progress of infections, so it is
susceptible to generating negative signals when these
nonspecific indicators are used to detect HAI clusters. Although
the multiple indicators combined in parallel could improve the
warning performance for detecting HAI clusters, they also
increased the number of negative signals, resulting in excessive

costs for responding to these false warning signals.
Consequently, multisource surveillance based on process data
could not completely replace the traditional case surveillance
at present, and it would be an auxiliary method for detecting
disease cases or clusters.

Finally, surveillance noise is an inevitable problem in the
automatic surveillance systems based on process data. In fact,
automated monitoring is a process of automatically retrieving,
identifying, and collecting the formatted data from databases
using computer technology. Although automatization improved
surveillance efficiency, it was inevitable that some confounding
information would be mixed into surveillance data. Because
these confounding data, which add noise to surveillance, were
usually stored in an unstructured form, it was difficult to
automatically wash and refine them in our RT-NISS system.
For example, the data on prophylactic medication and
therapeutic medication for community infections were mixed
into the indicator of antibiotic utilization rate in combination.
In addition, some repeated cultures of blood specimens were
mixed into the indicators of inspection rate of bacterial
specimens and positive rate of bacterial specimens because
blood specimens from adults were collected in 2-3 sets each
time from different puncture points in WHUH, according to the
Operating Procedures of Blood Culture for Clinical
Microbiology Laboratory, as issued by the National Health
Commission of China. Although these confounding noises could
affect the performance of HAI cluster detection, we considered
that manually washing and refining them was
time-/labor-consuming, and this is contrary to the intention of
automatic early warning. In fact, considering that infection
control practitioners could investigate warnings more easily in
the hospital than in the community, we suggest that it is
acceptable to raise the timeliness of warnings at the expense of
surveillance noises. We also believe that an automatic washing
and refining function for these surveillance noises in HAI cluster
detection will be achieved by artificial intelligence technology
in the future.

Conclusion
The multisource surveillance of process data in the area network
could detect HAI clusters without relying on case reports;
moreover, it has advantages in terms of timeliness and
automation compared with traditional HAI case surveillance.
In this study, we demonstrated that the automated monitoring
of the process data of antibiotic utilization rate in combination,
inspection rate of bacterial specimens, and positive rate of
bacterial specimens could provide early warnings of HAI
clusters. The combination of multiple indicators and the
threshold of the detection model are 2 important factors affecting
warning performance. Multiple data combined in parallel can
improve the warning performance, whereas when combined in
series, these data can reduce performance. A low threshold of
the detection model is more suitable for the single-indicator
warning strategies, whereas a high threshold is more suitable
for multi-indicator warning strategies. Further prospective
research is required to confirm the warning theory of multisource
surveillance based on process data.
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