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Abstract

Background: Clinical decision support systems (CDSS) are an integral component of health information technologies and can
assist disease interpretation, diagnosis, treatment, and prognosis. However, the utility of CDSS in the clinic remains controversial.

Objective: The aim is to assess the effects of CDSS integrated with British Medical Journal (BMJ) Best Practice–aided diagnosis
in real-world research.

Methods: This was a retrospective, longitudinal observational study using routinely collected clinical diagnosis data from
electronic medical records. A total of 34,113 hospitalized patient records were successively selected from December 2016 to
February 2019 in six clinical departments. The diagnostic accuracy of the CDSS was verified before its implementation. A
self-controlled comparison was then applied to detect the effects of CDSS implementation. Multivariable logistic regression and
single-group interrupted time series analysis were used to explore the effects of CDSS. The sensitivity analysis was conducted
using the subgroup data from January 2018 to February 2019.

Results: The total accuracy rates of the recommended diagnosis from CDSS were 75.46% in the first-rank diagnosis, 83.94%
in the top-2 diagnosis, and 87.53% in the top-3 diagnosis in the data before CDSS implementation. Higher consistency was
observed between admission and discharge diagnoses, shorter confirmed diagnosis times, and shorter hospitalization days after
the CDSS implementation (all P<.001). Multivariable logistic regression analysis showed that the consistency rates after CDSS
implementation (OR 1.078, 95% CI 1.015-1.144) and the proportion of hospitalization time 7 days or less (OR 1.688, 95% CI
1.592-1.789) both increased. The interrupted time series analysis showed that the consistency rates significantly increased by
6.722% (95% CI 2.433%-11.012%, P=.002) after CDSS implementation. The proportion of hospitalization time 7 days or less
significantly increased by 7.837% (95% CI 1.798%-13.876%, P=.01). Similar results were obtained in the subgroup analysis.

Conclusions: The CDSS integrated with BMJ Best Practice improved the accuracy of clinicians’ diagnoses. Shorter confirmed
diagnosis times and hospitalization days were also found to be associated with CDSS implementation in retrospective real-world
studies. These findings highlight the utility of artificial intelligence-based CDSS to improve diagnosis efficiency, but these results
require confirmation in future randomized controlled trials.

(JMIR Med Inform 2020;8(1):e16912) doi: 10.2196/16912
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Introduction

Rapid and accurate diagnosis is important for inpatients and
improves their treatment efficiency and length of hospital stay.
Artificial intelligence (AI) techniques are useful in a wide
variety of medical and clinical diagnostic systems, including
pathological diagnosis [1], ophthalmologic disease [2], radiology
[3], and dermatology [4]. AI systems in health care have also
focused on acquiring knowledge from nonstandardized
databases, such as text [5,6] (using natural language processing)
or large structured datasets [7] (using machine learning
methods). In recent years, AI has been used in medical research
and improved many aspects of medical health. Commonly
applied AI techniques include deep neural networks, fuzzy logic,
decision trees, Bayesian classifiers, genetic algorithms, and
hybrid systems [7-11]. In addition, the causality and
explainability of AI are attracting more attention in medicine
[12,13].

Many clinical decision support systems (CDSS) have emerged
from earlier work in AI and expert systems to gather and
represent knowledge that can be simulated for human reasoning
and advice [11]. As an integral component of health information
technologies, CDSS can assist with disease interpretation,
diagnosis, treatment, and prognosis. CDSS have been used for
more than 50 years [14]; many have commented on its positive
impact on diagnostic quality and patient safety [15-18] and
ability to promote optimal treatments [19] and avoid medical
errors [20,21]. However, some studies [22-24] have reported a
lack of benefits for CDSS and highlight the ability of CDSS to
introduce new errors. CDSS have been empirically divided into
knowledge-driven and data-driven support systems, and
AI-based CDSS have broader application prospects with the
accumulation of various data.

As for any health care innovation, CDSS must be rigorously
evaluated before their widespread dissemination into clinical
practice. Accordingly, we performed a real-world retrospective
study to evaluate the effects of a self-developed AI-based CDSS
from a modernized and comprehensive hospital in China. The
AI-based CDSS was integrated with British Medical Journal
(BMJ) Best Practice; the AI tools helped to extract patient
information and feed it into different machine learning models
and BMJ Best Practice. The initial goal was to assess the levels
of agreement regarding patients’ diagnoses between CDSS
integrated with BMJ Best Practice and resident doctors. The
second goal was to understand whether CDSS integrated with
BMJ Best Practice improves the accuracy of admission diagnosis
for inpatients and to explore the benefits of CDSS integrated
with BMJ Best Practice on the length of patients’hospital stays.

Methods

Study Design and Patient Population
This was a retrospective, real-world observational study using
continuously collected data from hospitalized patients across
six departments of the Peking University Third Hospital from
October 1, 2016, to February 30, 2019. The AI-based CDSS
was implemented in the electronic medical record (EMR) on
November 1, 2018. In the first part, the diagnostic accuracy of
CDSS was verified in the hospitalization records data before
CDSS implementation. In the second part, a self-controlled
study design was applied to detect the effect of CDSS
implementation. We compared data before and after AI-based
CDSS implementation.

The study subjects were consecutive patients from the six
departments: otolaryngology, orthopedic medicine, respiratory
medicine, general surgery, cardiology, and hematology. We
used no specific inclusion criteria. Subjects were excluded if
missing information for key variables, including admission
diagnosis, discharge diagnosis, and the length of hospitalization
time in their nonstandardized medical records. The study was
approved by the Medical Science Research Ethics Committee
of Peking University Third Hospital (serial number:
IRB00006761-M2019219). Informed consent from the patients
was exempt due to the retrospective nature of the study.

CDSS-Aided Diagnosis
The AI-based CDSS is a multimodel decision system that
integrates rule engines and deep learning based on natural
language processing, machine learning, and other technologies.
The CDSS was created through the learning of nearly 10 years
of real historical cases from the Peking University Third
Hospital and combining these data with BMJ Best Practice [25].
BMJ Best Practice provides the latest evidence-based
information for diagnosis, prognosis, treatment, and prevention;
it is updated daily using robust evidence-based methodologies
and real expert opinions.

Based on the medical lexicon built by the medical expert team,
natural language processing technology was used to classify
the Chinese EMRs. The extracted information was stored in the
NoSQL database according to the predefined model structure
to provide high-quality structured data to train the diagnostic
model. As shown in Figure 1, various structured information
could be extracted from historical illnesses, including the
symptoms, symptom duration, symptom location, symptom
inducers, negative symptoms, and treatment status. The extracted
information was fed into different machine learning models and
BMJ Best Practice. Based on the patient’s chief concern, history,
examination, and test reports, the CDSS recommended a list of
possible diagnoses to assist doctors with their diagnoses. The
application of CDSS in the EMR is shown in Multimedia
Appendix 1.
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Figure 1. Clinical information extraction based on a bidirectional recurrent neural network.

Outcomes and Data Collection
There were three primary outcomes: (1) the accuracy of the
recommended diagnosis, (2) the consistency of admission and
discharge diagnoses, and (3) the length of hospitalization time.
There was one secondary outcome: the confirmed length of
diagnosis time. The accuracy of the recommended diagnosis
was used to evaluate the diagnostic accuracy of the CDSS; the
other three outcomes were applied to detect the effect of CDSS
implementation.

The accuracy of the recommended diagnosis referred to its
consistency with the discharge diagnosis of the patient. The
CDSS recommended 10 possible diagnoses according to their
probability (from large to small) after referral to the BMJ Best
Practice. If the first recommended diagnosis was consistent with
the patient’s discharge diagnosis, the record was flagged as a
first-rank diagnosis. If one of the first two of the 10
recommended diagnoses was consistent with the patient’s
discharge diagnosis, the record was flagged as a top-2 diagnosis.
If one of the first three of the 10 recommended diagnoses was
consistent with the patient’s discharge diagnosis, the record was
flagged as a top-3 diagnosis. If 10 of 10 recommended diagnoses
were not consistent with the patient’s discharge diagnosis, the
record was flagged as “incorrect.” The discharge diagnosis was
affected by the recommended diagnosis from the CDSS after
CDSS implementation; therefore, the accuracy of the
recommended diagnosis was only tested in the data before CDSS
implementation.

The consistency of the admission and discharge diagnoses were
analyzed in the data before and after the CDSS implementation.
When an inpatient was admitted to the hospital, the doctor made
a preliminary admission diagnosis based on the patient’s
condition (including past medical history, current medications,
history and examination of presenting complaint, social history)
and their experience. The preliminary admission diagnosis was
recorded in the progress notes. After various examinations after
admission, doctors revised the preliminary admission diagnosis
and eventually produced a discharge diagnosis. The admission
diagnosis was affected by the CDSS after CDSS implementation.
The length of hospitalization days referred to the number of

days from admission to discharge, which was affected by both
patient diagnosis and treatment. The confirmed length of
diagnosis time (days) was the duration between preliminary
admission diagnosis and definite diagnosis.

Data were extracted from the electronic hospital information
system, which routinely records patient information. Those data
consisted of patient demographic data, diagnostic data, time of
admission, discharge data, and the recommended diagnosis
provided by the CDSS. As this was a retrospective study, we
used patient data that were not provided with explicit consent
for research purposes. No sensitive information that allowed
the identification of individuals (eg, postcode, area) were
transferred to the research team. All individual patient
information was deidentified.

Statistical Analysis
Data are presented as the mean (SD), median (IQR), or number
(percentage) as appropriate. We used independent sample t tests
or the Mann-Whitney U test for the comparison of continuous
data and the chi-square test for categorical data. Multivariable
logistic regression models were used to determine the effect of
CDSS on the consistency and hospitalization time (≤7 days),
adjusted for patient gender and age. Single-group interrupted
time series analysis was performed to assess the effects of CDSS
[26-28]. Time series data were analyzed using an interrupted
time series analysis model to assess changes in the levels and
trends of the consistent rates of admission and discharge
diagnosis, and the rate of hospitalization time of 7 days or less
before and after CDSS implementation.

For the missing data of confirmed length of diagnosis time
(days), only the complete-case analysis was conducted. In view
of the long study span (October 1, 2016, to February 30, 2019),
subgroup analysis was performed from January 1, 2018, to
February 30, 2019. The content of the subgroup analysis was
identical to the entire analysis. P values of .05 or less for
two-tailed analysis were deemed statistically significant.
Analyses were performed with Stata 14.0 and R version 3.5.1
(R Foundation for Statistical Computing).
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Patient and Public Involvement
Neither patients nor the public were involved in this study.
Findings will be actively disseminated through conference
presentations, publications in academic journals, and
commentary in news media to promote the popularization and
application of CDSS.

Results

Data and Patient Characteristics
Data were used from hospitalized patients in six clinical
departments from December 2016 to February 2019. There were

a total of 34,113 hospital records, including 27,250 (79.88%)
before the CDSS was online, and 6863 (20.12%) after the CDSS
was online. Of the 34,113 hospital records, 16,044 were from
females, accounting for 47.03%. The mean age of patients was
54.77 (SD 18.55) years. There were more males and older
patients before the CDSS, and the differences were statistically
significant before and after the CDSS (P<.001, Table 1).

Table 1. Patient record characteristics before and after CDSS (clinical decision support systems) implementation (N=34,113).

P valueCDSS OnlineTotalVariables

AfterBefore

N/AaYear in hospital, n (%)

0 (0.00)5011 (18.39)5011 (14.69)2016

0 (0.00)15,106 (55.43)15,106 (44.28)2017

3619 (52.73)7133 (26.18)10,752 (31.52)2018

3244 (47.27)0 (0.00)3244 (9.51)2019

<.001Department, n (%)

688 (10.02)4643 (17.04)5331 (15.63)Otolaryngology

2408 (35.09)5634 (20.68)8042 (23.57)Orthopedic

374 (5.45)2834 (10.40)3208 (9.40)Respiratory medicine

2260 (32.93)5084 (18.66)7344 (21.53)General surgery

896 (13.06)5917 (21.71)6813 (19.97)Cardiology

237 (3.45)3138 (11.52)3375 (9.89)Hematology

<.001Gender, n (%)

3463 (50.46)12,581 (46.17)16,044 (47.03)Female

3400 (49.54)14,669 (53.83)18,069 (52.97)Male

<.00153.53 (17.43)55.09 (18.81)54.77 (18.55)Age (years), mean (SD)

aN/A: not applicable.

Verification of the Recommended Diagnostic Accuracy
for CDSS
To detect the accuracy of the recommended diagnosis from the
CDSS, 27,250 hospitalized records in the EMR were
retrospectively assessed before CDSS implementation. The total
accuracy rates of the recommended diagnosis by CDSS were
75.46% (20,562/27,250) for first-rank diagnosis, 83.94%

(22,873/27,250) for top-2 diagnosis, and 87.53%
(23,852/27,250) in top-3 diagnosis. Across departments,
first-rank diagnosis accuracy rates varied from 62.37%
(2896/4643) to 85.53% (5061/5917), with the highest accuracy
rates observed in the cardiology and hematology departments.
The incorrect rates were 6.38% in all six clinical departments
(Table 2). The accuracy of the recommended diagnosis is shown
in Figure 2.
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Table 2. Accuracy rates of the recommended diagnosis by clinical decision support systems across each department.

First three, n (%)First two, n (%)First, n (%)Incorrect, n (%)Department

3750 (80.77)3531 (76.05)2896 (62.37)534 (11.50)Otolaryngology (n=4643)

5002 (88.78)4784 (84.91)4277 (75.91)286 (5.08)Orthopedic (n=5634)

2348 (82.85)2223 (78.44)1918 (67.68)206 (7.27)Respiratory medicine (n=2834)

4407 (86.68)4179 (82.20)3744 (73.64)335 (6.59)General surgery (n=5084)

5531 (93.48)5393 (91.14)5061 (85.53)146 (2.47)Cardiology (n=5917)

2814 (89.67)2763 (88.05)2666 (84.96)231 (7.36)Hematology (n=3138)

23,852 (87.53)22,873 (83.94)20,562 (75.46)1738 (6.38)Total (N=27,250)

Figure 2. Accuracy of the 10 recommended diagnoses from the CDSS (clinical decision support systems) before implementation in the electronic
medical records. “Incorrect” means none of the 10 recommended diagnoses were consistent with the patient’s discharge diagnosis; “first” means the
first recommended diagnosis was consistent with the patient’s discharge diagnosis; “second” means the second recommended diagnosis was consistent
with the patient’s discharge diagnosis, and so on.

Univariate Comparison Before and After CDSS
Implementation
To explore the effects of the CDSS, the consistency between
admission and discharge diagnoses, the length of hospitalization
days, and the length of confirmed diagnosis times were
compared before and after CDSS implementation. Before the
CDSS, the consistency between admission diagnosis and
discharge diagnosis was significantly lower than the consistency
after CDSS implementation (70.37%, 19,175/27,250 vs 72.64%,
4985/6863, P<.001). Median hospitalization days were
significantly shortened from 7 (IQR 4-10) to 6 (IQR 3-8) days
after CDSS implementation, and the proportion of
hospitalization times more than 7 days significantly decreased
(P<.001). The length of the confirmed diagnosis times also

significantly decreased after CDSS implementation (P<.001)
in 11,912 records that had this information (Table 3). In Figure
3, the box plot and probability density diagram is used to
describe the change in hospitalization time before and after
CDSS implementation. The line for median hospitalization days
was down and the probability density moved to the left after
CDSS implementation, suggesting that the average length of
hospital stays fell.

In view of the large study span (2016 to 2019), subgroup
analysis was performed on the data obtained from 2018 to 2019.
The results of the subgroup analysis confirmed that consistency
improved after CDSS implementation, while the length of
hospitalization and confirmed days were shortened (Multimedia
Appendices 2 and 3).

JMIR Med Inform 2020 | vol. 8 | iss. 1 | e16912 | p. 5http://medinform.jmir.org/2020/1/e16912/
(page number not for citation purposes)

Tao et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 3. Comparison of the effects of CDSS (clinical decision support systems) before and after CDSS implementation.

P valueCDSS OnlineTotalVariables

AfterBefore

<.001Consistency,a n (%)

4985 (72.64)19,175 (70.37)24,160 (70.82)Yes

1878 (27.36)8075 (29.63)9953 (29.18)No

Confirmed time (days)b

<.0011 (0-3)1 (0-4)1 (0-4)Median (IQR)

<.0012.27 (3.87)3.25 (5.48)3.10 (5.27)Mean (SD)

Hospitalization time (days)

<.0016 (3-8)7 (4-10)7 (4-9)Median (IQR)

<.0016.49 (4.73)8.51 (8.05)8.11 (7.55)Mean (SD)

<.001Hospitalization time group (days), n (%)

4837 (70.48)15,774 (57.89)20,611 (60.42)0-7

2026 (29.52)11,476 (42.11)11,476 (39.58)>7

aConsistency referred to the consistency between the diagnosis on admission and the diagnosis on discharge.
bOnly 11,912 records had the length of the confirmed diagnosis times (days), it was the duration between preliminary admission diagnosis and definite
diagnosis.

Figure 3. Box plot and probability density diagrams of hospitalization times before and after CDSS (clinical decision support systems) implementation.
The red and green dotted lines, respectively, represent the median hospitalization days before and after CDSS implementation; the pink and blue shaded
areas, respectively, represent the probability density before and after CDSS implementation.
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Multivariable Logistic Regression
We observed a higher consistency between admission and
discharge diagnoses and shortened hospitalization days
following univariate analysis. To exclude the effect of patient
characteristics, multivariable logistic regression analysis was
performed. The consistency rates after CDSS implementation
increased to 1.078 (95% CI 1.015-1.144) after adjustment for
patient gender and age, and the proportion of hospitalization

time of 7 days or less increased to 1.688 (95% CI 1.592-1.789)
times (Table 4).

In the subgroup analysis, the odds ratio of consistency rates and
hospitalization time of 7 days or less were 1.298 (95% CI
1.207-1.397) and 1.757 (95% CI 1.635-1.888), respectively,
after CDSS implementation (Multimedia Appendix 4). Males
and older patients had higher inconsistency rates and a higher
risk of hospitalization time greater than 7 days in all data or
subgroup data (Table 4 and Multimedia Appendix 4).

Table 4. Multivariable logistic regression analysis of the effects of clinical decision support systems.

Hospitalization time (≤7 days)ConsistencyVariables

P valueAdjusted OR (95% CI)P valueAdjusted OR (95% CI)

<.0010.01Group

1.001.00Before

1.688 (1.592-1.789)1.078 (1.015-1.144)After

<.001<.001Gender

1.001.00Female

0.814 (0.778-0.851)0.789 (0.752-0.827)Male

<.0010.974 (0.973-0.975)<.0010.984 (0.983-0.985)Age

Interrupted Time Series Analysis
As shown in Table 5 and Figure 4, the interrupted time series
analysis shows that the levels of change for the weekly
consistency rates of admission and discharge diagnoses were
6.722 (95% CI 2.433-11.012) in the level change, indicating
that the consistency rates significantly increased by 6.722%
after CDSS implementation (P=.002). For the proportion of

hospitalization times of 7 days or less, a significant increase of
7.837% was observed (95% CI 1.798%-13.876%, P=.01) in the
level change after CDSS implementation. However, in the
subgroup analysis, the level change of the consistency rate was
not statistically significant (P=.22), but the level change of the
proportion of hospitalization times of 7 days or less was
statistically significant (P=.02) (Multimedia Appendices 5 and
6).

Table 5. Estimated levels and trend changes of the consistency rates and hospitalization times of 7 days or less before and after CDSS (clinical decision
support systems) implementation.

P valueBeta (95% CI)Outcome variables

Consistency

74.386Intercept

<.001−0.093 (−0.131, −0.055)Before trend

.0026.722 (2.433, 11.012)Level change

.050.311 (0.001, 0.620)Trend change

Hospitalization time ≤7 days rate

58.146Intercept

.47−0.013 (−0.047, 0.022)Before trend

.017.837 (1.798, 13.876)Level change

.060.941 (−0.032, 1.915)Trend change
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Figure 4. Levels and trend changes of the consistency of admission and discharge diagnoses and the rates of hospitalization time of 7 days or less
before and after CDSS (clinical decision support systems) implementation.

Discussion

Large data and digitalization are rapidly expanding in the clinical
setting, but health care providers often do not fully exploit these
datasets. Clinical decisions are often made by health care
professionals during direct patient contact, ward rounds, or
multidisciplinary meetings, meaning that decisions are made
within seconds to minutes depending on the experience of the

health care provider [29]. Computer-based systems can consider
all available data, including EMRs, guidelines from
evidence-based medicine, and current medical insights. The
CDSS contains a vast amount of information that can help
clinicians make appropriate decisions for individual patients.

The earliest known CDSS was medication-related and dated
back to the 1960s [30]. This system supported pharmacists with
drug allergy assessments, dose guidance, drug-drug interactions,
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and duplicate therapy assessments. These assays were designed
using simplistic “if-then-else” logic and did not combine
complex algorithms, such as deep neural networks, fuzzy logic,
Bayesian classifiers, and hybrid systems. Advanced CDSS were
designed to aid clinical decision making using individual patient
characteristics and external information to generate
health-related recommendations. CDSS were applied for AI
[11,31] assessments.

Recent studies have reported the wide application of CDSS
combined with AI in clinical settings [3,7,9,11,18,32]. A range
of systematic reviews, meta-analyses, or synthesis of systematic
reviews have summarized the effects of CDSS in chemotherapy
processes [33], cardiovascular risk factors [24], drug allergy
checks [34], patient outcomes [15,17], acute care management
[35], primary preventive care [36], and chronic disease
management [37]. In those studies, CDSS have a positive effect
on clinical diagnosis, whereas some have suggested no effect.
There are also studies reporting that CDSS poorly presents data
and causes alert fatigue to health care providers [38]. Therefore,
we designed a retrospective, longitudinal observational study
to explore the real-world effect of CDSS-aided diagnoses. The
CDSS was self-developed and AI-based, which integrated the
optimal BMJ best practices.

BMJ Best Practice is a clinical decision support tool that works
at the point-of-care. It offers continually updated,
evidence-based, and practical content to all health care
professionals [25]. BMJ Best Practice is one of the best clinical
decision support tools for health professionals worldwide [39].
Evidence-based clinical decision support resources may offer
well-designed clinical pathways and algorithms, which can save
busy clinicians’ time and effort in designing clinical pathways.
BMJ Best Practice can help doctors and other health care
professionals find immediate, current, and evidence-based
answers to important clinical questions [40].

There were 34,113 inpatient records involved in this study
accumulated from six clinical departments. Of these, 27,250
(79.9%) records were before the CDSS implementation, and
the simulations of diagnostic accuracy were performed in them.
The total accuracy rates of the recommended diagnosis by
AI-based CDSS were 75.46% in first-rank diagnosis, 83.94%
in top-2 diagnosis, and 87.53% in top-3 diagnosis. The incorrect
rates were 6.38%. The accuracy rates were high, consistent with
other studies that have also shown that AI-based tools are
accurate in aiding diagnosis. Hannun et al [9] used deep neural
networks to detect and classify cardiologist-level arrhythmias
in ambulatory electrocardiograms. Their results showed good
classification accuracy (area under the curve=0.97). Attia et al
[7] tested the application accuracy of AI for electrocardiograms
with accuracies of 85.7% observed. Wildman-Tobriner et al [3]
showed that an AI-optimized Thyroid Imaging Reporting and
Data System (TI-RADS) could modestly improve specificity
and maintain sensitivity compared with the American College
of Radiology TI-RADS. Similar diagnostic tools based on
different AI algorithms had good accuracy for the detection of
lymph node metastases in women with breast cancer [1],
dermatologist-level classification of skin cancer [4], diabetic
retinopathy and diabetic macular edema [41], and multiclass
diagnosis of Alzheimer disease [42]. These results suggest that

diagnosis systems based on AI have good diagnostic accuracy,
but their clinical application requires verification.

In addition to simulation studies, we designed a before-and-after
comparison to explore the accuracy of the admission diagnosis
after CDSS implementation, with outcomes measured as the
consistency between admission and discharge diagnoses. Before
CDSS implementation, the admission diagnosis could only be
made based on patient information (eg, outpatient examinations)
and the doctor’s experience. The patient’s admission diagnosis
was assisted by the CDSS recommendation after CDSS
implementation. Our results showed that the consistency
significantly improved after CDSS implementation in all
analyses (from 70.37% to 72.64%, P<.001) and subgroup
analyses (from 66.59% to 72.64%, P<.001), although the
increase was not large. Similar results were detected in
multivariable logistic regression and interrupted time series
analysis, suggesting that the application of CDSS could improve
the consistency of admission and discharge diagnoses.
Dhombres et al [43] showed that an intelligent scan assistant
system for early pregnancy diagnosis by ultrasound could
improve the rate of correct diagnosis to 20%. A prospective
multicenter study assessed the impact of CDSS to predict
progression in patients with subjective cognitive decline and
mild cognitive defects [44] and found that the prediction of
progression changed in 13% of patients when CDSS was
applied. The clinicians’ confidence in their predictions also
increased when using CDSS [44].

After CDSS implementation, the confirmed time and
hospitalization time were significantly shorter (decrease of 0.98
days and 2.02 days in all data, respectively). We observed a
similar trend via subgroup and multivariable analyses. In the
interrupted time series analysis, the rates of consistency and
hospitalization time of 7 days or less increased by 6.72% and
7.84%, respectively, after CDSS implementation. Although
meta-analyses showed that the application of CDSS did not
have clear clinical benefits in cardiovascular risk management
[24], a positive effect of CDSS has been proposed in other
studies [14,43,45]. We similarly confirmed the clinical benefits
of CDSS implementation from the perspective of aided diagnosis
to improve the accuracy of diagnosis and shorten confirmed
diagnosis times and the length of hospitalization time. This
study embedded AI-based CDSS into EMRs and evaluated the
effect of CDSS on diagnosis in six clinical departments. These
results reflect the practical benefits of CDSS in our hospital.
However, because only the benefits of CDSS to assist diagnosis
were assessed, future studies should evaluate the role of CDSS
in assisting treatment decision-making decisions in the real
world.

The study had several limitations. First, the multivariate analysis
of CDSS did not take into account the impact of the doctor’s
personal information, such as education level, technical post,
and work experience. Second, the multivariate analysis did not
consider the impact of the individual patient’s disease severity.
However, because a large sample size was continuously
enrolled, a balance in disease severity would be anticipated.
Third, this study did not consider the impact of time factors and
the adjustments of national basic health policy from 2016 to
2019. To eliminate the influence of time factors, we performed
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a subgroup analysis on data from 2018 and 2019, and we believe
that time factors and health policy changes would have little
impact in a relatively short period of time (less than 2 years).
Fourth, the amount of data after CDSS application in this study
was small, accounting for only 20.1% of the total datasets.
Finally, the CDSS application in China should be trained not
only by global evidence but also by regional evidence, including
traditional Chinese medicine. In addition, the conclusions of
the study were limited by the retrospective nature of the cohort;
strict randomized controlled trials are needed to explore the
accuracy of CDSS in aided diagnosis.

There are many kinds of CDSS, ranging from simple logical
judgments to complex AI algorithms, adverse drug reactions to
data-driven aided diagnosis and treatment. From these, various
forms of CDSS are emerging. Using the current development
and application of CDSS, there is no unified standard to restrict
use; therefore, further evaluations and training are required
before CDSS tools are adopted into clinical practice. Standard
guidelines for CDSS classifications and eligibility specifications
should also be published to ensure reproducibility. In the future,
more complex AI-based CDSS can be implemented into the
EMR. We believe that this application can create new horizons
for scientific research and improve the quality of health and
health care.
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