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Abstract

Background: As a major chronic disease, asthma causes many emergency department (ED) visits and hospitalizations each
year. Predictive modeling is a key technology to prospectively identify high-risk asthmatic patients and enroll them in care
management for preventive care to reduce future hospital encounters, including inpatient stays and ED visits. However, existing
models for predicting hospital encounters in asthmatic patients are inaccurate. Usually, they miss over half of the patients who
will incur future hospital encounters and incorrectly classify many others who will not. This makes it difficult to match the limited
resources of care management to the patients who will incur future hospital encounters, increasing health care costs and degrading
patient outcomes.

Objective: The goal of this study was to develop a more accurate model for predicting hospital encounters in asthmatic patients.

Methods: Secondary analysis of 334,564 data instances from Intermountain Healthcare from 2005 to 2018 was conducted to
build a machine learning classification model to predict the hospital encounters for asthma in the following year in asthmatic
patients. The patient cohort included all asthmatic patients who resided in Utah or Idaho and visited Intermountain Healthcare
facilities during 2005 to 2018. A total of 235 candidate features were considered for model building.

Results: The model achieved an area under the receiver operating characteristic curve of 0.859 (95% CI 0.846-0.871). When
the cutoff threshold for conducting binary classification was set at the top 10.00% (1926/19,256) of asthmatic patients with the
highest predicted risk, the model reached an accuracy of 90.31% (17,391/19,256; 95% CI 89.86-90.70), a sensitivity of 53.7%
(436/812; 95% CI 50.12-57.18), and a specificity of 91.93% (16,955/18,444; 95% CI 91.54-92.31). To steer future research on
this topic, we pinpointed several potential improvements to our model.

Conclusions: Our model improves the state of the art for predicting hospital encounters for asthma in asthmatic patients. After
further refinement, the model could be integrated into a decision support tool to guide asthma care management allocation.

International Registered Report Identifier (IRRID): RR2-10.2196/resprot.5039

(JMIR Med Inform 2020;8(1):e16080) doi: 10.2196/16080

Introduction

Background
In the United States, asthma affects 8.4% of the population and
leads to 2.1 million emergency department (ED) visits, 479,300

hospitalizations, 3388 deaths, and US $50.3 billion in cost
annually [1,2]. Reducing hospital encounters, including inpatient
stays and ED visits, is highly desired for asthmatic patients. For
this purpose, using prognostic predictive models to prospectively
identify high-risk asthmatic patients and enroll them in care
management for tailored preventive care is deemed state of the
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art and has been adopted by health plans in 9 of 12 metropolitan
communities [3]. Once enrolled, care managers make regular
phone calls to help patients book appointments and schedule
health and related services. If done properly, this can cut the
patients’ future hospital encounters by up to 40% [4-7].

Unfortunately, the current high-risk patient identification
methods have major gaps, leading to suboptimal outcomes. Care
management typically enrolls only 1% to 3% of patients because
of capacity constraints [8]. The existing models for predicting
hospital encounters in asthmatic patients are inaccurate, which
is reflected by their area under the receiver operating
characteristic curve (AUC) ≤0.81 [9-22]. When used for care
management, these models miss over half of the patients who
will incur future hospital encounters and incorrectly classify
many other patients as patients who will incur future hospital
encounters. This makes it difficult to align care management
enrollment with the patients who will actually incur future
hospital encounters, increasing health care costs and impairing
patient outcomes. If we could find 5% more asthmatic patients
who would incur future hospital encounters and enroll them in
care management, we could improve outcomes and avoid up to
9850 inpatient stays and 36,000 ED visits each year [1,4-7].

Objectives
The goal of this study was to develop a more accurate model
for predicting hospital encounters for asthma in asthmatic
patients. The dependent variable is categorical with 2 possible
values: whether future hospital encounter for asthma will occur
or not. Accordingly, our model employs clinical and
administrative data to perform binary classification, with the
intention to better guide care management allocation and
improve outcomes for asthmatic patients. A description of the
development and evaluation of our model follows.

Methods

Study Design and Ethics Approval
In this study, we conducted secondary analysis of retrospective
data. The study was reviewed and approved by the institutional
review boards of Intermountain Healthcare, University of Utah,
and University of Washington Medicine.

Patient Population
Our patient cohort was based on the patients who visited
Intermountain Healthcare facilities during 2005 to 2018.
Intermountain Healthcare is the largest health care system in
the Intermountain region (Utah and southeastern Idaho), with
185 clinics and 22 hospitals providing care for approximately
60% of the residents in that region. The patient cohort included
asthmatic patients identified as residents of Utah or Idaho, with
or without a specific home address. A patient was defined as
having asthma in a given year if the patient had at least one
diagnosis code of asthma (International Classification of
Diseases, Ninth Revision [ICD-9]: 493.0x, 493.1x, 493.8x, and
493.9x; International Classification of Diseases, Tenth Revision
[ICD-10]: J45.x) in that year in the encounter billing database
[11,23,24]. Patients who died during that year were excluded.
There were no other exclusions.

Prediction Target (Dependent Variable)
In the rest of this paper, we use hospital encounter for asthma
to refer to inpatient stay or ED visit at Intermountain Healthcare
with a principal diagnosis of asthma (ICD-9: 493.0x, 493.1x,
493.8x, and 493.9x; ICD-10: J45.x). For each patient meeting
criteria for asthma in a given year, we looked at any hospital
encounter for asthma in the following year as outcome. In our
modeling, we used each asthmatic patient’s data by the end of
each year to predict the patient’s outcome in the following year.

Dataset
The Intermountain Healthcare enterprise data warehouse
provided a structured, clinical, and administrative dataset,
including all visits of the patient cohort at Intermountain
Healthcare facilities during 2005 to 2018.

Features (Independent Variables)
Following the approach outlined in our study design papers
[25,26], we considered 235 candidate features derived from the
structured attributes in our dataset. These features came from
4 sources: the >100 potential risk factors for asthma
exacerbations reported in the literature [9,22,27-34]; features
used in the existing models for predicting asthma exacerbations
[9-22]; factors impacting patients’ general health status
mentioned in the literature [31,35,36]; and features suggested
by the clinical experts in our team—MDJ, BLS, and FLN. As
the characteristics of the patient, the care provider, and the
treating facility impact the patient’s outcome, we used patient
features as well as provider and facility features [25,26].

The 235 candidate features are listed in the first table in
Multimedia Appendix 1 [37-39], where each reference to the
number of a specific type of items, such as medications, counts
multiplicity, unless the word distinct appears. A major visit for
asthma is defined as an outpatient visit with a primary diagnosis
of asthma, an ED visit with an asthma diagnosis code, or an
inpatient stay with an asthma diagnosis code. An outpatient
visit with asthma as a secondary diagnosis is defined as a minor
visit for asthma. Intuitively, all else being equal and compared
with a patient with only minor visits for asthma, a patient with
1 or more major visits for asthma is more likely to incur future
hospital encounters for asthma.

Each input data instance for the predictive model includes the
235 candidate features, targets the unique combination of an
asthmatic patient and a year (index year), and is used to predict
the patient’s outcome in the following year. For that combination
of patient and year, the patient’s age, current primary care
provider (PCP), and home address were determined based on
the data available on the last day of the index year. The features
of premature birth, bronchiolitis, duration of asthma, duration
of chronic obstructive pulmonary disease, whether the patient
had any drug or material allergy, whether the patient had any
environmental allergy, whether the patient had any food allergy,
and the number of allergies of the patient were derived from
the historical data from 2005 to the index year. Furthermore, 1
feature was derived from the historical data in both the index
year and the year before. This feature is as follows: the
proportion who incurred hospital encounters for asthma in the
index year out of all asthmatic patients of the patient’s current
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PCP in the year before. The remaining 226 features were derived
from the historical data in the index year.

Data Analysis

Data Preparation
For every numerical feature, we checked the data distribution,
adopted the following lower and upper bounds to spot invalid
values, and replaced them with null values. Using the lower and
upper bounds from the Guinness World Records [40], all body
mass indexes <7.5 or >204, all weights <0.26 kg or >635 kg,
and all heights <0.24 m or >2.72 m were deemed physiologically
impossible and invalid. Using the lower and upper bounds
provided by our team’s clinical expert MDJ, all peripheral
capillary oxygen saturation values >100%, all temperatures
<80°F or >110°F, all systolic blood pressure values ≤0 mm Hg
or >300 mm Hg, all diastolic blood pressure values ≤0 mm Hg
or >300 mm Hg, all heart rates <30 beats per minute or >300
beats per minute, and all respiratory rates >120 breaths per
minute were deemed physiologically impossible and invalid.

To put all the numerical features on the same scale, we
standardized every numerical feature by first subtracting its
mean and then dividing by its standard deviation. As outcomes
were from the following year, our dataset provided 13 years of
effective data (2005-2017) over a total of 14 years (2005-2018).
To reflect the model’s use in practice, data from 2005 to 2016
were used to train predictive models. Data from 2017 were used
to assess the model’s performance.

Performance Metrics
As shown in the formulas below and Table 1, we applied 6
standard metrics to gauge the model’s performance: AUC,
accuracy, sensitivity, specificity, positive predictive value
(PPV), and negative predictive value (NPV).

The following formulas were used to calculate the standard
metrics to gauge the model’s performance:

• Accuracy=(TP+TN)/(TP+TN+FP+FN)
• Sensitivity=TP/(TP+FN)
• Specificity=TN/(TN+FP)
• PPV=TP/(TP+FP)
• NPV=TN/(TN+FN)

Here, TP is true positive, TN is true negative, FP is false
positive, and FN is false negative. For example, FN is the
number of patients who will incur future hospital encounters
for asthma and whom the model incorrectly projects to incur
no future hospital encounter for asthma. Sensitivity shows the
proportion of patients who will incur future hospital encounters
for asthma found by the model. Specificity shows the proportion
of patients who will incur no future hospital encounter for
asthma found by the model.

For the 6 performance metrics, we obtained their 95% CIs via
1000-fold bootstrap analysis [41]. We calculated our final
model’s performance metrics on every bootstrap sample of the
2017 data. For each performance metric, we got 1000 values,
the 2.5th and 97.5th percentiles of which gave its 95% CI. We
drew the receiver operating characteristic curve to exhibit the
sensitivity-specificity trade-off.

Table 1. The confusion matrix.

No future hospital encounter for asthmaFuture hospital encounters for asthmaClass

False positiveTrue positivePredicted future hospital encounters for asthma

True negativeFalse negativePredicted no future hospital encounter for asthma

Classification Algorithms
We used Waikato Environment for Knowledge Analysis (Weka),
version 3.9 [42], to construct machine learning classification
models. Weka is a widely used, open-source machine learning
and data mining package. It incorporates many standard machine
learning algorithms and feature selection techniques. We
considered the 39 native machine learning classification
algorithms in Weka listed in Multimedia Appendix 1 as well
as the extreme gradient boosting (XGBoost) classification
algorithm [43] implemented in the XGBoost4J package [44].
An XGBoost model is an ensemble of decision trees formed in
a stagewise manner. As a scalable and efficient implementation
of gradient boosting, XGBoost adopts a more regularized model
formulation to help avoid overfitting and improve classification
accuracy. We used our previously developed automatic model
selection method [45] and the 2005 to 2016 training data to
automate the selection of the machine learning classification
algorithm, feature selection technique, data balancing method
for handling imbalanced data, and hyperparameter values among
all the suitable ones. Our automatic model selection method
[45] adopts the response surface methodology to automatically

check many combinations of classification algorithm, feature
selection technique, data balancing method, and hyperparameter
values and conducts cross-validation to choose the final
combination to maximize the AUC. AUC has no reliance on
the cutoff threshold used for deciding between the projected
future hospital encounters for asthma and the projected no future
hospital encounter for asthma. This gives AUC an advantage
over the other 5 performance metrics—accuracy, sensitivity,
specificity, PPV, and NPV— whose values depend on the cutoff
threshold used. For each classification algorithm, our automatic
model selection method attempts to adjust all the related
hyperparameters by testing many hyperparameter value
combinations. To expedite the search, our method performs
progressive sampling on the training set and uses test results on
its subsets to quickly remove unpromising algorithms and
hyperparameter value combinations. As a result, with no need
to find near-optimal hyperparameter value combinations for
almost all the algorithms, our method can return a good
combination of the algorithm, feature selection technique, data
balancing method, and hyperparameter values for building the
final classification model. Compared with the Auto-WEKA
automatic model selection method [46], our method can cut
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search time by 28-fold and model error rate by 11%
simultaneously [45].

Results

Demographic Characteristics of Our Patient Cohort
Recall that each data instance targets a unique combination of
an asthmatic patient and a year. Tables 2 and 3 exhibit the
demographic characteristics of our patient cohort during 2005
to 2016 and 2017, respectively. The characteristics are relatively
similar between the 2 periods. During 2005 to 2016 and 2017,
about 3.59% (11,332/315,308) and 4.22% (812/19,256) of data
instances linked to hospital encounters for asthma in the
following year, respectively.

On the basis of chi-square 2-sample test, for both 2005 to 2016
and 2017 data, the data instances linked to future hospital
encounters for asthma and those linked to no future hospital
encounter for asthma showed the same distribution for
long-acting beta2-agonist prescription (P=.67 for the 2005 to
2016 data and P=.11 for the 2017 data), mast cell stabilizer
prescription (P=.29 for the 2005 to 2016 data and P>.99 for the
2017 data), allergic rhinitis occurrence (P=.38 for the 2005 to
2016 data and P=.13 for the 2017 data), and cystic fibrosis
occurrence (P=.21 for the 2005 to 2016 data and P=.20 for the
2017 data) and, they showed different distributions for gender

(P<.001 for the 2005 to 2016 data and P=.002 for the 2017
data), race (P<.001), ethnicity (P<.001), insurance category
(P<.001), inhaled corticosteroid prescription (P<.001), inhaled
steroid and rapid-onset long-acting beta2-agonist combination
prescription (P<.001 for the 2005 to 2016 data and P=.002 for
the 2017 data), leukotriene modifier prescription (P<.001),
inhaled short-acting beta2-agonist prescription (P<.001),
systemic corticosteroid prescription (P<.001), anxiety or
depression occurrence (P<.001 for the 2005 to 2016 data and
P=.002 for the 2017 data), bronchopulmonary dysplasia
occurrence (P<.001 for the 2005 to 2016 data and P=.02 for the
2017 data), chronic obstructive pulmonary disease occurrence
(P<.001), eczema occurrence (P<.001), gastroesophageal reflux
occurrence (P<.001), obesity occurrence (P<.001 for the 2005
to 2016 data and P=.004 for the 2017 data), premature birth
occurrence (P<.001), sleep apnea occurrence (P<.001), and
smoking status (P<.001). For the data from 2005 to 2016,
different distributions were shown for sinusitis occurrence
(P=.006). For the 2017 data, the same distribution was shown
for sinusitis occurrence (P=.91). On the basis of the
Cochran-Armitage trend test [47], for both 2005 to 2016 and
2017 data, the data instances linked to future hospital encounters
for asthma and those linked to no future hospital encounter for
asthma showed different distributions for age (P<.001) and
duration of asthma (P<.001).
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Table 2. Demographic characteristics of the asthmatic patients at Intermountain Healthcare during 2005 to 2016.

Data instances linked to no hospital
encounter for asthma in the following
year (N=303,976), n (%)

Data instances linked to hospital en-
counters for asthma in the following
year (N=11,332), n (%)

Data instances
(N=315,308), n (%)

Characteristics

Age (years)

34,708 (11.42)3118 (27.52)37,826 (12.00)<6 

50,572 (16.64)2590 (22.86)53,162 (16.86)6 to <18 

172,436 (56.73)5003 (44.15)177,439 (56.27)18 to 65 

46,260 (15.22)621 (5.48)46,881 (14.87)65+ 

Gender

122,048 (40.15)5169 (45.61)127,217 (40.35)Male 

181,928 (59.85)6163 (54.39)188,091 (59.65)Female 

Race

2295 (0.76)214 (1.89)2509 (0.80)American Indian or Alaskan native 

2120 (0.70)77 (0.68)2197 (0.70)Asian 

5291 (1.74)460 (4.06)5751 (1.82)Black or African American 

3877 (1.28)411 (3.63)4288 (1.36)Native Hawaiian or other Pacific Is-
lander

 

273,206 (89.88)9420 (83.13)282,626 (89.63)White 

17,187 (5.65)750 (6.62)17,937 (5.69)Unknown or not reported 

Ethnicity

27,014 (8.89)2279 (20.11)29,293 (9.29)Hispanic 

244,442 (80.41)8157 (71.98)252,599 (80.11)Non-Hispanic 

32,520 (10.70)896 (7.91)33,416 (10.60)Unknown or not reported 

Insurance

200,449 (65.94)6192 (54.64)206,641 (65.54)Private 

76,916 (25.30)3238 (28.57)80,154 (25.42)Public 

26,611 (8.75)1902 (16.78)28,513 (9.04)Self-paid or charity 

Duration of asthma (years)

227,166 (74.73)7666 (67.65)234,832 (74.48)≤3 

76,810 (25.27)3666 (32.35)80,476 (25.52)>3 

Asthma medication prescription

73,566 (24.20)4539 (40.05)78,105 (24.77)Inhaled corticosteroid 

42,796 (14.08)2196 (19.38)44,992 (14.27)Inhaled steroid and rapid-onset long-
acting beta2-agonist combination

 

33,187 (10.92)2320 (20.47)35,507 (11.26)Leukotriene modifier 

1744 (0.57)69 (0.61)1813 (0.58)Long-acting beta2-agonist 

114 (0.04)7 (0.06)121 (0.04)Mast cell stabilizer 

121,983 (40.13)7545 (66.58)129,528 (41.08)Inhaled short-acting beta2-agonist 

129,318 (42.54)7324 (64.63)136,642 (43.34)Systemic corticosteroid 

Comorbidity

4534 (1.49)181 (1.60)4715 (1.50)Allergic rhinitis 

55,245 (18.17)1716 (15.14)56,961 (18.07)Anxiety or depression 

394 (0.13)35 (0.31)429 (0.14)Bronchopulmonary dysplasia 

12,496 (4.11)391 (3.45)12,887 (4.09)Chronic obstructive pulmonary disease 
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Data instances linked to no hospital
encounter for asthma in the following
year (N=303,976), n (%)

Data instances linked to hospital en-
counters for asthma in the following
year (N=11,332), n (%)

Data instances
(N=315,308), n (%)

Characteristics

447 (0.15)11 (0.10)458 (0.15)Cystic fibrosis 

4484 (1.48)443 (3.91)4927 (1.56)Eczema 

54,887 (18.06)1309 (11.55)56,196 (17.82)Gastroesophageal reflux 

35,215 (11.58)1076 (9.50)36,291 (11.51)Obesity 

5102 (1.68)440 (3.88)5542 (1.76)Premature birth 

14,164 (4.66)592 (5.22)14,756 (4.68)Sinusitis 

20,421 (6.72)471 (4.16)20,892 (6.63)Sleep apnea 

Smoking status

33,740 (11.10)1811 (15.98)35,551 (11.28)Current smoker 

18,735 (6.16)569 (5.02)19,304 (6.12)Former smoker 

251,501 (82.74)8952 (79.00)260,453 (82.60)Never smoker or unknown 
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Table 3. Demographic characteristics of the asthmatic patients at Intermountain Healthcare in 2017.

Data instances linked to no hospital
encounter for asthma in the following
year (N=18,444), n (%)

Data instances linked to hospital
encounters for asthma in the follow-
ing year (N=812), n (%)

Data instances
(N=19,256), n (%)

Characteristics

Age (years)

1678 (9.10)199 (24.51)1877 (9.75)<6 

3054 (16.56)181 (22.29)3235 (16.80)6 to <18 

9879 (53.56)386 (47.54)10,265 (53.31)18 to 65 

3833 (20.78)46 (5.67)3879 (20.14)65+ 

Gender

7443 (40.35)373 (45.94)7816 (40.59)Male 

11,001 (59.65)439 (54.06)11,440 (59.41)Female 

Race

146 (0.79)13 (1.60)159 (0.83)American Indian or Alaskan native 

195 (1.06)10 (1.23)205 (1.06)Asian 

361 (1.96)42 (5.17)403 (2.09)Black or African American 

299 (1.62)47 (5.79)346 (1.80)Native Hawaiian or other Pacific Islander 

17,025 (92.31)681 (83.87)17,706 (91.95)White 

418 (2.27)19 (2.34)437 (2.27)Unknown or not reported 

Ethnicity

2020 (10.95)192 (23.65)2212 (11.49)Hispanic 

16,242 (88.06)618 (76.11)16,860 (87.56)Non-Hispanic 

182 (0.99)2 (0.25)184 (0.96)Unknown or not reported 

Insurance

12,388 (67.17)462 (56.90)12,850 (66.73)Private 

4920 (26.68)208 (25.62)5128 (26.63)Public 

1136 (6.16)142 (17.49)1278 (6.64)Self-paid or charity 

Duration of asthma (years)

10,710 (58.07)423 (52.09)11,133 (57.82)≤3 

7734 (41.93)389 (47.91)8123 (42.18)>3 

Asthma medication prescription

6817 (36.96)424 (52.22)7241 (37.60)Inhaled corticosteroid 

4178 (22.65)222 (27.34)4400 (22.85)Inhaled steroid and rapid-onset long-
acting beta2-agonist combination

 

3364 (18.24)209 (25.74)3573 (18.56)Leukotriene modifier 

47 (0.25)5 (0.62)52 (0.27)Long-acting beta2-agonist 

8 (0.04)0 (0.00)8 (0.04)Mast cell stabilizer 

13,046 (70.73)739 (91.01)13,785 (71.59)Inhaled short-acting beta2-agonist 

11,327 (61.41)693 (85.34)12,020 (62.42)Systemic corticosteroid 

Comorbidity

382 (2.07)10 (1.23)392 (2.04)Allergic rhinitis 

3815 (20.68)131 (16.13)3946 (20.49)Anxiety or depression 

12 (0.07)3 (0.37)15 (0.08)Bronchopulmonary dysplasia 

1033 (5.60)23 (2.83)1056 (5.48)Chronic obstructive pulmonary disease 

94 (0.51)1 (0.12)95 (0.49)Cystic fibrosis 
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Data instances linked to no hospital
encounter for asthma in the following
year (N=18,444), n (%)

Data instances linked to hospital
encounters for asthma in the follow-
ing year (N=812), n (%)

Data instances
(N=19,256), n (%)

Characteristics

273 (1.48)34 (4.19)307 (1.59)Eczema 

3477 (18.85)71 (8.74)3548 (18.43)Gastroesophageal reflux 

3389 (18.37)116 (14.29)3505 (18.20)Obesity 

435 (2.36)41 (5.05)476 (2.47)Premature birth 

746 (4.04)34 (4.19)780 (4.05)Sinusitis 

2925 (15.86)78 (9.61)3003 (15.60)Sleep apnea 

Smoking status

2245 (12.17)146 (17.98)2391 (12.42)Current smoker 

2243 (12.16)83 (10.22)2326 (12.08)Former smoker 

13,956 (75.67)583 (71.80)14,539 (75.50)Never smoker or unknown 

Features and Classification Algorithm Used
After finishing the search process to maximize the AUC, our
automatic model selection method [45] chose the XGBoost
classification algorithm [43] and the hyperparameter values
listed in Multimedia Appendix 1. XGBoost is based on decision
trees and can deal with missing feature values naturally. As
XGBoost only accepts numerical features as its inputs, each
categorical feature was first converted into 1 or more binary
features via one-hot encoding before being given to XGBoost.
Our final model was constructed using XGBoost and the 142
features listed in the descending order of their importance values
in the second table in Multimedia Appendix 1. Due to having
no extra predictive power, the other features were automatically
removed by XGBoost. As detailed in the book by Hastie et al
[48], XGBoost automatically computed each feature’s
importance value as the mean of such values across all decision
trees in the XGBoost model. In each tree, the feature’s
importance value was computed based on the performance
improvement gained by the split at each internal node of the
tree using the feature as the splitting variable, weighted by the
number of data instances the node is responsible for.

Performance Measures Achieved
Our final model reached an AUC of 0.859 (95% CI
0.846-0.871). Figure 1 shows our final model’s receiver
operating characteristic curve. Table 4 shows our final model’s
performance metrics when differing top percentages of asthmatic
patients with the highest predicted risk were used as the cutoff
threshold for conducting binary classifications. When this
threshold was at 10.00% (1926/19,256), our final model reached
an accuracy of 90.31% (17,391/19,256; 95% CI 89.86-90.70),
a sensitivity of 53.7% (436/812; 95% CI 50.12-57.18), a

specificity of 91.93% (16,955/18,444; 95% CI 91.54-92.31), a
PPV of 22.65% (436/1925; 95% CI 20.74-24.61), and an NPV
of 97.83% (16,955/17,331; 95% CI 97.60-98.04). Table 5 shows
the corresponding confusion matrix of our final model.

Recall that several features require more than 1 year of historical
data to compute. If we exclude these features and use only those
features computed on 1 year of historical data, the model’s AUC
degrades to 0.849.

Without excluding the features that require more than 1 year of
historical data to compute, the model trained on both asthmatic
adults’ (age ≥18 years) and asthmatic children’s (age <18 years)
data reached an AUC of 0.856 on asthmatic adults and an AUC
of 0.830 on asthmatic children. In comparison, the model trained
only on asthmatic adults’ data reached an AUC of 0.855 on
asthmatic adults. The model trained only on asthmatic children’s
data reached an AUC of 0.821 on asthmatic children.

If we used only the top 21 features listed in the second table in
Multimedia Appendix 1 with an importance value ≥0.01 and
excluded the other 121 features, the model’s AUC degraded
from 0.859 to 0.855 (95% CI 0.842-0.867). When the cutoff
threshold for conducting binary classification was set at the top
10.00% (1926/19,256) of asthmatic patients with the highest
predicted risk, the model’s accuracy degraded from 90.31%
(17,391/19,256) to 90.14% (17,357/19,256; 95% CI
89.74-90.58), sensitivity degraded from 53.7% (436/812) to
51.6% (419/812; 95% CI 48.02-55.24), specificity degraded
from 91.93% (16,955/18,444) to 91.83% (16,938/18,444; 95%
CI 91.43-92.24), PPV degraded from 22.65% (436/1925) to
21.77% (419/1925; 95% CI 20.03-23.68), and NPV degraded
from 97.83% (16,955/17,331) to 97.73% (16,938/17,331; 95%
CI 97.49-97.95).

JMIR Med Inform 2020 | vol. 8 | iss. 1 | e16080 | p. 8http://medinform.jmir.org/2020/1/e16080/
(page number not for citation purposes)

Luo et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 1. Our model’s receiver operating characteristic curve.
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Table 4. Our final model’s performance metrics when differing top percentages of asthmatic patients with the highest predicted risk were used as the
cutoff threshold for conducting binary classification.

Negative predictive
value (%)

Positive predictive
value (%)

Specificity (%)Sensitivity (%)Accuracy (%)Top percentage of asthmatic
patients with the highest
predicted risk (%)

96.3055.2199.5313.0595.891.00

96.5943.9098.8320.8195.542.00

96.7936.9298.0326.2395.003.00

97.0133.7797.2332.0294.484.00

97.1730.5696.3836.2193.845.00

97.3328.4095.5240.3993.196.00

97.4826.7394.6544.3392.537.00

97.6225.3993.7748.1591.858.00

97.7323.9592.8551.1191.099.00

97.8322.6591.9353.6990.3110.00

98.3618.8487.2967.0086.4415.00

98.5815.4282.3473.1581.9520.00

98.8013.2577.3678.5777.4125.00

Table 5. Our final model’s confusion matrix when the cutoff threshold for conducting binary classification was set at the top 10.00% (1926/19,256)
of asthmatic patients with the highest predicted risk.

No future hospital encounter for asthma, nFuture hospital encounters for asthma, nClass

1489436Predicted future hospital encounters for asthma

16,955376Predicted no future hospital encounter for asthma

Discussion

Principal Findings
We built a more accurate machine learning classification model
to predict hospital encounters for asthma in the following year
in asthmatic patients. Our final model achieved a higher AUC
than what has been reported in the literature for this task [9-22].
After further refinement to improve its accuracy and to
automatically explain its prediction results [49,50], our final
model could be integrated into an electronic medical record
system to guide care management allocation for asthmatic
patients. This could better allocate a scarce and expensive
resource and help improve asthma outcomes.

Asthma in adults is different from asthma in children. Our final
model reached a higher AUC on asthmatic adults than on
asthmatic children. More work is needed to understand the
reason for this difference. In addition, more work is needed to
improve the prediction accuracy on asthmatic children compared
with asthmatic adults.

We considered 235 features in total, about 60% of which
appeared in our final model. If a feature is unused by our final
model, it does not necessarily mean that this feature has no
predictive power. Rather, it only shows that this feature offers
no extra predictive power on our specific dataset beyond what
the features used in our final model have. On a larger dataset
with more asthmatic patients, it is possible that some of the
excluded features will provide extra predictive power. This is

particularly true with features whose nontrivial values occur on
only a small portion of asthmatic patients, such as a comorbidity
with a low prevalence rate. When too few data instances take
nontrivial values, the features’predictive power may not appear.

In the second table in Multimedia Appendix 1, the 2 most
important features, as well as several within the top 20, reflect
overall instability of the patient’s asthma. The instability could
derive from physiologic characteristics of the patient’s asthma,
as reflected by the maximum blood eosinophil count, the
maximum percentage of blood eosinophils, and the average
respiratory rate. The instability could also result from treatment
noncompliance, PCP changes, insurance changes, and
socioeconomic issues for which data were unavailable.

Comparison With Prior Work
Researchers have developed multiple models to predict inpatient
stays and ED visits in asthmatic patients [9-22]. Table 6
compares our final model with these models, which include all
relevant ones mentioned in Loymans et al’s recent systematic
review [9]. None of these models obtained an AUC >0.81,
whereas our final model’s AUC is 0.859. In other words,
compared with our final model, each of these models reached
an AUC lower by at least 0.049. Compared with prior model
building, our model building assessed more candidate features
with predictive power, adopted a more advanced classification
algorithm, and used data from more asthmatic patients. All of
these helped boost our final model’s accuracy. Our principle of
considering extensive candidate features to help enhance the
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model’s accuracy is general and can be applied to other diseases
and outcomes such as health care cost [51].

Except for Yurk et al’s model [17], all other prior models had
a PPV ≤22% and a sensitivity ≤49%, which are lower than those
achieved by our final model. Yurk et al’s model [17] obtained
better sensitivity and PPV primarily because the model used a

different prediction target: hospital encounters or ≥1 day lost
because of reduced activities or missed work for asthma. This
prediction target occurs for more than half of the asthmatic
patients, making it relatively easy to predict. If the prediction
target were changed to hospital encounters for asthma, a rarer
outcome that is harder to predict, we would expect the sensitivity
and PPV reached by Yurk et al’s model [17] to drop.

Table 6. A comparison of our final model and multiple prior models for predicting inpatient stays and emergency department visits in asthmatic patients.

Negative
predictive
value (%)

Positive
predictive
value (%)

Specificity
(%)

Sensitivity
(%)

Area under the re-
ceiver operating
characteristic curve

Data in-
stances, n

Features
used in the
model, n

Classification
algorithm

Prediction tar-
get

Model

97.8322.6591.9353.690.859334,564142Extreme gradi-
ent boosting

Hospital encoun-
ters for asthma

Our final
model

————a0.86117Logistic regres-
sion

Asthma exacer-
bation

Loymans
et al [10]

99.15.689.843.90.78141975Logistic regres-
sion

Inpatient stay
for asthma in
children

Schatz et
al [11]

99.33.987.044.90.71269043Logistic regres-
sion

Inpatient stay
for asthma in
adults

Schatz et
al [11]

————0.68928581Logistic regres-
sion

Inpatient stay
for asthma

Eisner et
al [12]

————0.75124153Logistic regres-
sion

EDb visit for
asthma

Eisner et
al [12]

————0.625783Classification
and regression
tree

Severe asthma
exacerbation

Sato et al
[13]

————0.81282117Logistic regres-
sion

Hospital encoun-
ters for asthma

Miller et
al [15]

568263770.78488811Logistic regres-
sion

Hospital encoun-
ters or lost day
for asthma

Yurk et al
[17]

————0.7916,5207Proportional
hazards regres-
sion

Inpatient stay
for asthma

Lieu et al
[18]

————0.6916,5207Proportional
hazards regres-
sion

ED visit for
asthma

Lieu et al
[18]

—18.583.649.0—71414Classification
and regression
tree

Hospital encoun-
ters for asthma

Lieu et al
[19]

93.222.092.025.40.61414,8934Logistic regres-
sion

Hospital encoun-
ters for asthma

Schatz et
al [20]

————0.7561517ScoringSevere asthma
exacerbation

Forno et
al [22]

aThe performance measure is not reported in the original paper describing the model.
bED: emergency department.

Considerations Regarding Potential Clinical Use
Despite being more accurate than the prior ones, our final model
still reached a relatively low PPV of 22.65% (436/1925).
However, this does not prevent our final model from being
clinically useful because of the following reasons:

• A PPV of 22.65% is reasonably good for identifying
high-risk asthmatic patients as candidates for receiving
relatively inexpensive preventive interventions.
Furthermore, 4 examples of such interventions are teaching
the patient how to correctly use an asthma inhaler, teaching
the patient how to correctly use a peak flow meter and
giving it to the patient to use at home for self-monitoring,
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training the patient to keep an environmental trigger diary,
and arranging for a nurse to make additional follow-up
phone calls with the patient.

• The PPV depends highly on the outcome’s prevalence rate
[52]. A relatively rare outcome, such as future hospital
encounters for asthma, will occur in only a finite number
of patients. Hence, most patients projected to have the
outcome will inevitably turn out to not have the outcome,
causing even a good predictive model to have a low PPV
[52]. For such an outcome, sensitivity is more important
than PPV for assessing the model’s performance and
potential clinical impact. As shown in Table 4, by setting
the cutoff threshold for conducting binary classification at
the top 10.00% (1926/19,256) of patients with the highest
predicted risk, our final model has already captured 53.7%
(436/812) of the asthmatic patients who will incur future
hospital encounters for asthma. If one is willing to increase
the cutoff threshold to the top 25.00% (4814/19,256) of
patients with the highest predicted risk, our final model
would have captured 78.6% (638/812) of the asthmatic
patients who will incur future hospital encounters for
asthma, even though the PPV is only 13.25% (638/4814).

• Proprietary models with performance measures similar to
those of the previously published models are being used at
health care systems such as Intermountain Healthcare,
University of Washington Medicine, and Kaiser Permanente
Northern California [18] for allocating preventive
interventions. Our final model is an improvement over those
models. Table 6 shows that compared with the previously
published models, our final model reached a sensitivity
higher by 4.69% or more. If we could use our final model
to find 4.69% more asthmatic patients who will incur future
hospital encounters for asthma and enroll them in care
management, we could improve outcomes and avoid up to
9239 inpatient stays and 33,768 ED visits each year [1,4-7].
Supporting the importance of relatively small improvements
in the model’s performance measures, Razavian et al [53]
showed that by reaching a gain of 0.05 in AUC (from 0.75
to 0.8) and a PPV of 15%, a large health insurance company
such as Independence Blue Cross would be willing to
deploy a new predictive model to appropriately allocate
preventive interventions.

Our final model used 142 features. Reducing features used in
the model could ease its clinical deployment. For this, one could
use the top few features with the highest importance values (eg,
≥0.01) and exclude the others, if one is willing to accept a
not-too-big degrade of model accuracy. Ideally, one should first
assess the features’ importance values on a dataset from the
target health care system before deciding which features should
be kept for that system. A feature’s importance value varies
across different health care systems. A feature with a low
importance value on the Intermountain Healthcare dataset might
have a decent importance value on a dataset from another health
care system. Similar to the case with many other complex
machine learning models, an XGBoost model using a nontrivial
number of features is difficult to interpret globally. As an
interesting area for future work, we are in the process of
investigating using the automatic explanation approach
described in our prior papers [49,50] to automatically explain

our final XGBoost model’s prediction results on individual
asthmatic patients.

Our final model was built using the XGBoost classification
algorithm [43]. For binary classification with 2 unbalanced
classes, XGBoost uses a hyperparameter scale_pos_weight to
control the balance of the weights for the positive and negative
classes [54]. One could set scale_pos_weight to the ratio of the
number of negative data instances to the number of positive
data instances [54], although the optimal value of
scale_pos_weight often deviates from this value by a degree
varying by the specific dataset. In our case, to maximize the
model’s AUC, our automatic model selection method [45] did
a search of possible hyperparameter values and eventually set
scale_pos_weight to a nondefault value to balance the 2 classes
of future hospital encounters for asthma or not [55]. This has
the side effect of making the model’s predicted probabilities of
incurring future hospital encounters for asthma very small and
unaligned with the actual probabilities [55]. This side effect
does not prevent us from selecting the top few percentage of
asthmatic patients with the highest predicted risk as candidates
for receiving care management or other preventive interventions.
To avoid this side effect, we could set scale_pos_weight to its
default value of 1, without balancing the 2 classes. However,
that would degrade the model’s AUC from 0.859 to 0.849 (95%
CI 0.836-0.862).

Limitations
This study has several limitations, all of which provide
interesting areas for future work:

• We had no access to medication claim data. Consequently,
we were unable to use as features the following major risk
factors for hospital encounters for asthma in asthmatic
patients: medication compliance reflected in refill
frequency, the asthma medication ratio [56], the dose of
inhaled corticosteroids [33], and the step number of the
stepwise approach for managing asthma [33,57]. We are
in the process of obtaining an asthmatic patient dataset from
Kaiser Permanente Southern California including these
attributes [58], so that we can investigate how much gain
in prediction accuracy they can bring.

• Besides those considered in the study, other features could
also help boost model accuracy. Our dataset missed some
of these features, such as pulmonary function test results.
An example of pulmonary function test results is the ratio
of the forced expiratory volume in 1 second to the forced
vital capacity, a known risk factor for hospital encounters
for asthma in asthmatic patients. It would be interesting to
find new predictive features from, but not limited to, the
attributes available in our dataset.

• Our study considered only structured data and
non–deep-learning machine learning classification
algorithms. Adding features extracted from unstructured
clinical notes and using deep learning may further improve
the model’s accuracy [50,58].

• Our dataset included no information on the patients’ health
care use at non–Intermountain Healthcare facilities. As a
result, we computed features using incomplete clinical and
administrative data of the patients [59-62]. In addition,
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instead of taking hospital encounters for asthma anywhere
as the prediction target, we had to restrict it to hospital
encounters for asthma at Intermountain Healthcare. It would
be interesting to investigate how the model’s accuracy
would change if more complete clinical and administrative
data of the patients are available [63].

• Our study used data from 1 health care system and did not
assess our results’ generalizability. After obtaining the
asthmatic patient dataset from Kaiser Permanente Southern
California, we plan to evaluate our final model’s
performance on that dataset and explore the process of
customizing models to features available in specific datasets
as part of the approach to generalization.

Conclusions
Our final model improves the state of the art for predicting
hospital encounters for asthma in asthmatic patients. In
particular, our final model reached an AUC of 0.859, which is
higher than those previously reported in the literature for this
task by ≥0.049. After further refinement, our final model could
be integrated into an electronic medical record system to guide
allocation of scarce care management resources for asthmatic
patients. This could help improve the value equation for asthma
care by improving asthma outcomes while also decreasing
resource use and cost.
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