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Abstract

Computable phenotypes are algorithms that translate clinical features into code that can be run against electronic health record
(EHR) data to define patient cohorts. However, computable phenotypes that only make use of structured EHR data do not capture
the full richness of a patient’s medical record. While natural language processing (NLP) methods have shown success in extracting
clinical features from text, the use of such tools has generally been limited to research groups with substantial NLP expertise.
Our goal was to develop an open-source phenotyping software, Clinical Annotation Research Kit (CLARK), that would enable
clinical and translational researchers to use machine learning–based NLP for computable phenotyping without requiring deep
informatics expertise. CLARK enables nonexpert users to mine text using machine learning classifiers by specifying features for
the software to match in clinical notes. Once the features are defined, the user-friendly CLARK interface allows the user to choose
from a variety of standard machine learning algorithms (linear support vector machine, Gaussian Naïve Bayes, decision tree, and
random forest), cross-validation methods, and the number of folds (cross-validation splits) to be used in evaluation of the classifier.
Example phenotypes where CLARK has been applied include pediatric diabetes (sensitivity=0.91; specificity=0.98), symptomatic
uterine fibroids (positive predictive value=0.81; negative predictive value=0.54), nonalcoholic fatty liver disease (sensitivity=0.90;
specificity=0.94), and primary ciliary dyskinesia (sensitivity=0.88; specificity=1.0). In each of these use cases, CLARK allowed
investigators to incorporate variables into their phenotype algorithm that would not be available as structured data. Moreover,
the fact that nonexpert users can get started with machine learning–based NLP with limited informatics involvement is a significant
improvement over the status quo. We hope to disseminate CLARK to other organizations that may not have NLP or machine
learning specialists available, enabling wider use of these methods.

(JMIR Med Inform 2020;8(1):e16042) doi: 10.2196/16042
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Introduction

Structured data in the electronic health record (EHR), such as
diagnosis and procedure codes, numeric lab values, and
admission and discharge dates, are extraordinarily valuable for
development of computable phenotypes [1]. These are
algorithms that translate clinical features into code that can be
run against EHR data to define patient cohorts. Computable
phenotypes can be used to efficiently identify potential study

participants for recruitment, be shared among collaborators to
enable multi-site cohort identification, or be posted publicly in
repositories (eg, Phenotype KnowledgeBase) [2] for wide use.
However, computable phenotypes that only make use of
structured EHR data do not capture the full richness of a
patient’s medical record, because they do not consider
information found in the clinical notes.

National data networks such as the Electronic Medical Records
and Genomics (eMERGE) network have demonstrated that
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unstructured, free-text clinical notes often contain critical
information that is missing from the EHR's structured fields
[3,4]. Social determinants of health, symptoms, and findings
from imaging and pathology are among the features apt to be
buried in free text. However, despite their importance, extraction
of these features requires the use of more advanced informatics
methods [5,6]. By making clinical note text more accessible,
researchers can identify cohorts using inclusion or exclusion
criteria typically captured only in notes and often available only
through time-consuming, manual chart abstraction. While
natural language processing (NLP) methods have shown success
in extracting clinical features from text, current tools can be
difficult to implement, require specialized technical knowledge
to use, and entail extensive domain expertise for setup and
validation [7,8]. Even with the existence of freely available NLP
tools (eg, Apache’s cTAKES [9] and OpenNLP [10]), the use
of such tools for computable phenotyping has been limited to
research groups with substantial NLP expertise [11].

In the absence of this expertise, researchers are often obliged
to perform time-intensive chart reviews on an overly inclusive
set of patients to determine who qualifies for their study. This
additional effort may increase costs and significantly lengthen
the time between study start-up and participant recruitment. As
an alternative to manual chart review, NLP augmented with
machine learning can be used to identify cohorts where
structured data is limited or not available, using the contents of
free-text clinical notes [4-6,12-15]. We believe that the use of
these technologies and methods need not be limited to
informatics experts.

Computable phenotyping is a good fit for machine
learning–based NLP, as phenotypes are essentially classification
problems, as in, based on available information, a patient can
be placed in an appropriate category (eg, positive or negative
for a disease). A machine can be trained to extract and use
features from unstructured data similarly to the way a physician
can review a chart; both are methods to learn more about patients
[4-6,12-15]. Machine learning–based NLP relies on clues found
in clinical notes, which is closer to the process a clinician would
employ in reviewing a chart than using structured data elements
extracted from a clinical data warehouse.

Considering this need, our goal was to develop open-source
phenotyping software that enables clinical and translational
researchers to use machine learning–based NLP for computable
phenotyping, without requiring deep informatics expertise. To
meet this need, the North Carolina Translational and Clinical
Sciences Institute, the University of North Carolina at Chapel
Hill’s (UNC) National Institute of Health–funded Clinical and
Translational Science Award, and CoVar Applied Technologies
built CLARK (Clinical Annotation Research Kit) [16]. CLARK
is specifically designed to be user-friendly, freely sharable, and
applicable to a variety of translational research questions.
CLARK is designed to take free-text clinical notes as input and
classify those notes (and the associated patients) based on
features (ie, words and phrases) defined by the user. At its core,
CLARK is an approachable user interface to enable easier user
interaction with scikit-learn [17], with features tailored towards
interacting with clinical data and the needs of clinical
researchers.

CLARK is designed to supplement, not replace, human effort
[18] and judgment to reduce time spent conducting chart review,
produce more robust computable phenotypes, and move studies
to recruitment or data analysis more quickly. CLARK’s
approach to adapting a highly technical methodology for use
by nonexperts is a purposeful trade-off. It potentially sacrifices
the exactitude of a years-long informatics study to increase the
speed of development, ease of use, flexibility, and potential of
reusability, while still accomplishing the end goal of a refined
pool of potential study participants.

Methods

CLARK enables nonexpert users to mine text using machine
learning classifiers by specifying features for the software to
match in clinical notes. It is best suited for performing cohort
identification when criteria can be formulated as a classification
problem (eg, differentiating between disease subtypes,
symptomatic versus asymptomatic patients, and presence or
absence of disease). Once the classification problem is
identified, CLARK requires the user to start with a gold standard
(or training corpus) of clinical notes provided by clinical subject
matter experts. In the training corpus, the correct answer or
classification is already known to the user and CLARK.

The process of creating a gold standard differs depending on
the use case, but generally follows this pattern:

1. A patient cohort to be used as a gold standard is defined.
This may be a cohort of patients already known to the
investigator, patients in an existing registry for the condition
of interest, or patients identified in a database query using
as many structured data points as possible, and then
manually chart-reviewed by the clinicians to identify which
patients identified by the wide net are true cases.

2. If needed for the given use case, a matching set of patients
without the condition of interest can be identified and used
to serve as noncases in the gold standard.

3. The patients in the gold standard are divided into two sets
for use as a training set and testing set. Some use cases
divide 50/50, while others purposely oversample one or
more classifications.

4. At our institution, policy dictates that a data analyst will
then extract all clinical notes in a given period for the
identified patients on behalf of the investigator. These notes
are then converted to JSON format for loading into CLARK.
One of the metadata fields for each note contains the true
classification of the patient to whom it belongs, and this is
what CLARK uses to train.

Once loaded into CLARK, the user can browse through the
notes in the corpus and define important features (words and
phrases) in the gold standard using regular expressions or
patterns to match. Expression matches are highlighted in a note
browser for easy inspection. The user (a clinical subject matter
expert) defines features that will give CLARK the information
it needs to determine a given patient’s classification based on
the contents of their notes, using logic similar to a physician
performing a chart review. See Figure 1 for examples of features
defined as regular expressions, in this case, to help CLARK
identify patients with symptomatic uterine fibroids. See Figure
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2 for examples of those features matched in a clinical note. Both
positive and negative features can and should be defined, as the
machine learning model will classify those patients matching
“pelvic pain” and “denies pelvic pain” differently.

Once the features are defined, the CLARK user interface allows
the user to choose from a variety of standard machine learning
algorithms (linear support vector machine, Gaussian Naïve
Bayes, decision tree, and random forest), cross-validation
methods, and the number of folds (cross-validation splits) to be
used in evaluation of the classifier.

Under the hood, CLARK contains a patient record processing
engine that transforms the notes for each patient into a
multi-dimensional feature vector based on the regular expression
features defined by the user. For each sentence within a note,
the number of matches for each regular expression is calculated.
The vector of match counts is then summed across all sentences
within a single note. Finally, the vectors are summarized at the
patient level by calculating the mean feature vector across all
of that patient’s notes. The user’s chosen machine learning
algorithm is then able to consume these final patient-level
feature vectors to train a model.

After performing cross-validation on the training corpus,
CLARK displays results in an interactive dashboard (Figure 3),

which includes the classifier’s accuracy and confidence in each
classification. The confidence scores are particularly helpful
when iterating over a training set. If a user sees that CLARK is
only 55% confident in many of its classifications, even if the
classification is technically correct, that is an indicator that more
or different features may be needed in the model to provide
additional supporting data points. In a production-scale model,
one could also use the confidence score to set a cut-off point to
say that results would only be deemed reliable if they are at or
above a certain confidence level.

Users can select individual patients (eg, the set of patients for
whom CLARK was highly confident, but incorrect) to gather
information to continue tuning the features used in training the
model. The training process iterates as such until the user is
satisfied with performance. At this point, a held-out testing set
of labeled patients and notes can be processed using the
pretrained algorithm. The user and CLARK are blinded to the
correct labels of this held-out set. Once the model is run, the
user can be unblinded to the labels in order to assess the model’s
performance and calculate metrics such as sensitivity/specificity,
F1-measure, and area under the receiver operating characteristic.
The trained model can then be used to classify patients (and
identify cohorts) in new, unannotated data.

Figure 1. “Features” defined as regular expressions.
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Figure 2. Highlighted feature matches.
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Figure 3. Interactive results dashboard.

CLARK has two primary components: A Python-based
computation engine and a user interface built using Electron
[19] and React [20]. All components of CLARK are themselves
open-source, including the machine learning package,
scikit-learn. CLARK runs well on personal computers and does
not require a server or any other expensive information
technology infrastructure to operate. The computation time
required to train a model on a cohort of a few hundred patients
generally takes just a few minutes, though this time is variable
depending on the volume of notes. Moreover, CLARK does not
require an internet connection to run, which means that (if
desired) it can be set up on a computer or virtual machine
quarantined from all network access. There is no physical or
logical connection between CLARK and the institutional patient

note repository (such as an enterprise data warehouse); instead,
CLARK ingests an extract of patient notes that are provisioned
to the research team. This extract can be stored locally on the
same computer on which CLARK is installed (which would
allow for the quarantine as mentioned earlier) or can be stored
on a remote mount or network drive. This feature alleviates
many institutions’ concerns regarding the security of
open-source software on network-connected servers handling
sensitive data and is a feature we included purposefully in
anticipation of sharing the application.

Since its public release in 2017, CLARK has been used in
several phenotyping applications at UNC, including efforts to
classify patients with diabetes, uterine fibroids, nonalcoholic
fatty liver disease (NAFLD), primary ciliary dyskinesia (PCD),
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cystic fibrosis, and bronchiectasis. The motivations for the use
of CLARK for these particular phenotypes are presented in
Textbox 1.

A selection of preliminary results from these studies are
presented below.

Textbox 1. Use-case specific rationales for the use of CLARK.

Pediatric diabetes

• International Classification of Diseases, Ninth Revision (ICD-9) diagnosis codes (the standard at the time this study was ongoing) for pediatric
diabetes are fairly sensitive, but less specific when determining the presence or absence of diabetes in a patient, as patients may be given codes
for diabetes if they have, for example, diabetes risk factors [21]. Incorporating clinical notes in the phenotype provides another, more specific
source of information to help identify true cases.

Symptomatic uterine fibroids

• Women in whom uterine fibroids are identified will have an ICD-9 or International Classification of Diseases, Tenth Revision (ICD-10) diagnosis
code for the condition recorded in their EHR, regardless of whether the fibroids are symptomatic. Thus, using only structured data in a fibroid
computable phenotype identifies many asymptomatic women who would not qualify for this particular study [22]. Using clinical text as part of
the phenotype is a way to account for symptoms in addition to the presence of fibroids.

Nonalcoholic fatty liver disease

• NAFLD does not have reliable ICD-9 or ICD-10 diagnosis codes and is underdiagnosed [23]. However, characteristics of NAFLD can be gleaned
from clinical notes to identify patients missed with structured data algorithms.

Primary ciliary dyskinesia

• There is no specific ICD-9 or ICD-10 diagnosis code for PCD, meaning that this cohort cannot be identified using structured data alone. A
combination of factors appearing in clinical notes can, when taken together, identify these patients with more certainty.

Results

The results shown in Tables 1 and 2 are preliminary or early
results for computable phenotyping studies in which CLARK
has been applied. We present these results here to provide a
picture of CLARK’s potential utility for these and other

phenotyping exercises. Each of these examples used CLARK’s
random forest option and were tested using 10-fold
cross-validation. Note that study 1 (pediatric diabetes) used an
early version of CLARK, well before its 2017 public release.
The remaining studies all used the newest public version of
CLARK.
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Table 1. Select studies using CLARK for computable phenotyping.

Example regular expressionsExample featuresResearch question

Among a set of pediatric patients identified as po-
tentially diabetic using structured data, can we use
the patients’ clinical notes to identify the true posi-
tive cases [24]?

•• \bDM\W*T?(1|I)\b|\bT(ype)?\W*(1|I)\W*DM|\ID-
DM

“Type 1 diabetes”
• “Insulin-dependent diabetes”

• \b*insulin\W+depend\w+

Among a set of women with an ICD-9a diagnosis
code for uterine fibroids, can we use free-text re-

ports from MRIsb and ultrasounds to determine
which patients are symptomatic, versus asymptomat-
ic [25]?

•• ([Mm]ultiple |[Pp]rominent |[Ll]arge )([Uu]terine
|[Ii]ntramural )?fibroid(s)?

“Significant fibroids”
• “Denies pelvic pain”

• (denies|no).{0,35}pelvic pain• “Vaginal bleeding”
• ([Pp]ost(\s|.)?menopausal |[Hh]eavy |[Aa]bnormal

|[Ee]xtended )(vaginal )?bleeding\s.{1,750}fi-
broid(s)?

Among a set of patients with biopsy-proven

NAFLDc, non-NAFLD liver disease, and healthy
controls, can we use the patients’ clinical notes to
differentiate the NAFLD patients from the other,
similar conditions and healthy controls [23]?

•• ((bmi|body\smass\sindex|bmi)?\scalculat-
ed)[\s\w:]{0,7}(([4][0-9].?[0-9]?[0-9]?)|([5][0-9].?[0-
9]?[0-9]?)|([6][0-9].?[0-9]?[0-9?)|([7][0-9].?[0-9]?[0-
9]?)|([8][0-9].?[0-9]?[0-9]?))

BMId≥40 (body mass index)
• “NAFLD”

• ((NAFLD|((non[0]?alcoholic)?\sfatty\sliver\s(dis-
ease)?)|K76\.0))

Among a set of patients with known PCDe, cystic
fibrosis, bronchiectasis, and healthy controls, can
we use the patients’ clinical notes to differentiate
the PCD patients from the other, similar conditions
and healthy controls? (Work ongoing.)

•• (s|S)itus (inversus|ambiguous)|(d|D)extrocar-
dia|(h|H)eterotaxy

“Situs inversus”
• “Denies shortness of breath”

• (without|(N|n)o\b|(N|n)ega-
tive|(D|d)enies).{1,25}shortness of breath

• “Ear tubes”

• (E|e)ar tubes?|tympanoplasty|P\.?E\.? tubes?

aICD-9: International Classification of Diseases, Ninth Revision.
bMRI: magnetic resonance imaging.
cNAFLD: nonalcoholic fatty liver disease.
dBMI: body mass index.
ePCD: primary ciliary dyskinesia.

Table 2. Evaluating performance of the research questions of each study.

Model PerformanceClassifications (true n from gold standard)Base population (n)

Sensitivity=0.91; Specificity=0.98True positive case (537) versus false positive case (811)Pediatric patients identified by a wide-net structured

EHRa data algorithm [21] as having possible dia-
betes (1348)

Positive predictive value=0.81;
Negative predictive value=0.54

Symptomatic fibroids (120) versus asymptomatic fibroids
(43)

Women with uterine fibroids identified by a struc-
tured EHR data algorithm [22] (163)

Sensitivity=0.90; Specificity=0.94NAFLD cases (19) versus a mix of non-NAFLD liver dis-
ease cases and healthy controls (36)

Patients with biopsy-proven NAFLDb, non-NAFLD
liver disease, and healthy controls (55)

Sensitivity=0.88; Specificity=1.00PCD case (22) versus a mix of CFd cases, bronchiectasis
cases, and controls (225)

Research registry of patients with confirmed PCDc,
cystic fibrosis, or bronchiectasis, as well as healthy
controls (247)

aEHR: electronic health record.
bNAFLD: nonalcoholic fatty liver disease.
cPCD: primary ciliary dyskinesia.
dCF: cystic fibrosis.

Discussion

Primary Results
Our findings demonstrate CLARK’s potential to enhance the
ability to define computable phenotypes for cohorts that require
going beyond structured EHR data. Using clinical “clues”
provided by clinical subject matter experts, CLARK was able

to identify concepts in free-text notes that are either unreliable
or not present in structured data.

This is the first time these CLARK-specific results have been
published outside of abstracts; thus, these algorithms have not
yet been unleashed on data beyond the training and test sets.
Running the PCD or NAFLD algorithms on UNC’s entire
clinical data warehouse, for example, would be a true test of
these phenotypes’ utility. Once we take this step, there is a
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strong chance that we could identify previously undiagnosed
(or uncoded) cases of these diseases, which could have a direct
impact on patients’ lives.

One consistent feature of machine learning and natural language
processing is that 100% accuracy is exceedingly rare, except
by chance (or by overfitting one’s model). As a result, clinicians
must tolerate many false positives and false negatives, with the
level of tolerance based on the use case. Because CLARK
outputs a confidence level with each of its classification
decisions, users have the flexibility to, for example, only accept
CLARK’s classifications when the confidence is above a certain
cut-off point and opt to review the rest manually. This option
may engender more trust in CLARK’s results, while still cutting
down on the number of charts needed to be reviewed manually.

User-Friendliness as Innovation
Our intention for CLARK’s interface to be accessible to less
technical users is itself an innovation. While NLP is a
well-established informatics method in health care and
translational research, its use is generally limited to experts with
the requisite technical knowledge and programming skills [11].
While the same could be said for many methodologies (eg, some
advanced statistical analysis may be limited to biostatisticians),
one key aspect of NLP makes democratization particularly
desirable: the requirement that machine learning–based NLP
models be trained before applying them to new data. In the
health care context, this means training a model to mimic clinical
inference. For that reason, clinicians, not informaticians, are
best suited to train models. However, at present, only
informaticians are capable of executing and iterating through
the training process. CLARK is designed to address that gap.
Though we have not done a formal usability study at this time,
design decisions during application development were made
with our intended audience (noninformatician
clinician-scientists) in mind.

CLARK’s most technical prerequisite is a basic understanding
of regular expressions or snippets of text that define a pattern
of alphanumeric characters. While the most complex regular
expressions are not likely to be used by nonexperts, we have
had success training clinician-researchers to build simple regular
expressions and use them in CLARK on their own. In early user
testing, we successfully taught basic regular expression syntax

in a one-hour session to approximately ten investigators who
were initially unfamiliar with the concept. Yes, regular
expressions can be tricky for even experienced programmers,
and these one-hour training sessions are not intended to result
in mastery. Instead, these sessions enable investigators to start
basic pattern matching (eg, “(D|d)iabetes”). When more complex
expressions are needed, our informatics team is available to
assist, while still allowing the investigator to use the software
and do their analysis independently.

Once that knowledge is gained, learning how to build a basic
model in CLARK takes only minutes. In three of the four studies
described in our Results, the clinician investigators worked
side-by-side with an informatician in the CLARK user interface
to browse through notes and define regular expressions as a
team. Additionally, we have examples of ongoing studies in
which the clinician investigators are using CLARK mostly on
their own (eg, to identify breast cancer subtypes), with only a
small amount of support from an informatician. The most
common questions we receive from investigators are not around
regular expressions, but rather what is happening within the
black box of the machine learning model. We have found that
the idea of a machine making decisions that are opaque to the
human user is a challenging concept to explain in lay language
and is something we continue to work on. Regardless, the fact
that nonexpert users can get started with machine learning–based
NLP with limited informatics involvement is a significant
improvement over the status quo.

Conclusions
We believe that CLARK has enormous potential to allow more
complex cohorts to be identified using computable phenotyping,
by unlocking the valuable content of free-text clinical notes and
other unstructured data. Moreover, by making the user interface
understandable to noninformaticians, yet maintaining a
sophisticated backend capable of running complex models,
CLARK achieves what most existing machine learning–based
NLP applications do not [7]: user-friendly design that supports
the interdisciplinary nature of NLP. By making CLARK open
source, we hope to disseminate CLARK to other sites that may
not have NLP or machine learning specialists available, enabling
wider use of these methods, and spurring innovation and
collaboration in computable phenotyping.
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