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Abstract

Background: Artificial intelligence–enabled electronic health record (EHR) analysis can revolutionize medical practice from
the diagnosis and prediction of complex diseases to making recommendations in patient care, especially for chronic conditions
such as chronic kidney disease (CKD), which is one of the most frequent complications in patients with diabetes and is associated
with substantial morbidity and mortality.

Objective: The longitudinal prediction of health outcomes requires effective representation of temporal data in the EHR. In
this study, we proposed a novel temporal-enhanced gradient boosting machine (GBM) model that dynamically updates and
ensembles learners based on new events in patient timelines to improve the prediction accuracy of CKD among patients with
diabetes.

Methods: Using a broad spectrum of deidentified EHR data on a retrospective cohort of 14,039 adult patients with type 2
diabetes and GBM as the base learner, we validated our proposed Landmark-Boosting model against three state-of-the-art temporal
models for rolling predictions of 1-year CKD risk.

Results: The proposed model uniformly outperformed other models, achieving an area under receiver operating curve of 0.83
(95% CI 0.76-0.85), 0.78 (95% CI 0.75-0.82), and 0.82 (95% CI 0.78-0.86) in predicting CKD risk with automatic accumulation
of new data in later years (years 2, 3, and 4 since diabetes mellitus onset, respectively). The Landmark-Boosting model also
maintained the best calibration across moderate- and high-risk groups and over time. The experimental results demonstrated that
the proposed temporal model can not only accurately predict 1-year CKD risk but also improve performance over time with
additionally accumulated data, which is essential for clinical use to improve renal management of patients with diabetes.

Conclusions: Incorporation of temporal information in EHR data can significantly improve predictive model performance and
will particularly benefit patients who follow-up with their physicians as recommended.

(JMIR Med Inform 2020;8(1):e15510) doi: 10.2196/15510
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Introduction

Background
With the rapid development in digitization of health care data,
the modern electronic health records (EHRs) hold considerable
promise for driving scientific advances in various aspects of
biomedicine through the utilization of machine learning
techniques. EHRs contain not only diverse clinical data elements
that can better describe a patient’s overall health status but also
rich longitudinal data of patients that serve as a critical source
for understanding the evolution of disease and management of
chronic conditions. Developing accurate risk prediction models
to drive timely initiation of appropriate therapies and monitoring
is of paramount importance for conditions that have a substantial
public health impact and can benefit greatly from early
intervention.

Chronic kidney disease (CKD), especially CKD attributed to
diabetes, that is, diabetic kidney disease (DKD), certainly falls
within this category [1]. DKD is one of the most frequent and
dangerous microvascular complications in diabetes mellitus
(DM) that affects about 20% to 40% of patients with type 1 or
type 2 DM [2]. It is the leading cause of end-stage renal disease
(ESRD), which accounts for approximately 50% of the cases
in the developed world with major public health and economic
implications [3]. Therefore, annual screening is recommended
for patients with type 1 and type 2 diabetes [4,5], which in turn
has two implications: (1) there is a better chance for us to
observe more regular and meaningful temporal patterns among
these patients, and (2) an effective model for predicting the risk
of DKD in the following year can be more beneficial for patients
who are compliant to the annual check protocol because this
allows implementation of early preventive measures.

Related Work
The effective use of temporal EHR data for predictive modeling
remains a challenge owing to its highly variable sampling rates
across different groups of patients (eg, patients may not follow
the annual check protocol and only visit the hospital for critical
health events) and distinct data types (eg, vital signs are noted
hourly during inpatient encounters, whereas laboratory tests
and medications are recorded when clinicians order them, and
demographic data are more stable). Attempts have been made
to handle temporal information in a variety of clinical
applications. One approach involves representing the time series
of clinical features with a single heuristic value (eg, taking the
latest value or the trend [6] or shrinking to a weighted sum of
values with the weights determined by the timestamps [7,8]).
Another approach is to preserve the underlying sequential order
by mapping the time series into temporal patterns (eg,
knowledge-based temporal abstraction or hidden Markov chains
[9,10]) or symbolic representations (eg, the Symbolic Aggregate
approXimation based on Gaussian quantiles and the temporal
discretization for classification [11,12]). Moreover, deep
learning techniques such as recurrent neural networks, in
particular, long- and short-term memory and Gated recurrent
units, have contributed to model temporal events [13-15].
However, it has also been reported in the corresponding work

that many such approaches could suffer from high data sparsity
or informative missingness and insufficient training data.

In the prediction of kidney-related events, single-value
abstraction is the most popular approach for its simplicity but
at the expense of reduced temporal granularity. For example,
in the ADVANCE prospective study for diabetic nephropathy,
only baseline values of selected labs and vitals are used in a
Cox proportional survival model [16]. A multivariate Cox
proportional survival model was developed for predicting ESRD
based on mean- and variation-abstractions of repeated glycated
hemoglobin (HbA1c), creatinine, and blood pressure
measurements [17]. More sophisticated use of temporal EHRs
has also been studied, many of which were targeted at severe
or acute kidney-related events. A Bayesian multiresolution
hazard model for predicting CKD progression from stage III to
stage IV attempted to capture temporal patterns by associating
variables with piece-wise hazard increments at different time
windows [18], whereas an independent Markov process modeled
the underlying sequential latent states for predicting the
transition from CKD stage III to stage IV [19]. A multitask
linear model enabled knowledge transfer from one time window
to another in the prediction of short-term renal function loss
[20], and a tree-based discrete-survival-like gradient boosting
machine (GBM) predicting acute kidney injury in inpatients
allowed the features and their association with outcome to be
time variant and showed excellent performance [21]. However,
all of the aforementioned approaches require moderate to high
manual effort on feature preselection and curation, which not
only limits the scalability of the predictive models but also
discards considerable amount of information in each patient’s
records [15]. In addition, the complexity of EHR data often
violates the linearity and independence assumptions for survival
and linear models, resulting in worse predictions and impaired
generalizability.

Objectives
In this study, we propose a new approach for incorporating the
temporal information in medical history of patients with diabetes
to further improve the predictive model for evaluating their risk
of renal complication in the next year. Because of its robustness,
efficiency, and established efficacy in the prediction of kidney
events [21], we chose GBM as the base learner and augmented
it with schemes to continuously update its learning results based
on new patient inputs over a full breadth of EHR data on a yearly
basis, named Landmark-Boosting. Here, the landmark time
refers to an unbiased reference point (eg, t years since the onset
of DM) at which we want to construct stagewise prediction
models and make dynamic risk predictions using information
collected up to that time [22,23]. The final prediction model is
then an ensemble of individual boosting models trained at each
landmark time apriori.

Methods

Definition of Diabetes
We adopted the Surveillance, Prevention, and Management of
Diabetes Mellitus definition of diabetes in this study. Diabetes
was defined based on the following: (1) the use of
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glucose-lowering medications (insulin or oral hypoglycemic
medications); or (2) level of HbA1c of 6.5% or greater, random
glucose of 200 mg/dL or greater, or fasting glucose of 126
mg/dL on at least two different dates within 2 years; or (3) any
two type 1 and type 2 DM diagnoses been given on 2 different
days within 2 years; or (4) any two distinct types of events
among (1), (2), or (3); and (5) excluding any gestational diabetes
(temporary glucose rise during pregnancy) [24]. DM onset time
was defined as the first occurrence of any events from (1)
through (5).

Definition of Diabetic Kidney Disease
DKD was defined as diabetes with the presence of
microalbuminuria or proteinuria, impaired glomerular filtration
rate (GFR), or both [25,26]. Microalbuminuria was defined as
albumin-to-creatinine ratio (ACR) being 30 mg/g or greater,
and similarly, proteinuria was defined as urine
protein-to-creatinine ratio being 30 mg/g or greater [25,26].
Impaired GFR was defined as the estimated GFR (eGFR), an
age-, gender-, race-adjusted serum creatinine concentration
based on the modification of diet in renal disease equation [27]

being less than 60 mL/min/1.73 m2.

Study Cohort
The study constructed a retrospective cohort using deidentified
EHR and billing data from November 2007 to December 2017

in the University of Kansas Medical Center’s integrated clinical
data repository Healthcare Enterprise Repository for Ontological
Narration (HERON) [28]. The study did not require approval
from the institutional review board because data used met the
deidentification criteria specified in the Health Insurance
Portability and Accountability Act Privacy Rule. The HERON
Data Request Oversight Committee approved the data request.
As shown in Figure 1, a total of 35,779 adult patients with
nongestational DM (age≥18 years) who had at least one valid
eGFR or ACR record at an outpatient encounter were eligible
for this study so that they could be identifiable as DKD present
or not. We excluded patients presenting with any type 1 DM or
cystic fibrosis–related diabetes diagnoses over their observation
period and those who had kidney disease manifestation (eg,
CKD diagnosis, low eGFR, or microalbuminuria) before the
onset of DM. The case group included all DKD patients with
their DKD onset time, or end point, defined as the first time of
their abnormal eGFR or ACR. The control group was defined
as patients with DM whose eGFR values were always above or

equal to 60 mL/min/1.73 m2 and had never had
microalbuminuria, with their end point defined as the last time
of their normal eGFR or ACR. Finally, 14,039 patients were
included in the final cohort with 4785 (34.08%) patients with
DKD.

Figure 1. Study cohort inclusion and exclusion. Note that the counts of exclusions do not necessarily add up to the difference between the initial and
final population, as 1 patient could satisfy multiple exclusion criteria. ACR: albumin-to-creatinine ratio; DKD: diabetic kidney disease; DM: diabetes
mellitus; EGFR: estimated glomerular filtration rate.

JMIR Med Inform 2020 | vol. 8 | iss. 1 | e15510 | p. 3http://medinform.jmir.org/2020/1/e15510/
(page number not for citation purposes)

Song et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Clinical Variable Extraction
According to our data, the heuristic time between 2 adjacent
outpatient eGFR or ACR labs is on average 1 year per patient.
Thus, for a patient i, a sequence of time-stamped examples (ie,
DKD statuses, 1 for DKD and 0 for non-DKD), is identified
based on their last outpatient eGFR or ACR collected annually,

denoted as {yi
t}t

T. Note that a patient may be missing
eGFR/ACR during certain years, and we kept the corresponding
DKD status as NA without any imputation. For example, the
outcome sequence for a patient can be (0, NA, 1), which can
be interpreted, respectively, as “the patient did not have DKD
the same year as DM onset, but cannot determine DKD status
for the second year, and had DKD onset in the third year.”

Each patient was then represented by collecting 15 common
types of clinical observations from HERON [28] (Table 1).
Each category is a mixture of categorical and numerical data
elements. Numeric values were used for laboratory tests and

vital signs, whereas binary indicator variables were used for
categorical features. In addition, we abstracted the Medication
variables at the Semantic Clinical Drug Form or Semantic
Clinical Brand Form level and Diagnoses variables at the
International Classification of Diseases (ICD)-9 or 10 code level
[29]. We further decomposed clinical features into more
meaningful pieces according to (1) different sources of a
diagnosis (ie, billing diagnoses or EHR problem list diagnoses),
(2) different aspects of a medication fact (ie, drug refill or drug
amount), (3) different types of encounters where a procedure
was ordered or performed (ie, inpatient or outpatient), and (4)
different states of an alert (ie, fired or overridden). These data
elements were extracted from our institutional EHR and had
been explicitly incorporated in our data warehouse as an
additional i2b2-specific attribute called modifier [30]. Among
the initial 22,331 distinct features available for our study cohort,
15,707 (70%) were only recorded for <1% of the patients, which
we excluded to reduce data sparsity.

Table 1. Integrated data repository data domain categories.

Patientsb, n (%)Number of eligi-

ble featuresa
Data typeDescriptionsDomain

11,848 (84.39)531BinaryIncludes drug interaction, dose warnings, drug interactions, medication
administration warnings, and best practice alerts

Alerts

5044 (35.93)49BinaryIncludes documented allergies and reactionsAllergy

14,039 (100.00)10Binary/numericBasic demographics such as age, gender, race, etc, as well as their
reachability, and some geographical information

Demographics

12,616 (89.86)1186BinaryOrganized using ICDc-9 and ICD-10 hierarchies. Intelligent Medical
Objects interface terms are grouped to ICD-9 and ICD-10 levels. Diag-
nosis resources are further separated by source of the assignment (eg,

EMRd, professional billing, technical billing, and registry).

Diagnoses

12,178 (86.74)155Binary/numericContains family, social (ie, smoking), and surgical history from the EMR,
as well as engineered features such as number of distinct clinical facts
and clinical fact increments since last collection point

History

11,990 (85.40)685Binary/numericResults of a variety of laboratory tests, including cardiology and micro-
biology findings. Note that the actual laboratory values are used in
modeling, if available.

Laboratory tests

8295 (59.09)1205BinaryIncludes dispensing, administration, prescriptions, as well as home
medication reconciliation at the University of Kansas Hospital grouped
at Semantic Clinical Drug Form or Semantic Clinical Brand Form level.
Medication resources are further separated by types of medication activ-
ity.

Medications

12,460 (88.75)560BinaryIncludes Current Procedural Terminology professional services and in-
patient ICD-9 billing procedure codes.

Procedures

12,460 (88.75)1053BinaryIncludes physician orders for nonmedications, such as culture and
imaging orders from the EMR.

Orders

3619 (25.78)657Binary(formerly University Health System Consortium) Includes both billing
classifications such as Diagnostic Related Groups, comorbidities, dis-
charge placement, length of stay, and national quality metrics.

Vizient (billing)

13,671 (97.38)474Binary/numericIncludes visit types, vital signs collected at the visit, discharge disposition,
and clinical services providing care from both EMR and billing.

Visit details

aThis does not include all distinct concepts from the entire Healthcare Enterprise Repository for Ontological Narration system; it only includes the total
number of distinct features that had ever been recorded for at least one patient in the study cohort.
bThis is the number of patients who have at least one observation during any time window recorded from the corresponding data domain.
cICD: International Classification of Diseases.
dEMR: electronic medical record.
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In Figure 2, we illustrated the feature densities over time across
different data types. Each row corresponds to the average
number of distinct clinical facts per patient for a data type over
5 years before and after DM onset. An evident heterogeneity

of clinical activities before and after DM onset can be observed.
For example, lab frequencies are much higher in the first 2 years
of DM onset, with visits becoming more frequent after DM
onset.

Figure 2. Clinical feature densities across data types. Each row corresponds to the average number of distinct clinical facts per patient for a certain
type of clinical data over 5 years before and after DM onset. The darker the region is, the more distinct facts have been recorded for patients on average
within the corresponding time window. DM: diabetes mellitus; UHC: University HealthSystem Consortium.

In Table 2, we characterized the temporal variations by
estimating the between-observation time, or observation
intensity, for each data type and observed that the
between-patient irregularity of sampling rates is significantly

different from within-patient (P<.001) based on the analysis of
variance tests, except for demographics, suggesting varying
degrees of health care exposure across patients and over time.

Table 2. Clinical observation intensity.

P valueBetween-patient standard deviation (days)Within-patient standard deviation (days)Mean time lapses (days)Data typea

<.0011469367Alerts

<.001214158169Allergy

<.00113310587Diagnoses

<.001872230184History

<.001175122107Laboratory tests

<.0011377070Medications

<.0011329974Procedures

<.0011279581Orders

<.001304189228Vizient

<.001706136Visit details

aDemographics are not included as they are unique at the patient level.

Experimental Design
For the clinical task of predicting DKD risk over the next year,
we first randomly divided the 14,039 patients into training set
(80%) for model development and validation set (20%) for
performance evaluations. To simulate a more realistic clinical
scenario and account for the bias caused by varying degrees of

health care exposure over time, we stepped forward through
patients’ time course and built prediction models at each
landmark time, that is, every full year since DM onset, for
rolling predictions of 1-year DKD risk. As such, individuals
may contribute to or be tested by one or more prediction models,
depending on their eligibility at the landmark time.
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Gradient Boosting Machine
We chose GBMs as the baseline training model, which were
then combined with four different approaches to incorporate
temporal data. GBM is a family of powerful machine-learning
techniques that have shown considerable success in a wide range
of practical applications [31-36]. We chose GBM as the base
learner for its robustness against high dimensionality and
collinearity and also because it embeds feature selection scheme
within the process of model development [37]. To better control
overfitting, we tuned the hyperparameters (depth of trees: 2-10;
learning rate: 0.01-0.1; minimal child weight: 1-10; number of
trees is determined by early stopping, ie, if the holdout area
under the receiver operating curve [AUROC] had not been
improved for 100 rounds, then we stopped adding trees) within
the training set using 10-fold cross-validations.

Missing Values
Missing values were handled in the following fashion: for
categorical data, a value of 0 was set for missing, whereas for
numerical data, a missing value split was always accounted for,
and the best imputation value can be adaptively learned based
on the improvement in training AUROC at each tree node within
the ensemble [38]. For example, if a variable X takes values (0,
1, 2, 3, NA, and NA), where NA stands for missing, the
following two decisions will be made automatically at each split
for each tree: (1) should we split based on missing or not? and
(2) if we split based on values, for example, >1 or ≤0, should
we merge the missing cases with the bin of >1 or ≤0?

Evaluation Metrics
We used AUROC and area under precision recall curve
(AUPRC) to compare the overall prediction performance, with
the latter known to be more robust to imbalanced datasets. In
addition, we characterized calibration by the
observed-to-expected outcome ratio (O:E), which measures
agreement between the predicted and observed risk on average
across observations. By treating testing examples with predicted
probability of outcome in the top 40th percentile as positive
cases, we made fair performance comparisons among different
methods and further examined the model’s ability in detecting
positive vs negative cases by reporting the sensitivity,
specificity, positive predictive values (PPVs), and negative
predictive values.

Temporal Information Incorporation
Figure 3 depicts the four different approaches explored in this
study for handling temporal EHR data: Latest-Value provides
the most straightforward way to aggregate repeatedly measured
variables; Stack-Temporal attempts to differentiate the effects
of the same variable associated with different timestamps; and
Discrete-Survival allows survival analysis model to be created
by using binary classifier, which effectively enhances the

chronical relationship between the predictors and the outcome.
Landmark-Boosting is our proposed model motivated by the
boosting method, which is designed to ensemble identification
trees by learning over time. Each of the approaches is discussed
in detail in the following sections.

Latest-Value Approach
In this approach, we simply collect the last observed value
before each landmark time for each predictor across all time
windows (Figure 3) [16]. The Latest-Value approach is time
agnostic, which implies it only retains the information about
existence of certain predictors at the patient level. For example,
the latest creatinine recorded for patient A can be 1 month ago
but 1 year ago for patient B, which will be treated equally by
this approach.

Stack-Temporal Approach
Given the variables for all time windows T, the Stack-Temporal
approach concatenates the variable from all windows to
represent patient xi using p-dimensional vector, where p=number
of variables x T (Figure 3) [20]. One of the disadvantages of
this approach is that the feature dimensionality increases
proportionally to T, which may lead to worse prediction
performance because of overfitting.

Discrete-Survival Approach
The Discrete-Survival approach simulates a discrete-time
survival framework by separating the full course of patient’s
medical history into L nonoverlapping yearly windows,
L=1,2,...T, with variables from t-1 to predict DKD risk in t
(Figure 3) [21]. This approach assumes that examples from
different time windows are independent of each other even if
they may come from the same patient, which does not explicitly
allow knowledge to be transferred from the previous time
window to the next.

Landmark-Boosting Approach
To build the continuous learning mechanism, we developed a
new method by extending the classical GBM to ensemble
learners over time, that is, from one landmark time to the next
(Figure 3). Specifically, we collected data Dt={(xit , yi)} with
i=1,2,…,Nt at each time window t and tried to solve the
following optimization problem sequentially for all 1≤t≤T,

min Et|t-1[L(y, Ft (xt, Ft-1(xt-1,yt-1)))] (1)

where F represents the prediction function (ie, ensemble of
trees), L represents the loss function (ie, logloss), and Et/t-1 stands
for conditional expectation at timet using observed values at
time t-1. In other words, we used the predicted probability from
time t-1 as the baseline risk and ensembled new learners based
on predictors updated at time t. Figure 4 presents the algorithm
describing the detailed implementation steps.
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Figure 3. Illustration of the temporal approaches, which are Latest-Value, Stack-Temporal, Discrete-Survival, and Landmark-Boosting from top to
bottom. Different colors of circles represent different types of clinical data. Red triangles represent real values of the outcome (ie, diabetic kidney disease
(DKD) or non-diabetic kidney disease in the following prediction window). Blue triangles represent predicted outcome based on clinical features
presented in the previous observation window. Xti denotes all available clinical features collected strictly before landmark time ti (ie, number of full
years since DM onset). yti denotes real label of DKD onset after within the prediction window (ti, ti+1). DM: diabetes mellitus.
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Figure 4. Pseudocode for landmark boosting algorithm. In this experiment, Mt (the number of trees at each iteration is set to 1000), α (learning rate),
and Ω(hMt) (levels of each tree) are hyperparameters tuned by 10-fold cross-validation on the training dataset at each iteration.

Results

Cohort Characteristics
At each landmark time, the eligibility of a patient was
determined by checking if a valid eGFR or ACR reading
presented in the current time window and was neither DKD nor
censored in the previous time windows. As shown in Table 3,

the number of eligible patients dropped over time with an
increasing DKD rate as a mixing result of cases dropping out
or censored from last time.

There is a mild decreasing trend of age and race (white)
proportion over the landmark times. In addition, we compared
such case-mix shifts between training and testing sets and found
no significant differences (Table 4).

Table 3. Case-mix shift over landmark time.

Race (white), n
(%)

Sex (male), n (%)Age (years), mean (SD)DKDb, n (%)Eligible, n (%)Landmark time (number of years since DMa

onset)

7221 (67.45)5229 (48.84)58 (13)1673 (15.63)10,705 (76.25)0

5185 (66.86)3782 (48.77)58 (13)1467 (18.92)7755 (72.44)1

3715 (65.30)2734 (48.06)57 (13)1163 (20.44)5689 (73.36)2

2671 (64.94)2002 (48.67)56 (12)914 (22.22)4113 (72.30)3

1941 (64.57)1480 (49.23)56 (12)740 (25.73)3006 (73.09)4

aDM: diabetes mellitus.
bDKD: diabetic kidney disease.
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Table 4. Case-mix shift in training and testing sets.

P valuebTesting (n=2855)Training (n=11,184)Landmark time (number of years since DMa onset)

Eligible

—c218185240

—158161741

—115245372

—85932543

—64023664

Diabetic kidney disease, n (%)

.19321 (14.72)1352 (15.86)0

.66293 (18.53)1174 (19.02)1

.05211 (18.32)952 (20.98)2

.41182 (21.19)732 (22.50)3

.71154 (24.06)586 (24.77)4

Age (years), mean (SD)

.9857.4 (13.1)57.8 (13.1)0

.9857.3 (12.7)57.6 (12.8)1

>.9956.9 (13.1)57.0 (12.6)2

.9657.1 (12.0)56.4 (12.6)3

.9956.7 (11.7)56.1 (12.3)4

Sex (male), n (%)

.981046 (47.96)4183 (49.07)0

.98759 (48.01)3023 (48.96)1

.95526 (45.66)2208 (48.67)2

.98409 (47.61)1593 (48.96)3

.97307 (47.97)1173 (49.58)4

Race (white), n (%)

.971445 (66.25)5776 (67.76)0

.971040 (65.78)4145 (67.14)1

.97740 (64.24)2975 (65.57)2

.95548 (63.79)2123 (65.24)3

.89400 (62.50)1541 (65.13)4

aDM: diabetes mellitus.
bP value is based on two-sample t test for age and two-sample proportion test for the other comparisons.
cThe two-sample test is not applicable for the corresponding comparison.

Prediction Performance
Overall, the prediction results in Figure 5 showed that the
proposed Landmark-Boosting model outperformed other
temporal data representation methods with respect to all
evaluation metrics. The Stack-Temporal approach always
showed the worst performance, whereas the Latest-Value and
Discrete-Survival approaches demonstrated competitive results.
Only the Landmark-Boosting model had an increasing trend in
AUROC over the years after DM onset, which peaked at =2
with value of 0.83 (95% CI 0.76-0.85). AUPRC showed a

steadily increasing performance of all approaches over time,
whereas the Landmark-Boosting model dominated at each
landmark time and reached 0.75 (95% CI 0.65-0.80) at =4.
Sensitivity declined slightly over time and achieved an optimal
point at t=2 with the Landmark-Boosting model persistently
outperforming others with a sensitivity of 83% (95% CI
79%-88%). In terms of specificity, Landmark-Boosting also
outperformed others at each landmark time and achieved 78%
(95% CI 74%-83%) at landmark time 4. Moreover, PPV
improved over landmark time with the Landmark-Boosting
approach showing the best performance reaching 67% (95% CI
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57%-75%) at landmark time 4 (whereas the second-best model,
Discrete-Survival, achieved 51% [95% CI 44%-57%]),
translating to correct identification of 503 patients with DKD

(whereas the second-best model only identified 383 patients
with DKD).

Figure 5. Performance comparisons among temporal approaches over landmark time. Area under receiver operating curve (AUROC) and area under
the precision-recall curve (PRAUC) are first reported. For fair comparisons, sensitivity, specificity, positive predicted value, and negative predicted
value are calculated by treating testing examples with predicted probability of outcome in the top 40th percentile as positive cases. Here, 95% bootstrap
confidence intervals are reported for each metric at each landmark time (ie, full year since diabetes mellitus [DM] onset). The bootstrap confidence
intervals are generated based on 30 bootstrapped samples, and used 2.5th percentile, 50th percentile, and 97.5th percentile to construct the confidence
intervals for each metric.

Figure 6 presents regional calibration on the original predicted
probability scale grouped into 20 bins. The overpredicted or
underpredicted was defined as “the O:E ratio within a prediction
bin that is significantly below or above 1 (P value<.05),”
whereas the remaining cases were considered calibrated.
Clearly, the Landmark-Boosting approach also dominated all

other temporal methods on calibration, with a dip of
overestimation for the group with moderate risk at t=2. Both
Latest-Value and Stack-Temporal models underestimated the
risk, especially at >2. Discrete-Survival model appeared to
overestimate the risk at early years for the low-risk group but
tended to underestimate the risk in later years.

JMIR Med Inform 2020 | vol. 8 | iss. 1 | e15510 | p. 10http://medinform.jmir.org/2020/1/e15510/
(page number not for citation purposes)

Song et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 6. Calibration comparisons among temporal approaches over landmark time. Regions of calibration across the range of predicted probabilities,
scaled by proportion of observations in each region and shaded by the magnitude of the within-region observed-to-expected ratio (O:E), with green
suggests underprediction (ie, O:E significantly less than 1), and red suggests overprediction (ie, O:E significantly larger than 1). Pearson correlation
coefficients between predicted and actual values over landmark times for each temporal model are included in the table below (the closer the coefficient
is to 1, the better the predicted and actual values are linearly related). DM: diabetes mellitus.

Case Study
To closely examine the prediction change over time, we
extracted a subset of 111 testing cases eligible at all five
landmark times (ie, who had outcome sequence either like
[0,0,0,0,0] or [0,0,0,0,1]) and plotted their predicted probability
percentiles over years (Figure 7). We observed significant
differences in the risk trajectory between patients with and

without DKD depicted by the Landmark-Boosting method, with
a much sharper increase of relative risk for most patients with
DKD after year 1 and more obvious separation of risks over
time. On the other hand, all other three methods suggested stable
or even decreasing relative risk for patients with DKD over
time, without much deviation from patients without DKD, with
only a few exceptions.
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Figure 7. A visualization of predicted diabetic kidney disease (DKD) risk over landmark time. Risk percentiles (ie, normalized risk scores) against
landmark time for a sample of patients. Each red line represents patient who finally progressed to DKD, whereas each green line represents patient who
did not. DM: diabetes mellitus.

Discussion

Principal Findings
The study results suggested that exploiting historical temporal
EHR data in predictive models would significantly improve
prediction performance, especially with our proposed
Landmark-Boosting model. As demonstrated in Figure 5, the
4 different temporal models started with similar predictive power
during the same year of DM onset but started to deviate along
the landmark times. We observed a declining AUROC over
time, with our proposed model being the only exception. One
potential explanation is that the sensitivity of other three models
may be affected by the upward case-mix shift (Table 3), that is,
the models’ ability to detect positive cases was impaired. For
example, the optimal sensitivity of Stack-Temporal model
seemed to top at the beginning but suffered a severe drop over
time without any significant improvement of specificity, which
may be a result of potential overfitting caused by increasing
dimensionality. Within the first 2 years, the Latest-Value model
seemed to yield a competitive sensitivity against the
Landmark-Boosting model while the latter exceled afterward,
indicating the effect of continuous self-correction mechanism
that began to manifest after the second year since DM onset. A
local peak of specificity presenting at year 2 for all four models
implied a change in their interests toward the non-DKDs;
however, only the Landmark-Boosting model kept the balance
by preserving a good sensitivity. In contrast with AUROC,
which has been criticized as being susceptible to class imbalance

[39], AUPRC demonstrated a steady trend of increase over
landmark times for all temporal models, which was mainly
attributable to PPV improvement, indicating that the signals
from DKD samples may have become stronger over time, likely
as a result of increasing DKD prevalence over the landmark
years. Nonetheless, the proposed Landmark-Boosting model
dominated the others and even showed increasing margins along
landmark times. For instance, the Landmark-Boosting model
identified 46, 36, and 120 more true cases than the second-best
model (91, 72, and 135 more than the nontemporal Latest-Value
model) at 2, 3, and 4 years. Moreover, the Landmark-Boosting
model was clearly better than the other models on calibration
that never underestimated the risks (Figure 6), whereas the
Stack-Temporal model also seemed to be well calibrated within
the first 2 years of DM onset.

Clinical Implications
Our proposed temporal model will benefit patients with
longitudinal data, and the longer we follow up, the better the
model can predict the next-year DKD risk by self-adjustment
with respect to both the individual’s medical history and
population shift over time. The study has three important
implications. First, our investigation confirmed that temporal
EHR and billing data carry critical information depicting the
progression of the patient’s condition, and it is important to
choose the appropriate method for incorporating longitudinal
data to promote the predictivity of modern medicine. Second,
by allowing the model to evolve along patients’ landmark times,
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we not only reduced the biases related to a patient’s exposure
within EHR but also simulated a scenario that mirrors the
clinical practice for annual screening. Third, rather than prior
predictive analyses that were mostly population based [40] or
personalized longitudinal models requiring complete patient
history [10], our model sought a middle ground, aiming to weave
together information at both population and individual levels,
for example, the GBM built at each landmark time is an attempt
to fit the concurrent population, whereas the carrying over of
last individual predictions is for the purpose of preserving
personal information.

Our model can continually calculate kidney disease risk for
patients with diabetes with automatic collection of new EHR
data and improve prediction over time. The ability to precisely
stratify patients with diabetes by their renal complication risk
in the coming year would merit a variety of potential
intervention designs: (1) nutritional interventions that
differentiate dietary consultation according to relative DKD
risk, for example, presenting dietary flyers to all patients with
type 2 DM but arranging in-person consultation sessions for
those in the high-risk bin with dietitians knowledgeable in CKD
diet; (2) lifestyle interventions that encourage personalized
health-promoting behaviors such as smoking cessation and
physical activity at different intensity levels based on their DKD
risk; (3) medication management by designing targeted strategies
according to the risk to encourage patient medication
compliance, especially with blood pressure and glucose control
medications, and warn patients and physicians against the use
of nephrotoxic medications, for example, nonsteroidal
anti-inflammatory drugs, unless absolutely necessary for
high-risk patients because patients with diabetes are already at
a higher risk for developing transient decreases in renal function
consistent with acute kidney injury, and nephrotoxic drug
exposure can amplify that risk. Moreover, with the DKD risk
factor discovery framework developed in our previous work
[41], we can further empower the predictive models by
outputting explainable risk factors and quantifying their effects
on DKD specific to subgroups within different risk bins to better
support physicians in designing tailored therapy and
management strategies. More importantly, the
Landmark-Boosting model almost never underestimated the
risk compared with other models, especially among the high-risk
group, which is clinically ideal because timely medication
management can be effective in protecting high-risk patients
from unnecessary harm to the kidney due to the use of
nephrotoxic medications.

Limitations and Future Work
There are several limitations to our work. Disease diagnosis
sequence is not necessarily the same as the disease manifestation

sequence, which may lead to the underestimation of
false-negative rates for DKD in this study. For example, our
exclusion criteria may have excluded patients with DKD who
visited our hospital for their kidney disease but have not had
their diabetes-related information recorded in our EHR yet. In
addition, the current design of our model is not robust against
population drift because of changes in practice over time or
differences in clinical vocabulary and workflow implemented
across institutions. To further investigate the generalizability
of our model, it is necessary to perform external validations and
adequate recalibration based on patients from different sites as
well as over calendar years to capture the general population
shift and practice change.

Although not the focus of this paper, we further examined the
factors that potentially contributed to the superiority of the
Landmark-Boosting model. In Multimedia Appendix 1, we
present the top 50 important features selected by the
Landmark-Boosting model and their varying rankings among
the other temporal models. Only a few important variables were
common across all models (eg, age at DM onset and creatinine).
Most top-ranked factors by the Landmark-Boosting model were
less important in the other three temporal models (eg, previous
visit to cardiovascular clinic, triglycerides, glucose, and
exposure to codeine derivative). Furthermore, we examined the
features that may contribute to improving the performance of
Landmark-Boosting model over time. As shown in Multimedia
Appendix 1, we collected the top 30 important features at year
4 and backtracked their rankings in previous years. For each
feature, we calculated the Pearson correlation coefficient
between ranking and landmark time to determine if the feature
ranking increased/decreased significantly over time. Factors
showing improved predictive power over time included
cumulative clinical fact counts, previous visit to cardiovascular
clinic, systolic blood pressure, triglycerides, and alanine
aminotransferase. Built on these preliminary findings, we plan
to further characterize and evaluate the changing feature
representations over time in our future work.

Conclusions
This study addressed the problem of underutilization of temporal
information in EHR-based predictive models. We proposed a
new approach in leveraging the temporal dynamics in EHR to
improve DKD prediction and validated it against three
state-of-the-art models using the idea of landmark time to
simulate real clinical utility. Experimental results demonstrated
that the proposed Landmark-Boosting model can effectively
capture temporal dynamics in EHR without overfitting and
further improve on patients with a longer follow-up time.

Acknowledgments
YH is supported by the Major Research Plan of the National Natural Science Foundation of China (Key Program, grant number
91746204) and grant award from the Science and Technology Department in Guangdong Province (Major Projects of Advanced
and Key Techniques Innovation, grant number 2017B030308008). The dataset used for analysis described in this study was
obtained from the University of Kansas Medical Center’s HERON clinical data repository, which is supported by institutional
funding and by the University of Kansas Medical Center Clinical and Translational Science Award grant UL1TR002366 from
the National Center for Advancing Translational Sciences.

JMIR Med Inform 2020 | vol. 8 | iss. 1 | e15510 | p. 13http://medinform.jmir.org/2020/1/e15510/
(page number not for citation purposes)

Song et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Conflicts of Interest
None declared.

Multimedia Appendix 1
Variable importance ranking across model and over time.
[DOCX File , 165 KB-Multimedia Appendix 1]

References

1. Kramer H. Screening for kidney disease in adults with diabetes and prediabetes. Curr Opin Nephrol Hypertens 2005
May;14(3):249-252. [doi: 10.1097/01.mnh.0000165891.67878.7f] [Medline: 15821418]

2. Persson F, Rossing P. Diagnosis of diabetic kidney disease: state of the art and future perspective. Kidney Int Suppl (2011)
2018 Jan;8(1):2-7 [FREE Full text] [doi: 10.1016/j.kisu.2017.10.003] [Medline: 30675433]

3. Tuttle KR, Bakris GL, Bilous RW, Chiang JL, de Boer IH, Goldstein-Fuchs J, et al. Diabetic kidney disease: a report from
an ADA Consensus Conference. Diabetes Care 2014 Oct;37(10):2864-2883 [FREE Full text] [doi: 10.2337/dc14-1296]
[Medline: 25249672]

4. Molitch ME, DeFronzo RA, Franz MJ, Keane WF, Mogensen CE, Parving H, American Diabetes Association. Nephropathy
in diabetes. Diabetes Care 2004 Jan;27(Suppl 1):S79-S83. [doi: 10.2337/diacare.27.2007.s79] [Medline: 14693934]

5. Gross JL, de Azevedo MJ, Silveiro SP, Canani LH, Caramori ML, Zelmanovitz T. Diabetic nephropathy: diagnosis,
prevention, and treatment. Diabetes Care 2005 Jan;28(1):164-176. [doi: 10.2337/diacare.28.1.164] [Medline: 15616252]

6. Orphanou K, Stassopoulou A, Keravnou E. Temporal abstraction and temporal Bayesian networks in clinical domains: a
survey. Artif Intell Med 2014 Mar;60(3):133-149. [doi: 10.1016/j.artmed.2013.12.007] [Medline: 24529699]

7. Zhao J, Henriksson A. Learning temporal weights of clinical events using variable importance. BMC Med Inform Decis
Mak 2016 Jul 21;16(Suppl 2):71 [FREE Full text] [doi: 10.1186/s12911-016-0311-6] [Medline: 27459993]

8. Augusto JC. Temporal reasoning for decision support in medicine. Artif Intell Med 2005 Jan;33(1):1-24. [doi:
10.1016/j.artmed.2004.07.006] [Medline: 15617978]

9. Shahar Y. A framework for knowledge-based temporal abstraction. Artif Intell 1997;90(1-2):79-133. [doi:
10.1016/S0004-3702(96)00025-2]

10. Ghosh S, Li J, Cao L, Ramamohanarao K. Septic shock prediction for ICU patients via coupled HMM walking on sequential
contrast patterns. J Biomed Inform 2017 Feb;66:19-31 [FREE Full text] [doi: 10.1016/j.jbi.2016.12.010] [Medline: 28011233]

11. Lin J, Keogh E, Wei L, Lonardi S. Experiencing SAX: a novel symbolic representation of time series. Data Min Knowl
Discov 2007;15(2):107-144. [doi: 10.1007/s10618-007-0064-z]

12. Moskovitch R, Shahar Y. Classification-driven temporal discretization of multivariate time series. Data Min Knowl Discov
2014 Oct 2;29(4):871-913. [doi: 10.1007/s10618-014-0380-z]

13. Rasmy L, Wu Y, Wang N, Geng X, Zheng WJ, Wang F, et al. A study of generalizability of recurrent neural network-based
predictive models for heart failure onset risk using a large and heterogeneous EHR data set. J Biomed Inform 2018
Aug;84:11-16 [FREE Full text] [doi: 10.1016/j.jbi.2018.06.011] [Medline: 29908902]

14. Che ZP, Purushotham S, Cho K, Sontag D, Liu Y. Recurrent neural networks for multivariate time series with missing
values. Sci Rep 2018 Apr 17;8(1):6085 [FREE Full text] [doi: 10.1038/s41598-018-24271-9] [Medline: 29666385]

15. Rajkomar A, Oren E, Chen K, Dai AM, Hajaj N, Hardt M, et al. Scalable and accurate deep learning with electronic health
records. NPJ Digit Med 2018;1:18 [FREE Full text] [doi: 10.1038/s41746-018-0029-1] [Medline: 31304302]

16. Jardine MJ, Hata J, Woodward M, Perkovic V, Ninomiya T, Arima H, ADVANCE Collaborative Group. Prediction of
kidney-related outcomes in patients with type 2 diabetes. Am J Kidney Dis 2012 Nov;60(5):770-778. [doi:
10.1053/j.ajkd.2012.04.025] [Medline: 22694950]

17. Lin C, Li C, Liu C, Lin W, Lin C, Yang S, et al. Development and validation of a risk prediction model for end-stage renal
disease in patients with type 2 diabetes. Sci Rep 2017 Aug 31;7(1):10177 [FREE Full text] [doi: 10.1038/s41598-017-09243-9]
[Medline: 28860599]

18. Hagar Y, Albers D, Pivovarov R, Chase H, Dukic V, Elhadad N. Survival analysis with electronic health record data:
experiments with chronic kidney disease. Stat Anal Data Min 2014;7(5):385-403 [FREE Full text] [doi: 10.1002/sam.11236]

19. Perotte A, Ranganath R, Hirsch JS, Blei D, Elhadad N. Risk prediction for chronic kidney disease progression using
heterogeneous electronic health record data and time series analysis. J Am Med Inform Assoc 2015 Jul;22(4):872-880
[FREE Full text] [doi: 10.1093/jamia/ocv024] [Medline: 25896647]

20. Singh A, Nadkarni G, Gottesman O, Ellis SB, Bottinger EP, Guttag JV. Incorporating temporal EHR data in predictive
models for risk stratification of renal function deterioration. J Biomed Inform 2015 Feb;53:220-228 [FREE Full text] [doi:
10.1016/j.jbi.2014.11.005] [Medline: 25460205]

21. Koyner JL, Carey KA, Edelson DP, Churpek MM. The development of a machine learning inpatient acute kidney injury
prediction model. Crit Care Med 2018 Jul;46(7):1070-1077. [doi: 10.1097/CCM.0000000000003123] [Medline: 29596073]

22. Dafni U. Landmark analysis at the 25-year landmark point. Circ Cardiovasc Qual Outcomes 2011 May;4(3):363-371. [doi:
10.1161/CIRCOUTCOMES.110.957951] [Medline: 21586725]

JMIR Med Inform 2020 | vol. 8 | iss. 1 | e15510 | p. 14http://medinform.jmir.org/2020/1/e15510/
(page number not for citation purposes)

Song et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=medinform_v8i1e15510_app1.docx&filename=8ee7436aa1824f722a6675cd4026ac76.docx
https://jmir.org/api/download?alt_name=medinform_v8i1e15510_app1.docx&filename=8ee7436aa1824f722a6675cd4026ac76.docx
http://dx.doi.org/10.1097/01.mnh.0000165891.67878.7f
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15821418&dopt=Abstract
http://europepmc.org/abstract/MED/30675433
http://dx.doi.org/10.1016/j.kisu.2017.10.003
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30675433&dopt=Abstract
http://europepmc.org/abstract/MED/25249672
http://dx.doi.org/10.2337/dc14-1296
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25249672&dopt=Abstract
http://dx.doi.org/10.2337/diacare.27.2007.s79
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=14693934&dopt=Abstract
http://dx.doi.org/10.2337/diacare.28.1.164
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15616252&dopt=Abstract
http://dx.doi.org/10.1016/j.artmed.2013.12.007
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24529699&dopt=Abstract
https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-016-0311-6
http://dx.doi.org/10.1186/s12911-016-0311-6
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27459993&dopt=Abstract
http://dx.doi.org/10.1016/j.artmed.2004.07.006
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=15617978&dopt=Abstract
http://dx.doi.org/10.1016/S0004-3702(96)00025-2
https://linkinghub.elsevier.com/retrieve/pii/S1532-0464(16)30184-8
http://dx.doi.org/10.1016/j.jbi.2016.12.010
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28011233&dopt=Abstract
http://dx.doi.org/10.1007/s10618-007-0064-z
http://dx.doi.org/10.1007/s10618-014-0380-z
https://linkinghub.elsevier.com/retrieve/pii/S1532-0464(18)30117-5
http://dx.doi.org/10.1016/j.jbi.2018.06.011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29908902&dopt=Abstract
http://dx.doi.org/10.1038/s41598-018-24271-9
http://dx.doi.org/10.1038/s41598-018-24271-9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29666385&dopt=Abstract
http://europepmc.org/abstract/MED/31304302
http://dx.doi.org/10.1038/s41746-018-0029-1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31304302&dopt=Abstract
http://dx.doi.org/10.1053/j.ajkd.2012.04.025
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22694950&dopt=Abstract
http://dx.doi.org/10.1038/s41598-017-09243-9
http://dx.doi.org/10.1038/s41598-017-09243-9
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28860599&dopt=Abstract
https://doi.org/10.1002/sam.11236
http://dx.doi.org/10.1002/sam.11236
http://europepmc.org/abstract/MED/25896647
http://dx.doi.org/10.1093/jamia/ocv024
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25896647&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S1532-0464(14)00235-4
http://dx.doi.org/10.1016/j.jbi.2014.11.005
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25460205&dopt=Abstract
http://dx.doi.org/10.1097/CCM.0000000000003123
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29596073&dopt=Abstract
http://dx.doi.org/10.1161/CIRCOUTCOMES.110.957951
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21586725&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


23. Wells BJ, Chagin KM, Li L, Hu B, Yu C, Kattan MW. Using the landmark method for creating prediction models in large
datasets derived from electronic health records. Health Care Manag Sci 2015 Mar;18(1):86-92. [doi:
10.1007/s10729-014-9281-3] [Medline: 24752545]

24. Nichols GA, Desai J, Lafata JE, Lawrence JM, O'Connor PJ, Pathak RD, SUPREME-DM Study Group. Construction of a
multisite DataLink using electronic health records for the identification, surveillance, prevention, and management of
diabetes mellitus: the SUPREME-DM project. Prev Chronic Dis 2012;9:E110 [FREE Full text] [doi: 10.5888/pcd9.110311]
[Medline: 22677160]

25. KDOQI. KDOQI clinical practice guidelines and clinical practice recommendations for diabetes and chronic kidney disease.
Am J Kidney Dis 2007 Feb;49(2 Suppl 2):S12-154. [doi: 10.1053/j.ajkd.2006.12.005] [Medline: 17276798]

26. American Diabetes Association. Standards of medical care in diabetes-2018 abridged for primary care providers. Clin
Diabetes 2018 Jan;36(1):14-37 [FREE Full text] [doi: 10.2337/cd17-0119] [Medline: 29382975]

27. Levey AS, Coresh J, Greene T, Stevens LA, Zhang YL, Hendriksen S, Chronic Kidney Disease Epidemiology Collaboration.
Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating
glomerular filtration rate. Ann Intern Med 2006 Aug 15;145(4):247-254. [doi: 10.7326/0003-4819-145-4-200608150-00004]
[Medline: 16908915]

28. Waitman LR, Warren JJ, Manos EL, Connolly DW. Expressing observations from electronic medical record flowsheets in
an i2b2 based clinical data repository to support research and quality improvement. AMIA Annu Symp Proc
2011;2011:1454-1463 [FREE Full text] [Medline: 22195209]

29. Murphy SN, Weber G, Mendis M, Gainer V, Chueh HC, Churchill S, et al. Serving the enterprise and beyond with informatics
for integrating biology and the bedside (i2b2). J Am Med Inform Assoc 2010;17(2):124-130 [FREE Full text] [doi:
10.1136/jamia.2009.000893] [Medline: 20190053]

30. Song X, Waitman LR, Hu Y, Yu AS, Robbins D, Liu M. An exploration of ontology-based EMR data abstraction for
diabetic kidney disease prediction. AMIA Jt Summits Transl Sci Proc 2019;2019:704-713 [FREE Full text] [Medline:
31259027]

31. Damle R, Alavi K. The University Healthsystem Consortium clinical database: An emerging resource in colorectal surgery
research. Semin Colon Rectal Surg 2016 Jun;27(2):92-95. [doi: 10.1053/j.scrs.2016.01.006]

32. Hutchinson R, Liu LP, Dietterich TG. Incorporating Boosted Regression Trees Into Ecological Latent Variable Models.
In: Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence. 2011 Presented at: AAAI'11; August
7-11, 2011; San Francisco, California p. 1343-1348.

33. Johnson R, Zhang T. Learning nonlinear functions using regularized greedy forest. IEEE Trans Pattern Anal Mach Intell
2014 May;36(5):942-954. [doi: 10.1109/TPAMI.2013.159] [Medline: 26353228]

34. He K, Li Y, Zhu J, Liu H, Lee JE, Amos CI, et al. Component-wise gradient boosting and false discovery control in survival
analysis with high-dimensional covariates. Bioinformatics 2016 Jan 1;32(1):50-57 [FREE Full text] [doi:
10.1093/bioinformatics/btv517] [Medline: 26382192]

35. Torlay L, Perrone-Bertolotti M, Thomas E, Baciu M. Machine learning-XGBoost analysis of language networks to classify
patients with epilepsy. Brain Inform 2017 Sep;4(3):159-169 [FREE Full text] [doi: 10.1007/s40708-017-0065-7] [Medline:
28434153]

36. Kalousis A, Prados J, Hilario M. Stability of feature selection algorithms: a study on high-dimensional spaces. Knowl Inf
Syst 2007;12(1):95-116. [doi: 10.1007/s10115-006-0040-8]

37. Friedman JH. Greedy function approximation: a gradient boosting machine. Ann Stat 2001 Oct;29(5):1189-1232. [doi:
10.1214/aos/1013203451]

38. Chen T, Guestrin C. XGBoost: A Scalable Tree Boosting System. In: Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. 2016 Presented at: KDD'16; August 13-17, 2016; San Francisco,
CA p. 785-794.

39. Davis J, Goadrich M. The relationship between Precision-Recall and ROC curves. In: Proceedings of the 23rd international
conference on Machine learning. 2006 Presented at: ICML'06; June 25-29, 2006; Pittsburgh, PA p. 233-240. [doi:
10.1145/1143844.1143874]

40. Hood L, Friend SH. Predictive, personalized, preventive, participatory (P4) cancer medicine. Nat Rev Clin Oncol 2011
Mar;8(3):184-187. [doi: 10.1038/nrclinonc.2010.227] [Medline: 21364692]

41. Song X, Waitman LR, Hu Y, Yu AS, Robins D, Liu M. Robust clinical marker identification for diabetic kidney disease
with ensemble feature selection. J Am Med Inform Assoc 2019 Mar 1;26(3):242-253. [doi: 10.1093/jamia/ocy165] [Medline:
30602020]

Abbreviations
ACR: albumin-to-creatinine ratio
AUPRC: area under precision recall curve
AUROC: area under receiver operating curve
CKD: chronic kidney disease

JMIR Med Inform 2020 | vol. 8 | iss. 1 | e15510 | p. 15http://medinform.jmir.org/2020/1/e15510/
(page number not for citation purposes)

Song et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://dx.doi.org/10.1007/s10729-014-9281-3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24752545&dopt=Abstract
https://www.cdc.gov/pcd/issues/2012/11_0311.htm
http://dx.doi.org/10.5888/pcd9.110311
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22677160&dopt=Abstract
http://dx.doi.org/10.1053/j.ajkd.2006.12.005
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17276798&dopt=Abstract
http://europepmc.org/abstract/MED/29382975
http://dx.doi.org/10.2337/cd17-0119
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29382975&dopt=Abstract
http://dx.doi.org/10.7326/0003-4819-145-4-200608150-00004
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16908915&dopt=Abstract
http://europepmc.org/abstract/MED/22195209
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22195209&dopt=Abstract
http://europepmc.org/abstract/MED/20190053
http://dx.doi.org/10.1136/jamia.2009.000893
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20190053&dopt=Abstract
http://europepmc.org/abstract/MED/31259027
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31259027&dopt=Abstract
http://dx.doi.org/10.1053/j.scrs.2016.01.006
http://dx.doi.org/10.1109/TPAMI.2013.159
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26353228&dopt=Abstract
http://europepmc.org/abstract/MED/26382192
http://dx.doi.org/10.1093/bioinformatics/btv517
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26382192&dopt=Abstract
https://link.springer.com/article/10.1007/s40708-017-0065-7
http://dx.doi.org/10.1007/s40708-017-0065-7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28434153&dopt=Abstract
http://dx.doi.org/10.1007/s10115-006-0040-8
http://dx.doi.org/10.1214/aos/1013203451
http://dx.doi.org/10.1145/1143844.1143874
http://dx.doi.org/10.1038/nrclinonc.2010.227
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21364692&dopt=Abstract
http://dx.doi.org/10.1093/jamia/ocy165
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30602020&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


DKD: diabetic kidney disease
DM: diabetes mellitus
eGFR: estimated glomerular filtration rate
EHR: electronic health record
ESRD: end-stage renal disease
GBM: gradient boosting machine
GFR: glomerular filtration rate
HbA1c: glycated hemoglobin
HERON: Healthcare Enterprise Repository for Ontological Narration
PPV: positive predictive value

Edited by G Eysenbach; submitted 16.07.19; peer-reviewed by M Johansson, J op den Buijs; comments to author 08.09.19; revised
version received 31.10.19; accepted 31.10.19; published 31.01.20

Please cite as:
Song X, Waitman LR, Yu ASL, Robbins DC, Hu Y, Liu M
Longitudinal Risk Prediction of Chronic Kidney Disease in Diabetic Patients Using a Temporal-Enhanced Gradient Boosting Machine:
Retrospective Cohort Study
JMIR Med Inform 2020;8(1):e15510
URL: http://medinform.jmir.org/2020/1/e15510/
doi: 10.2196/15510
PMID: 32012067

©Xing Song, Lemuel R Waitman, Alan SL Yu, David C Robbins, Yong Hu, Mei Liu. Originally published in JMIR Medical
Informatics (http://medinform.jmir.org), 31.01.2020. This is an open-access article distributed under the terms of the Creative
Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work, first published in JMIR Medical Informatics, is properly cited. The
complete bibliographic information, a link to the original publication on http://medinform.jmir.org/, as well as this copyright and
license information must be included.

JMIR Med Inform 2020 | vol. 8 | iss. 1 | e15510 | p. 16http://medinform.jmir.org/2020/1/e15510/
(page number not for citation purposes)

Song et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://medinform.jmir.org/2020/1/e15510/
http://dx.doi.org/10.2196/15510
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32012067&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

