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Abstract

Background: Pain volatility is an important factor in chronic pain experience and adaptation. Previously, we employed
machine-learning methods to define and predict pain volatility levels from users of the Manage My Pain app. Reducing the number
of features is important to help increase interpretability of such prediction models. Prediction results also need to be consolidated
from multiple random subsamples to address the class imbalance issue.

Objective: This study aimed to: (1) increase the interpretability of previously developed pain volatility models by identifying
the most important features that distinguish high from low volatility users; and (2) consolidate prediction results from models
derived from multiple random subsamples while addressing the class imbalance issue.

Methods: A total of 132 features were extracted from the first month of app use to develop machine learning–based models for
predicting pain volatility at the sixth month of app use. Three feature selection methods were applied to identify features that
were significantly better predictors than other members of the large features set used for developing the prediction models: (1)
Gini impurity criterion; (2) information gain criterion; and (3) Boruta. We then combined the three groups of important features
determined by these algorithms to produce the final list of important features. Three machine learning methods were then employed
to conduct prediction experiments using the selected important features: (1) logistic regression with ridge estimators; (2) logistic
regression with least absolute shrinkage and selection operator; and (3) random forests. Multiple random under-sampling of the
majority class was conducted to address class imbalance in the dataset. Subsequently, a majority voting approach was employed
to consolidate prediction results from these multiple subsamples. The total number of users included in this study was 879, with
a total number of 391,255 pain records.

Results: A threshold of 1.6 was established using clustering methods to differentiate between 2 classes: low volatility (n=694)
and high volatility (n=185). The overall prediction accuracy is approximately 70% for both random forests and logistic regression
models when using 132 features. Overall, 9 important features were identified using 3 feature selection methods. Of these 9
features, 2 are from the app use category and the other 7 are related to pain statistics. After consolidating models that were
developed using random subsamples by majority voting, logistic regression models performed equally well using 132 or 9 features.
Random forests performed better than logistic regression methods in predicting the high volatility class. The consolidated accuracy

JMIR Med Inform 2019 | vol. 7 | iss. 4 | e15601 | p. 1http://medinform.jmir.org/2019/4/e15601/
(page number not for citation purposes)

Rahman et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

mailto:quazi.rahman@lakeheadu.ca
http://www.w3.org/Style/XSL
http://www.renderx.com/


of random forests does not drop significantly (601/879; 68.4% vs 618/879; 70.3%) when only 9 important features are included
in the prediction model.

Conclusions: We employed feature selection methods to identify important features in predicting future pain volatility. To
address class imbalance, we consolidated models that were developed using multiple random subsamples by majority voting.
Reducing the number of features did not result in a significant decrease in the consolidated prediction accuracy.

(JMIR Med Inform 2019;7(4):e15601) doi: 10.2196/15601
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Introduction

Background
Pain is one of the most prevalent health-related concerns and
is among the top three most frequent reasons for seeking medical
help [1]. Mobile pain apps are transforming how people monitor,
manage, and communicate pain-related information [2], and
scientific publications on methods and results can help both
consumers and health care professionals select the right app to
support their treatment plans. Moreover, appropriate analyses
can provide valuable insights into pain experiences over
long-term periods. We previously conducted two studies [3,4]
using data from a pain management app called Manage My Pain
[5], where data mining and machine learning methods were
employed to understand app usage patterns and define and
predict pain volatility. In the first study [3], we divided users
into five clusters based on their level of engagement with the
app and then applied statistical methods to characterize each
user cluster using six different attributes (eg, gender, age,
number of pain conditions, number of medications, pain severity,
and opioid use).

In the more recent study [4], we developed prediction models
to identify and predict groups of users who reported
improvements or decrements in their pain levels. To facilitate
the development of these models, we addressed the important
issue of identifying the most appropriate statistic to use when
measuring pain severity over time. We proposed a measure of
volatile change that captures fluctuation or variability in pain
scores over time. Pain volatility is an important contributor to
pain experience for people with chronic pain, particularly
because of its linkage with the initiation of opioid addiction
[6,7]. Moreover, pain perception and consequent disability are
heightened under conditions of greater uncertainty and
unpredictability [8], and greater pain volatility is one contributor
to uncertainty and unpredictability. Being able to predict future
pain volatility can assist patient awareness and application of
self-management and appropriate medication use. We defined
pain volatility as the mean of absolute changes between 2
consecutive self-reported pain severity ratings (0-10 numeric
rating scale). We applied clustering methods to divide users
into two classes based on their pain volatility levels: low
volatility and high volatility. We then employed four machine
learning methods to predict users’ pain volatility level at the
sixth month of app use. We developed prediction models where
information related to user demographics, pain, medications,
and app engagement from the first month’s app use were
extracted as features. The total number of features in the

prediction models was 130. Prediction models, trained using
random forests, performed the best, with the accuracy for the
low and the high volatility class reasonably high.

One major drawback of using random forests and similar
black-box methods is the lack of interpretability of the trained
models. This is especially true when the application domain is
medicine and the set of features is large. An interpretable
prediction model should incorporate a way to identify a subset
of important features that are significantly better predictors than
other members of the large features set. This provides health
care providers with a practical model to apply and may result
in increased confidence in the model. Moreover, the important
features may help health care professionals and patients develop
appropriate interventions and pain management plans for the
future.

While developing volatility prediction models, we addressed
the issue of class imbalance because the number of low volatility
users was much higher than that of high volatility users. We
employed random under-sampling methods to make two equal
class sizes. We repeated this under-sampling procedure three
times to ensure the stability of the results. Because we did not
consolidate the result of these multiple models trained on
random subsamples into a single unified model in previous
work, we were intent on consolidation in this research.

Objectives
Accordingly, the present study has two objectives. The first was
to identify important features in the pain volatility prediction
models that have significantly higher predictive capability than
other features. We used two criteria to rank features based on
their importance: Gini impurity and information gain. We also
applied the Boruta feature selection algorithm to identify a
subset of important features. The second objective was to
consolidate prediction results from models trained on multiple
random subsamples of data where the number of users in the
low and high volatility classes was equalized. We employed
the majority voting approach to achieve this. Training and
testing were conducted using standard 5-fold cross validation.
Accuracy for the low and high volatility classes and overall
accuracy were calculated to measure and compare the
performance of individual and consolidated prediction models
developed.
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Methods

Manage My Pain
Manage My Pain [5], developed by ManagingLife, helps people
living with pain to track their pain and functioning daily using
an Android or Apple smartphone app. The central feature of
Manage My Pain is the pain record that enables users to enter
details about their pain experience. Each record contains only
one mandatory item, a rating of pain severity using a slider on
a visual analogue scale. Users have the option of completing
seven more items to describe their pain experience more
comprehensively. The app issues daily reminders and prompts
users to reflect on their daily accomplishments through a daily
reflection. Users can also add pain conditions, gender, age, and
medications to their profile in the app. As of March 1, 2019,
Manage My Pain had 31,700 users and 949,919 pain records.

Procedure
The present study was reviewed and approved by the Research
Ethics Board at York University (Human Participants Review
Committee, Certificate number: e2015-160). The user database
was accessed and downloaded in two separate files (using plain
text format): (1) deidentified user information; and (2) pain
records. The user information file contains the following fields:
user ID, age at date of app registration, gender, self-reported
pain conditions and self-reported medications. The pain record
file contains the following fields: user ID, date, pain severity
rating (0-10), body location(s) of pain, pain type, pain duration,
other associated symptoms, characteristics, relieving factors,
ineffective factors, aggravating factors, and environments of
pain occurrence. All fields in the text files are delimited using
special characters. The data used in this study were downloaded
on March 1, 2019. This study covers pain records entered by
users between January 1, 2013 and March 1, 2019.

Data
The primary dataset includes 949,919 pain records from 31,700
users. The outcome period for predicting pain volatility is the
sixth month of app usage. The sixth month was chosen because
pain lasting at least 6 months meets most generally accepted
definitions of chronic pain [9]. In the present study, as in our
previous work, we used the first month as the predictor period
and we thus collected features from the first month of
engagement with Manage My Pain to predict pain volatility
during the sixth month of Manage My Pain engagement. The
mathematical minimum for calculating pain volatility is 2 pain
severity records. However, to increase the reliability of
prediction results, users with at least 5 pain records in both the
predictor and outcome periods were required for prediction
experiments in this study. The number of users in the primary
dataset meeting this criterion was 879 and there were 391,255
pain records in the dataset. This is an increase of 97 users and
62,185 records over the number of users and pain records used
in our previous study. These 879 users had a mean of 370.09
pain records and a median of 213 pain records.

Pain Volatility Definition and Prediction
We first briefly summarized the methods used in our previous
work [4] to develop volatility prediction models. We defined

pain volatility as the mean of absolute changes between two
consecutive pain severity ratings within each of the two
observation periods. We also applied the k-means clustering
method [10] to divide users into two distinct classes (high
volatility and low volatility) using a threshold on the pain
volatility measure. We extracted 130 features from each user
to develop prediction models. Four machine learning methods
were employed to develop prediction models: (1) logistic
regression with ridge estimators [11]; (2) logistic regression
with least absolute shrinkage and selection operator (LASSO)
[12]; (3) random forests [13]; and (4) support vector machines
(SVM) [14].

The stratified 5-fold cross-validation procedure was used for
training and testing. Initial experiments employing 10-fold
cross-validation produced similar prediction performance. Data
preprocessing was conducted in R (version 3.5.0) (R Core Team,
Vienna, Austria). R package glmnet (version 2.0-16) [15] was
used for training and testing logistic regression models. We
applied the standard Random Forests classification package in
WEKA (version 3.8) (University of Waikato, Hamilton, New
Zealand) [16], using 100 trees in the Random Forests
implementation. The number of features selected at random at

each tree-node was set to , where n is the total number of
features. For SVM implementation, we used the WEKA libsvm,
employing the Gaussian radial basis function kernel.

The following three measures were used to measure prediction
performance:

If we consider users in the low volatility class to be the control
group in our experiments, the accuracy of the low volatility
class and that of the high volatility class are Specificity and
Sensitivity, respectively.

In the present study, the same methods were employed for
defining and predicting pain volatility. We added 2 new features
to the previous list of 130 features: (1) the standard deviation
of the mean of the absolute values of changes between
consecutive pain severity ratings; and (2) the absolute value of
the difference in pain severity ratings between the end point
and the starting point of the trend line of the ratings from the
predictor and outcome periods. These two are added to
complement 2 existing features: (1) the mean of the absolute
values of changes between consecutive pain severity ratings;
and (2) the difference in pain severity ratings between the end
point and the starting point of the trend line of ratings from the
predictor and outcome periods.

Thus, we extracted 132 features from each of the 879 users for
developing prediction models. We divided these 132 features
into 8 broad categories to facilitate discussions on results from
feature selection experiments. The 8 categories are listed below:
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1. Demographic (2 features)
• Gender
• Age

2. App usage (2 features)
• Number of pain records (1 features)
• Number of days with at least one pain record (1

features)

3. Pain statistics (8 features)
• Mean and standard deviation of pain severity ratings

(2 features)
• Mean and standard deviation of absolute values of

changes between consecutive severity ratings (2
features)

• The difference and the absolute value of the difference
between the end point and the starting point of a trend
line fitted through the severity ratings (2 features)

• Pain severity level (1 feature)
• Pain volatility level (1 feature)

4. Pain descriptors (64 features)
• Pain locations (24 features)
• Associated symptoms (20 features)
• Characteristics (13 features)
• Environments (7 features)

5. Factors impacting pain (43 features)
• Aggravating (15 features)
• Alleviating (14 factors) and Ineffective (14 features)

6. Pain conditions (6 features)
7. Medications (5 features)
8. Mental health conditions (2 features)

Feature Selection

Summary
We applied three different methods to identify features important
in predicting pain volatility: the Gini Impurity criterion, the
Information Gain criterion, and Boruta.

Gini Impurity Criterion
The Gini impurity measure [13] is defined as the probability of
an incorrect prediction of a random instance in a dataset,
assuming it is randomly predicted according to the distribution
of the outcomes in the dataset. This criterion is used while
training a Random Forests prediction model [17] to help choose
the best feature for splitting a node of a tree. Once a feature has
been selected to split a node in a tree in the model, the Gini
impurity for the descendants is less than the parent node. The
importance is calculated as the difference between the parent
node’s impurity and the weighted sum of the children’s nodes’
impurity. This is averaged over the whole forest and a higher
mean value indicates higher importance.

Information Gain Criterion
For each feature, the information gain [18] measures how much
information is gained about the outcome when the value of the
feature is obtained. It is calculated as the difference between
the unconditional entropy associated with the outcome and the
conditional entropy of the outcome given the value of a feature.

A higher value of information gain indicates higher importance
in prediction.

Boruta
Boruta [19] is a wrapper feature selection algorithm built around
Random Forests. This method adds randomly permutated copies
of all features to the dataset and trains a Random Forests model
on this extended dataset. For each feature and its copy, an
importance score (mean decreased accuracy) is calculated by
the Random Forests training algorithm. A feature is identified
to be important by the Boruta algorithm if its importance score
is determined to be higher than the best importance score of the
permutated copies through a statistical significance test.
Similarly, a feature is labeled as not important if the importance
is lower than the best importance score of the permutated copies
by a statistically significant margin. This process is repeated
iteratively until all features have been assigned an important or
not important label.

In our prediction experiments, we had five different training
sets as we conducted 5-fold cross validation. For each of these
five training sets, we applied random under-sampling 5 times,
resulting in a total of 25 different training sets. We applied each
of the three described algorithms on all 25 sets and identified
the features that were common across these sets. We then
combined the three groups of important features determined by
the three algorithms to produce the final list of important
features.

Class Imbalance
After defining the low and high volatility classes using the
clustering approach, the number of low volatility users is much
higher than that of high volatility users (approximately 3 times),
as will be detailed in the Results section. In our previous study,
we addressed this class imbalance issue by repeated, random
under-sampling from the majority class to create a balanced
dataset for training prediction models. Under the under-sampling
method, instances are chosen at random from the majority class
to make the size of the two classes equal. We repeated the
under-sampling procedure 3 times to ensure stability of the
results.

In the present study, we repeated the under-sampling 5 times
and employed a majority voting approach to consolidate the
prediction results of these multiple subsamples. In this majority
voting method, we assigned a user to the high volatility class
when the output was predicted to be high volatility by at least
3 models trained on different subsamples.

Results

Prediction Results
We first employed the k-means clustering method on the pain
volatility measures to distinguish between low and high
volatility classes. Figure 1 shows the clustering output. Each of
879 users has two values in the figure: one from the predictor
and one from the outcome period. Low and high volatility
classes are indicated by black and red colors, respectively. The
numerical threshold distinguishing these two classes of users
is approximately 1.6, which is the same as our previous study.
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Figure 1. Clustering pain volatility measures. The total number of data points is 1758. Each user has two data points, one each from the predictor and
outcome periods. Data points with index (x-axis) 1 to 879 are volatility values from the predictor period and 880 to 1758 are from the outcome period.
Black and red colors indicate low and high volatility levels, respectively. The horizontal solid line shows the volatility threshold of 1.6 and the vertical
dotted line indicates the cut-off between the predictor and the outcome period.

We further validated this threshold by reapplying the clustering
algorithm on randomly chosen subsamples of the pain volatility
values.

Using the pain volatility threshold of 1.6 resulted in the
following division of users in the outcome period: 694 had low

volatility and 185 had high volatility. We addressed the class
imbalance issue by random under-sampling (repeating 5 times)
of the majority class (ie, the low volatility class). We then
developed prediction models using logistic regression with ridge
estimators and LASSO, random forests, and SVM. The
prediction results are shown in Table 1 and Figure 2.

Table 1. Prediction performance using all 132 features. Random under-sampling of the majority class (low volatility) was applied and repeated 5 times
to make class sizes equal in the training dataset.

SVMb, n (%)Random forests, n (%)Logistic regression (LASSOa),
n (%)

Logistic regression (ridge),
n (%)

Performance measure, subsamples

Accuracy (low volatility class; n=694)

437 (63.0)473 (68.2)513 (73.9)476 (68.6)Subsample 1

453 (65.3)482 (69.5)520 (74.9)476 (68.6)Subsample 2

465 (67.0)499 (71.9)514 (74.1)492 (70.9)Subsample 3

458 (66.0)491 (70.7)509 (73.3)499 (71.9)Subsample 4

469 (67.6)471 (67.9)512 (73.8)495 (71.3)Subsample 5

Accuracy (high volatility class; n=185)

120 (64.9)129 (69.7)119 (64.3)122 (65.9)Subsample 1

118 (65.3)126 (68.1)115 (62.2)112 (60.5)Subsample 2

117 (63.2)127 (68.6)115 (62.2)117 (63.2)Subsample 3

116 (62.7)128 (69.2)117 (63.2)121 (65.4)Subsample 4

115 (62.2)129 (69.7)121 (65.4)124 (67.0)Subsample 5

Overall accuracy (n=879)

557 (63.4)602 (68.5)632 (71.9)598 (68.0)Subsample 1

571 (65.0)608 (69.2)635 (72.2)588 (66.9)Subsample 2

582 (66.21)626 (71.2)629 (71.6)609 (69.3)Subsample 3

574 (65.3)619 (70.4)626 (71.2)620 (70.5)Subsample 4

584 (66.4)600 (68.3)633 (72.0)619 (70.4)Subsample 5

aLASSO: least absolute shrinkage and selection operator.
bSVM: support vector machines.
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Figure 2. Prediction performance using all 132 features (graphical representation of <xref ref-type="table" rid="table1">Table 1</xref>). LASSO:
least absolute shrinkage and selection operator; SVM: support vector machines.

The overall accuracy is approximately 70% for both random
forests and logistic regression models. Random forests
consistently achieved the same accuracy in predicting both low
and high volatility classes across all subsamples. However,
SVM did not perform well in predicting future pain volatility
levels. Therefore, SVM was not used for features selection
experiments in this study.

Feature Selection Results
We first used the Gini importance criterion to identify important
features in distinguishing high from low volatility users. Mean

decreased Gini was calculated for each training set. In 5-fold
cross validation experiments, we had 5 different training sets.
As we conducted under-sampling 5 times for each training set,
we eventually had 25 training sets for this study. For each of
these 25 training sets, we trained models using random forests
and all 132 features. We then calculated the Gini importance
score for each feature to create a ranking based on importance.
In Figure 3, we show this importance score for the top 20
features of all 25 training sets.

Figure 3. Ranking of importance of features according to Gini importance criterion for all 25 different training sets.
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The importance of features does not decrease significantly
beyond the top 11 features in all the training sets. In the list of
these top 11 features, we identified 8 that were common across
all training sets. They are: (1) the number of days with at least
one pain record; (2) the number of pain records; (3) the mean
pain severity rating; (4) the standard deviation of the pain
severity ratings; (5) the mean of the absolute changes between
consecutive pain ratings; (6) the standard deviation of the
absolute changes between consecutive pain ratings; (7) the
change between the start and end of the trend line fitted through
the severity ratings; and (8) the absolute value of the change
between the start and end of the trend line fitted through the
severity ratings.

The second criterion that we used to calculate the importance
of features was information gain. Figure 4 shows the top 20
features in all 25 training sets and the corresponding information
gain values.

The information gain drops significantly between the sixth and
the ninth feature across different training sets. The following
features are the common ones among the top features as ranked
by the information gain criterion: (1) the number of days with
at least one pain record; (2) the standard deviation of the pain
severity ratings; (3) the mean of the absolute changes between
consecutive pain ratings (pain volatility scores); (4) the standard
deviation of the absolute changes between consecutive pain
ratings; and (5) the pain volatility levels in the predictor period.

Lastly, we applied the Boruta method to identify important
features in each of the 25 training sets. The number of features
considered important by this method varied between 4 and 7
across training sets, with the following 4 common in all sets:

(1) the number of days with at least one pain record; (2) the
standard deviation of the pain severity ratings; (3) the mean of
the absolute changes between consecutive pain ratings; and (4)
the standard deviation of the absolute changes between
consecutive pain ratings.

Combining the features identified to be important by the three
methods leads to the following 9 features: (1) the number of
days with at least one pain record; (2) the number of pain
records; (3) the mean pain severity rating; (4) the standard
deviation of the pain severity ratings; (5) the mean of the
absolute changes between consecutive pain ratings (pain
volatility scores); (6) the standard deviation of the absolute
changes between consecutive pain ratings; (7) the change
between the start and end of the trend line fitted through the
severity ratings; (8) the absolute value of the change between
the start and end of the trend line fitted through the severity
ratings; and (9) the pain volatility levels in the predictor period.

The first 2 features are related to app usage and the other 7
features are from the pain statistics category. We used these 9
features to develop volatility prediction models using random
forests and logistic regression methods. We then applied
majority voting to consolidate the five models developed using
subsamples. The prediction results of the individual and
consolidated models are presented in Table 2. In Table 2,
random under-sampling of the majority class (low volatility)
was applied and repeated 5 times to make class sizes equal in
the training dataset. Although low volatility and overall accuracy
is higher for logistics regression models, random forests perform
better when predicting high volatility class across different
random subsamples.

Figure 4. Ranking of features based on the importance calculated using information gain for all 25 different training sets.
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Table 2. Prediction performance using the 9 selected important features.

Random forests, n (%)Logistic regression (LASSOa), n (%)Logistic regression (ridge), n (%)Performance measure

Accuracy (low volatility class; n=694)

461 (67.4)513 (73.9)510 (73.5)Subsample 1

475 (68.4)516 (74.4)518 (74.6)Subsample 2

474 (68.3)518 (74.6)511 (73.6)Subsample 3

454 (65.4)506 (72.9)511 (73.6)Subsample 4

455 (65.6)506 (72.9)504 (72.6)Subsample 5

476 (68.6)515 (74.2)510 (73.5)Consolidated

Accuracy (high volatility class; n=185)

119 (64.3)122 (65.9)114 (61.6)Subsample 1

129 (69.7)117 (63.2)116 (62.7)Subsample 2

121 (65.4)115 (62.2)114 (61.6)Subsample 3

124 (67.0)121 (65.4)118 (63.8)Subsample 4

123 (66.5)119 (64.3)120 (64.9)Subsample 5

125 (67.6)121 (65.4)115 (62.2)Consolidated

Overall accuracy (n=879)

587 (66.8)635 (72.2)624 (71.0)Subsample 1

604 (68.7)633 (72.0)634 (72.1)Subsample 2

595 (65.8)633 (72.0)625 (71.1)Subsample 3

578 (65.8)627 (71.3)629 (71.6)Subsample 4

578 (65.8)625 (71.1)624 (71.0)Subsample 5

601 (68.4)636 (72.4)625 (71.1)Consolidated

aLASSO: least absolute shrinkage and selection operator.

We applied majority voting to the models developed using all
132 features to compare to the consolidated performances of
the models developed using the 9 selected features. Figure 5
shows the comparative performance of the consolidated models
developed using 132 or 9 features.

Logistic regression–based models perform equally well when
developed using 132 or 9 features. This was expected because
both methods used regularization to reduce the magnitude of
some features’ coefficients. As such, the effect of a redundant
feature was significantly diminished even when all features
were included in the model.

Random forests performed better than logistic regression
methods in predicting the high volatility class. The consolidated
overall accuracy measure did not drop significantly (601/879;
68.4% vs 618/879; 70.3%) when only 9 important features were
included in the prediction model. The consolidated model’s
accuracy was very close to the best performing model
(Subsample 2) and was better than four other models (Subsample
1, Subsample 3, Subsample 4, and Subsample 5). Thus,
consolidating prediction output from models trained on multiple
random subsamples using majority voting performs well when
random forests are employed with all features as well as selected
important features.
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Figure 5. Comparison of consolidated prediction accuracy achieved by all 132 features versus the 9 selected important features. LASSO: least absolute
shrinkage and selection operator.

Figure 7. Standalone Equation 2.

Discussion

Principal Findings
In this study, we identified features with high predictive
capability that could play an important role in predicting pain
volatility in users of Manage My Pain, a digital health app for
recording pain experiences. Initially, 132 features were
extracted, and four methods were used to develop prediction
models (logistic regression with ridge estimators, logistic
regression with LASSO, random forests, and SVM). We used
Gini impurity and information gain criteria to rank features

based on their importance. We also employed the Boruta feature
selection method to identify a subset of important features. We
conducted 5-fold cross validations for training and testing, and
repeated random under-sampling 5 times to address the class
imbalance issue. Thus, there were 25 different training sets, and
for each feature selection method the common important features
across all these 25 sets were identified. Finally, we combined
the feature sets selected by the three methods to create a list of
9 important features. Two of these 9 features are from the app
usage category and the other 7 are from users’ self-reported
pain statistics.
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Majority voting was utilized to consolidate prediction models
trained on the multiple random subsamples to address class
imbalance in the dataset. This method worked effectively in
achieving the prediction performance closest to the best
performing trained model. After feature reduction, the prediction
accuracy achieved by two logistic regression methods did not
decrease. This shows that the regularization technique embedded
in these two methods effectively minimized the impact of
redundant features. The consolidated random forests–based
models using 9 selected features achieved approximately 68%
accuracy for both low and high volatility classes. This is close
to the 70% accuracy achieved when models were developed
using all 132 features. Logistic regression methods performed
better than random forests in predicting the low volatility class
while random forests achieved better accuracy for the high
volatility class.

Major Contributions and Future Work
This study continues two prior studies [3,4] where data mining
and machine learning methods were used to analyze mobile app
users’ pain data. We effectively reduced the set of 132 features
drawn from 8 different categories to 9 important features from
2 categories, extracted over the first month of app use, to predict
pain volatility at the sixth month. We achieved this without
significant reduction in prediction accuracy. Thus, the prediction
models developed can be more effectively interpreted and
applied as reducing the number of features from 130 to 9 with
little loss in accuracy aids interpretability. This is in part because
accuracy and facility of medical decision-making depends on
the quantity and complexity of information [20]. Health care
providers and patients have a limited capacity to absorb and
synthesize a predictor set that contains 130 features, making
interpretability a challenge. Moreover, increasing interpretability
by reducing the important features to a set of 9 may help health
care professionals and patients develop appropriate interventions
and pain management plans for the future.

Moreover, the approach of majority voting performed well in
consolidating models trained on multiple random subsamples
while also addressing the class imbalance issue. Notably,
random forests using the selected 9 important features performed

better in predicting the high volatility class than logistic
regression methods. Correctly predicting future high volatility
patients is desirable in many ways even with a minor reduction
in the accuracy of low volatility prediction. Accordingly,
identifying the important features through the 3 different
methods used in this study and then developing nonlinear
prediction models using random forests is preferable to
developing linear models using logistic regression methods.

In our previous study [4] we noted that mean pain intensity
among those affected by chronic pain tends not to change
significantly over time, given that the pain is, by definition,
chronic. As such, mean changes are not always informative,
whereas volatility, the degree of change in pain the person must
cope with daily, weekly, or hourly, can be helpful in adaptation
and management plans. In this current study, 6/9 of the features
that were deemed important were useful in measuring change
in pain during the predictor period. This variability in pain
during the predictor period strongly predicts future volatility at
six months. However, two other interesting features related to
app use were also significant predictors of pain volatility in our
experiments: the number of pain records and the number of days
when users created pain records. While the number of pain
records may be interpreted as the number of data points in the
predictor period, the significance of the number of days and the
correlation between these 2 features requires additional analysis.
In the future, we shall conduct additional analyses to investigate
the possible multicollinearity among the 9 important features
and shall also analyze the effects of interactions between features
on future pain volatility.

Limitations
It is usually recommended that datasets used in analytics
research are made publicly available for reproducibility and
independent verification. However, ManagingLife, the
developers of Manage My Pain, is a private organization that
serves as the custodian of the data collected by users of Manage
My Pain. To ensure it complies with privacy legislation and its
own internal privacy policy, ManagingLife cannot make its
users’ data public.
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