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Abstract

Background: Delirium is a temporary mental disorder that occasionally affects patients undergoing surgery, especially cardiac
surgery. It is strongly associated with major adverse events, which in turn leads to increased cost and poor outcomes (eg, need
for nursing home due to cognitive impairment, stroke, and death). The ability to foresee patients at risk of delirium will guide
the timely initiation of multimodal preventive interventions, which will aid in reducing the burden and negative consequences
associated with delirium. Several studies have focused on the prediction of delirium. However, the number of studies in cardiac
surgical patients that have used machine learning methods is very limited.

Objective: This study aimed to explore the application of several machine learning predictive models that can pre-emptively
predict delirium in patients undergoing cardiac surgery and compare their performance.

Methods: We investigated a number of machine learning methods to develop models that can predict delirium after cardiac
surgery. A clinical dataset comprising over 5000 actual patients who underwent cardiac surgery in a single center was used to
develop the models using logistic regression, artificial neural networks (ANN), support vector machines (SVM), Bayesian belief
networks (BBN), naïve Bayesian, random forest, and decision trees.

Results: Only 507 out of 5584 patients (11.4%) developed delirium. We addressed the underlying class imbalance, using random
undersampling, in the training dataset. The final prediction performance was validated on a separate test dataset. Owing to the
target class imbalance, several measures were used to evaluate algorithm’s performance for the delirium class on the test dataset.
Out of the selected algorithms, the SVM algorithm had the best F1 score for positive cases, kappa, and positive predictive value
(40.2%, 29.3%, and 29.7%, respectively) with a P=.01, .03, .02, respectively. The ANN had the best receiver-operator area-under
the curve (78.2%; P=.03). The BBN had the best precision-recall area-under the curve for detecting positive cases (30.4%; P=.03).

Conclusions: Although delirium is inherently complex, preventive measures to mitigate its negative effect can be applied
proactively if patients at risk are prospectively identified. Our results highlight 2 important points: (1) addressing class imbalance
on the training dataset will augment machine learning model’s performance in identifying patients likely to develop postoperative
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delirium, and (2) as the prediction of postoperative delirium is difficult because it is multifactorial and has complex pathophysiology,
applying machine learning methods (complex or simple) may improve the prediction by revealing hidden patterns, which will
lead to cost reduction by prevention of complications and will optimize patients’ outcomes.

(JMIR Med Inform 2019;7(4):e14993) doi: 10.2196/14993

KEYWORDS

delirium; cardiac surgery; machine learning; predictive modeling

Introduction

Background
Delirium or acute confusion is a temporary mental disorder that
occurs among hospitalized patients [1]. The Society of Thoracic
Surgeons defines delirium as a mental disturbance marked by
illness, confusion, and cerebral excitement, with a comparatively
short course [2], developing over a short period (usually from
hours to days) and which tends to fluctuate during the day [3].
Delirium symptoms range from a disturbance in consciousness
(eg, coma) to cognitive disorders involving disorientation and
hallucinations. Delirium has a wide range of presentations, from
extremely dangerous agitation to depression-like isolation and,
on the basis of its presentation, it has 3 distinct subclasses—that
is, hyperactive, hypoactive, and mixed [4]. This diversity of
possible presentations, along with its sudden onset and
unpredictable course, makes early detection challenging.
Royston and Cox state that “from the patient’s point of view,
delirium and subsequent cognitive decline are among the most
feared adverse events following surgery” [5]. The diversity of
delirium’s presentation, along with its sudden onset and
unpredictable course, makes its early detection difficult;
however, the ability to predict delirium in patients can play a
fundamental role in initiating preventive measures that can
significantly improve outcomes.

Patients undergoing cardiac surgery are at higher risk of
developing delirium [6-9]. Several studies demonstrated a
negative association between postoperative delirium and an
increased morbidity and mortality [7-10]. Of particular concern
is the strong relationship between delirium and postoperative
infections in cardiac surgery patients [7,9,11].

Given the undesirable consequences of delirium on surgical
outcomes, it is deemed useful to predict the potential incidence
of delirium in patients to pre-emptively administer and plan for
therapeutic interventions to deal with delirium and in turn
improve the surgical outcomes. Typically, predictive models
for delirium use a range of clinical variables, applied to
conventional statistical methods, mainly logistic regression (LR)
[12-14]. The current predictive models for delirium generally
present a simplified linear weighted representation of the
statistical significance of the clinical variables toward the
prediction of delirium [15].

However, we argue that the prediction of delirium is quite
complex given the multiplicity of reasons and confounding
factors contributing to the manifestation of delirium in patients.
Data mining methods can be used to uncover underlying
relationships between variables to develop predictive models
that can categorize the patient population into ones that have

the propensity to develop delirium versus those that are less
likely to develop delirium. Sometimes, these relationships or
patterns cannot be easily explained yet appear to be essential
and have a significant contribution to the improvement of the
predictive model’s performance, even if it is minimal (eg, a
0.01% improvement in a model’s performance means that for
every 1000 patients, 1 extra life is saved or a complication is
prevented or an accident is avoided).

Artificial intelligence in health care, particularly the use of
machine learning methods, provides a purposeful opportunity
to discover such underlying patterns and correlations by mining
the data leading to the learning of data-driven prediction models.
Machine learning models have been successfully applied in
medical data [16-22] to solve a wide range of clinical issues,
such as myocardial infarction [23], atrial fibrillation [24], trauma
[25], breast cancer [26-28], Alzheimer [29-31], cardiac surgery
[22,32], and others [20,21,33-35].

The main objective of this study was to develop predictive
models to pre-emptively predict the manifestation of agitated
delirium in patients after cardiac surgery. Although discovering
underlying hidden patterns is interesting and can be done using
the data mining methods used in this work, this was not our
main objective as the pathophysiology of delirium is considered
multifactorial and complex to start with. The rationale is that if
we can identify based on preoperative clinical parameters which
patients are likely to develop postoperative delirium, then
clinicians can initiate preventive and therapeutic measures in a
timely fashion, to mitigate the undesirable effects of delirium.
Our approach for predictive modeling is to investigate machine
learning methods to learn the prediction models using
retrospective clinical data for around 5500 patients over a 7-year
period who received cardiac surgery at Queen Elizabeth II
Health Sciences Center (QEII HSC) in Halifax, Canada. In this
paper, several machine learning models were explored, including
artificial neural networks (ANN), Bayesian belief networks
(BBN), decision trees (DT), naïve Bayesian (NB), LR, random
forest (RF), and support vector machines (SVM).

Related Work
Although the prevalence of postoperative delirium is low
(10%-25%), it is associated with cognitive deterioration coupled
with a set of complications in surgical patients. The complexity
of delirium comes from its relation to multiple risk factors and
the accompanying uncertainty of its pathophysiology [10,11,36];
this leads to challenges in pre-emptively identifying patients
that are likely to develop postoperative delirium. Several authors
have indicated that delirium is associated with adverse outcomes
and advocate early recognition to ensure preventive measures
can be applied in a timely and effective manner
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[3,7,9,10,13,14,37]. Some of the proposed preventive
interventions that have been shown to reduce the incidence of
delirium in high-risk patients include early mobilization and
use of patient’s personal aids (reading glasses, hearing aid, etc)
[38]. However, the pre-emptive identification of postoperative
delirium is clinically challenging.

A structured PubMed search using the PubMed Advanced
Search Builder with the structure (“delirium”) AND “predictive
model”, will result in only 38 items. If we direct our attention
to all the research published focusing on delirium and cardiac
surgery, query structure (“delirium”) AND “cardiac surgery”,
we will get 485 items. If we combine all the 3 terms, query
structure ((“delirium”) AND “cardiac surgery”) AND “predictive
model”, we will narrow the results down to 4 items.

In recognition of the importance of delirium within the cardiac
surgical population, some have attempted to develop a predictive
model. In this work, we decided to focus on articles that were
published in English and focused on developing a predictive
model for the prediction of delirium after cardiac surgery in
adult patients. The initial search resulted in 38 articles. After
reviewing the articles’ abstracts, we excluded articles that were
not written in English, not about cardiac surgery patients, and
in which no statistical model was developed. We ended up with
16 articles that were available for review. Multimedia Appendix
1 represents a summary of most relevant studies that attempted
to develop a model for the prediction of delirium after cardiac
surgery on adult patients.

For patients who underwent cardiac surgery, Afonso et al [12]
conducted a prospective observational study on 112 consecutive
adult cardiac surgical patients. Patients were evaluated twice
daily for delirium using Richmond Agitation-Sedation Scale
(RASS) and confusion assessment method for the intensive care
unit (CAM-ICU), and the overall incidence of delirium was
34%. Increased age and the surgical procedure duration were
found to be independently associated with postoperative
delirium. Similarly, Bakker et al [13] prospectively enrolled
201 cardiac surgery patients aged 70 years and above. They
found that a low Mini-Mental State Exam score and a higher
preoperative creatinine were independent predictors of
postoperative delirium [13]. Unfortunately, both of these models
were based on a small sample size (<250 patients) and did not
have a validation cohort.

Research in the use of machine learning–based prediction
models to detect delirium is rather limited, especially for cardiac
surgery. Kramer et al [39] developed predictive models using
a large dataset comprising medical and geriatrics patients that
had the diagnosis of delirium in their discharge code and a
control group of randomly selected patients from the same
period who did not develop delirium. The prediction models
performed well with the highest performance achieved by the
RF model (receiver operating characteristic-area under the curve
[ROC-AUC]≈91%). Although they argue that their data were
imbalanced, they used the ROC-AUC as their evaluation metric,
which does not consider the class imbalance. Davoudi et al [40]
applied 7 different machine learning methods on data extracted
from the electronic health (eHealth) record of patients
undergoing major surgery in a large tertiary medical center to

predict delirium; they found an incidence of 3.1%. They were
able to achieve a ROC-AUC ranging from 71% to 86%. Owing
to the class imbalance secondary to the low incidence of
delirium and to improve the model’s performance, they applied
data-level manipulation using over- and undersampling, which
did not result in a significant improvement (ROC-AUC ranging
from 79% to 86%). Lee et al [41] published a nice systematic
review and identified 3 high-quality ICU delirium risk prediction
models: the Katznelson model, the original PRE-DELIRIC
(PREdiction of DELIRium in ICu patients), and the international
recalibrated PRE-DELIRIC model. All of these models used
LR modeling as the primary technique for creating the predictive
model. In the same paper by Lee et al [41], they externally
validated these models on a prospective cohort of 600 adult
patients that underwent cardiac surgery in a single institution.
After updating, recalibrating, and applying decision curve
analysis (DCA) to the models, they concluded that the
recalibrated PRE-DELIRIC risk model is slightly more helpful.
They argue that available models of predicting delirium after
cardiac surgery have only modest accuracy. The current models
are suboptimal for routine clinical use. Corradi et al [42]
developed a predictive model using a large dataset (~78,000
patients) over 3 years in a single center using a good number
of feature set (~128 variables). Their model had very good
accuracy and the ROC-AUC ~90% on their test dataset. They
used the CAM to detect delirium in the intensive care
(CAM-ICU) and regular patient wards. Lee et al [41] conducted
a systematic review in search for prediction models for delirium
specifically designed for cardiac surgery patients. They found
only 3 high-quality models and externally validated them on a
local population of 600 patients. They used several metrics to
evaluate the recalibrated models on the validation cohort
(ROC-AUC, Hosmer–Lemeshow test, Nagelkerke’s R2, Brier
score, and DCA). In their analysis, the recalibrated
PRE-DELIRIC prediction model performed better when
compared with the Katznelson model. However, based on the
DCA and the expected net benefit of both models, there appears
to be limited clinical utility of any of the models.

Methods

Data Sources and Study Population
This single-center retrospective cohort study included patients
who underwent cardiac surgery at the QEII HSC in Halifax,
Canada, between January 2006 and December 2012. Over those
7 years, 7209 patients underwent cardiac surgery. The Maritime
Heart Center (MHC) registry was used to create the dataset.
The MHC registry is a prospectively collected, detailed clinical
database on all cardiac surgical cases performed at the MHC
since March 1995 with more than 20,000 patients and 500
different variables. The final dataset included 5584 patients who
met our inclusion criteria and were successfully discharged
(home, other institution closer to home, nursing home, or
rehabilitation facility).

Delirium in the acquired database is coded as a binary outcome
(Yes/No) and is defined as short-lived mental disturbance
marked by illusions, confusion, or cerebral excitement, requiring
temporary medical and/or physical intervention or a
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consultation, or extending the patient’s hospital stay.
Intraoperative management varied depending on the anesthetist
preferences and the patient clinical status. Although most
patients were managed in a systematic approach based on
standard of care, in the ICU, CAM-ICU was used to trigger
further investigations if delirium was suspected. If delirium had
been suspected after transfer from the ICU, the diagnosis was
confirmed using different diagnostic criteria and screening tools
(eg, Mini-Mental State Exam and CAM).

Full ethics approval was obtained from the Capital Health
Research Ethics Board, in keeping with the Tri-Council Policy
Statement: Ethical Conduct for Research Involving Humans.
Informed consent was waved by the ethics board as the study
did not involve therapeutic interventions or potential risks to
the involved subjects.

Predictive Modeling: Methodology and Methods
Our aim was to develop a prediction model that can identify
patients who are at risk of developing delirium after cardiac
surgery. We investigated relevant machine learning methods,
each with a specific learning algorithm to correlate the patient
presurgery variables with a probabilistic determination of
delirium as per the observations noted in the cardiac surgery
dataset. The rationale for working with multiple machine
learning methods was to determine the effectiveness of the
different methods and then to select the best performing model
that can be used in a clinical setting to predict postoperative
delirium in new patients.

We pursued the standard data mining methodology comprising
6 steps as shown in Multimedia Appendix 2. These steps are as
follows: (1) data acquisition: This step involved the procurement
of the required dataset from the source (in this case from the
MHC), while complying with data access and secondary data
usage protocols; (2) data preprocessing: This step involved the
cleaning of the dataset by removing incomplete records and
next identifying the significant features/variables to develop
the prediction models; (3) modeling strategy set-up: This step
involved the formulation of the modeling strategy in terms of
data partitioning into training dataset (N=4476; 80% of original)
and test dataset (N=1117; 20% of original), data presentation
during training, model evaluation criteria; (4) class imbalance
and training dataset class optimization: This step was
introduced to address the target class imbalance in the original
dataset, so as to minimize the effect of the dominant class on
the performance of the predictive models. We explored data
level techniques, such as over- and undersampling, to address
the class imbalance in the final training dataset, resulting in the
final balanced training dataset (n=1014). (5) model learning:
This step involved setting up different model
configurations—that is, setting up the model parameters for the
candidate machine learning methods—and learning the models
by presenting the preprocessed training data (step 2) as per the
modeling strategy (step 3). As model learning is an exploratory
exercise where different model configurations and multiple
instantiations of the model are pursued to account for the
probabilistic nature of machine learning methods and to avoid
overfitting, 10-fold stratified cross-validation was used; and (6)
model evaluation: In this step, the learnt models are evaluated

(against the predefined criteria) for their effectiveness to predict
delirium using the test data.

Data Preprocessing and Variables Selection
Characteristics of patients who developed delirium
postoperatively were compared with patients who did not. The
mean and standard deviation were used for continuous variables
that had a normal distribution and were compared using the
2-sided t test. Continuous variables that were not normally
distributed were reported using the median and interquartile
range and were compared using the Wilcoxon rank sum test.
Categorical variables were reported as frequencies and

percentages and were analyzed by 2 (Chi-square) or Fisher exact
test as appropriate. The Kruskal-Wallis test was used for ordinal
variables. Next, exploratory data analysis followed by univariate
LR analysis was applied to isolate key perioperative variables
with significant influence on postoperative agitated delirium.

All measures of significance are 2-tailed, and a P value <.05
was considered statistically significant. Statistical analysis and
the assessment of model’s performance was conducted using
the R-Software, version 3.1.0 (R Project for Statistical
Computing) [43]. On the basis of univariate LR analysis, 22
variables were used to generate the machine learning–based
predictive models.

The basic premise of any DT model is that it recursively split
features based on the target variable’s purity. The ultimate goal
of the algorithm is to optimize each split on maximizing the
homogeneity of the grouping at each split (also known as purity)
[44-46]. A node having multiple classes is impure, whereas a
node having only 1 class is pure. One of the useful features of
RF is its ability to identify relevant variables by assigning
variable importance measure to the input variables [44-46].
Variable importance in RF can be measured using either
misclassification error, Gini index, or cross-entropy. Most
machine learning experts discourage the use of misclassification
error in tree-based models because it is not differentiable and,
hence, less amenable to numerical optimization [44,46]. In
addition, cross-entropy and the Gini index are more sensitive
to changes in the node probabilities than the misclassification
rate. Both Gini index and cross-entropy apply probability to
gauge the disorder of grouping by the target variable. However,
they are a bit different, and the results can vary. The Gini index
measures how often a randomly chosen element from the set
would be incorrectly labeled, starting with the assumption that
the node is impure (Gini index=1) and subtracting the
probabilities of the target variable. If the node is composed of
a single class (also known as pure), then the Gini index will be
0. On the other hand, cross-entropy is more computationally
heavy because of the log in the equation. Instead of utilizing
simple probabilities, this method takes the log of the
probabilities (usually the log base 2; any log base can be used,
but it has to be consistent for the sake of comparison between
different tree-based models). The entropy equation uses
logarithms because of many advantageous properties (mainly
the additive property) that can be very beneficial in imbalanced
class distributions and multiclass target variables [44,46]. A
cross-entropy of 1 indicates a highly disorganized node (impure
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node), whereas a cross-entropy of 0 indicates a highly organized
node (pure node).

In RF, each tree in the forest is grown fully (unpruned) using
bootstrap samples of the original dataset, the out-of-bag (OOB)
samples are used as test samples. A random subset of variables
k from the original input variables space K (where k<K) is used
at each node. On the basis of a specific measure (eg, mean
decrease in impurity, Gini index, and mean decrease in
accuracy), variables are selected, and the process is repeated to
the end of the tree. The performance of each tree is computed
over the corresponding OOB sample. For each variable, its
importance is calculated as the mean relative decrease across
the forest of trees performance when the observations of this
variable in the OOB sample are randomly permuted. As the
Waikato Environment for Knowledge Acquisition software
(WEKA) was used in this work to develop the RF model, it
applies the cross-entropy method as its default method for
variables importance ranking.

The Issue of Outcome Class Imbalance
In our dataset, the outcome class distribution is notably
imbalanced (only 11.4% of patients developed delirium).
Typically, classification algorithms tend to predict the majority
class very well but perform poorly on the minority class due to
3 main reasons [47-49]: (1) the goal of minimizing the overall
error (maximize accuracy), to which the minority class
contributes very little; (2) algorithm’s assumption that classes
are balanced; and (3) the assumption that impact of making an
error is equal.

Several data manipulation techniques can be applied to reduce
the impact of this class imbalance: at the data level
(oversampling minority class or undersampling the majority
class) or at the algorithm level (applying different costs to each
class) [47-49]. Although data manipulation methods can improve
a model’s performance, these methods do have some drawbacks
[49]. At the data-level manipulation, oversampling tends to
artificially increase the number of the minority class by creating
modified copies; it tends to overfit the results to the training set
and consequently is likely to poorly generalize. On the other
hand, because undersampling discards some of the majority
class observations, it essentially bears the risk of losing some
potentially important hidden information. Algorithm level
manipulation involves some trial and error and can be sensitive
to training data changes.

In real life, class imbalance cannot be avoided as it is a result
of the nature of the problem and domain (eg, natural disasters
and patient death). In our dataset, oversampling led to overfitting
on the training dataset with suboptimal generalization when
applied to the imbalanced dataset. As postoperative delirium is
linked with a wide range of complications (from a minor
temporary confusion that totally resolves with no sequalae to
the other extreme of sepsis and death), it is very hard to associate
it to a specific cost. As such, given the intent of this study, we
decided to apply random subsampling to balance the training
dataset and have equal representation of outcome classes, thus
optimizing the training dataset for the models. We used the
SpreadSubSample filter in WEKA [46] to produce a random
subsample by undersampling the majority class (which can be

done by either specifying a ratio or the number of observations).
In our case, we specified a ratio of 1:1. By doing so, the filter
generates a new balanced dataset by decreasing the number of
the majority class instances, which reduces the difference
between the minority and the majority classes. Undersampling
is considered an effective method for dealing with class
imbalance [50]. In this approach, a subset of the majority class
is used to learn the model. Many of the majority class examples
are ignored; the training set becomes more balanced, which
makes the training more efficient. The most common type of
undersampling is random majority undersampling (RUS). In
RUS, observations from the majority class are randomly
removed. The final balanced training dataset (N=1014, 1:1
delirium) was used to develop the models.

Training With 10-Fold Cross-Validation and Test
Datasets
In predictive modeling, it is a common practice to separate the
data into training and test dataset. In an effort to avoid
overfitting and overestimating the model’s performance, the
test dataset is only used to evaluate the performance of the
prediction model [44,46,51,52]. The problem of evaluating the
model on the training dataset is that it may exhibit high
prediction ability (overfitting), yet it fails when asked to predict
new observations. To address this issue, cross-validation is
commonly used to (1) estimate the generalizability of an
algorithm and (2) optimize the algorithm performance by
adjusting the parameters [44,46,51-53]. We applied stratified
10-fold cross-validation on the balanced training dataset (50%
delirium). The test dataset was preserved imbalanced to simulate
the real clinical scenario and evaluate the behavior of different
methods. Several metrics were used, that are immune to class
imbalance, to appraise the final model’s performance on the
test dataset [44,46,47,49,51,52].

Results

Development of Prediction Models: Experiments and
Results
We investigated a range of relevant predictive modeling
methods—that is, function-based models (LR, ANN, and SVM),
Bayesian models (NB and BBN), and tree-based models (C4.5
DT and RF)—to generate 7 prediction models (all developed
using the same balanced dataset). All models were generated
and tested using the WEKA software, version 3.7.10 [54]. The
setting of the prediction models and the optimization steps that
were applied in this research are available in Multimedia
Appendix 3. These predictive modeling algorithms were chosen
based on 2 main reasons: (1) their noted effectiveness in solving
medical-related classification problems and (2) a strong
theoretical background that supports predictive modeling via
data classification [11,16,19,20,22,23,25,30,31,39,46,52,55-63].
Experiments were conducted on a MacBook Pro (Apple Inc;
15-inch, 2017) with a 3.1-GHz Intel Core i7 processor and a 16
GB RAM 2133 MHz, running a MacOS High Sierra Version
10.13.
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General Patients’ Characteristics and Important
Variables in the Dataset
Given the above definitions and procedures, agitated delirium
was documented in 11.4% patients (n=661). The majority of
patients were men (74%). Coronary artery bypass graft (CABG)
was the most commonly performed procedure (67%). Almost
56% stayed in the ICU for 24 hours or less. Only 2% suffered
a permanent stroke. Patients who developed postoperative
agitated delirium were older and had a significantly higher
incidence of comorbid diseases. A higher proportion of patients
who developed agitated delirium underwent a combined
procedure (CABG plus valve). The median stay in the
cardiovascular intensive care unit in hours was 4 times higher
for patients who developed agitated delirium postoperatively,
compared with patients who did not (P<.001). Univariate
analysis of in-hospital mortality did not show any statistical
significance (in-hospital mortality: 4.1% vs 3.6%; P=.57; Table
1).

Univariate LR analysis of all pre-, intra-, and postoperative
variables that can contribute to the development of delirium
was performed using appropriate statistical tests in the
R-Software. Univariate LR was applied on all candidate
variables with a P value of less than .05 in univariate LR

analysis to extract odds ratio (OR) with 95% CI generated for
each candidate variable. The candidate variables were ranked
based on the how low is the actual P value, the Akaike
information criterion (lower is better), and impact of variable
on postoperative delirium (signified by the OR). Then WEKA
was used to generate variable importance using the RF model.
WEKA applies the cross-entropy method to assess purity of the
candidate variables with the RF algorithm as its default method,
as it is more sensitive to class imbalance. Variables that appear
higher at the trees are considered more relevant [44,51,52,63].
This is represented by the percentage of decrease of impurity
(or increase of purity) of the final model based on adding this
specific attribute. The number of times the candidate variable
appeared in any location in all of the created tree models through
the RF ensemble model process is also a criterion used in
WEKA. The more times a variable is being selected in the RF
creation process, the higher likelihood of it being important for
the classification of the final target variable. This is also
reflected in the decrease of impurity measure as the more
decrease in impurity, the higher number of times that variable
appears, which can imply its importance. Table 2 displays the
importance of each input variable used in our RF model and its
rank compared with the univariate LR analysis.

JMIR Med Inform 2019 | vol. 7 | iss. 4 | e14993 | p. 6http://medinform.jmir.org/2019/4/e14993/
(page number not for citation purposes)

Mufti et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 1. Patient characteristics (N=4467).

P valueDeliriumPatient characteristics

Yes (n=507)No (n=3960)

Preoperative characteristics

<.001  Age (years) 

72 (10)66 (11)Mean (SD)  

25-9119-95Range  

.36386 (76.1)2942 (74.3)Male gender, n (%) 

.04401 (79)2970 (75)Hypertension, n (%) 

<.001223 (44)1426 (36)Diabetes mellitus, n (%) 

<.001112 (22)436 (11)Cerebrovascular disease, n (%) 

<.001104 (20.5)531 (13.4)Chronic obstructive pulmonary disease, n (%) 

.00249 (9.7)238 (6)Frail, n (%) 

<.001106 (21)436 (11)Ejection fraction <30%, n (%) 

<.001102 (20.1)424 (10.7)Preoperative atrial fibrillation, n (%) 

<.001231 (45.6)717 (18.1)EURO IIa score >5%, n (%) 

<.001Urgency, n (%) 

198 (39)1901 (48)Elective (admitted from home)  

223 (44)1742 (44)Need surgery during hospitalization  

91 (18)317 (8)Urgent/emergent (life threatening)  

<.001Intraoperative characteristics, n (%)

Procedure 

291 (57.4)2744 (69.3)Coronary artery bypass graft  

93 (18.3)622 (15.7)Aortic valve replacement  

20 (4)170 (4.3)Mitral valve surgeryb  

79 (15.6)325 (8.2)CABG+AVRc  

3.4 (17)51 (1.3)CABG+MVd surgery  

<.00159 (11.6)230 (5.8)Repeat sternotomy 

<.001In-hospital morbidity, n (%)

48 (9.5)79 (2)Reintubation 

217 (42.8)1247 (31.5)New postoperative atrial fibrillation 

101 (20)174 (4.4)Pneumonia 

35 (6.9)40 (1)Sepsis 

15 (3)24 (0.6)Deep sternal wound infection 

269 (53)990 (25)Blood products transfusion within 48 hours from surgery 

66 (13)2257 (57)Length of stay after surgery <1 week 

301 (59.4)3513 (88.7)Discharged home 

aEURO II: European System for Cardiac Operative Risk Evaluation II.
bMitral valve replacement or repair.
cCABG+AVR: coronary artery bypass graft + aortic valve replacement.
dCABG+MV: coronary artery bypass graft + mitral valve.
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Table 2. List of candidate variables based on univariate logistic regression analysis compared with random forest.

Random forestUnivariate logistic regression analysisaUnitTypeVariable

RankNodes using
that attribute, n

Decrease of
impurity, %

RankP valueOR (95% CI)

13238431b<.0011.1 (1.03-1.07)YearsContinuousAge (years)

21297213<.0015.8 (3.9-8.6)Yes/noCategoricalMechanical ventilation >24 hours

42544391b<.0010.97 (0.96-0.98)μmol/LContinuousPreoperative creatinine clearance

20590262———dOrdinalLength of stay in the ICUc

————<.0017.6 (4.9-11.9)——>72 hours

————<.0011.7 (0.9-2.8)——24-72 hours

15370286<.0012.9 (1.8-2.5)Yes/noCategoricalProcedure other than isolated CABGe

14452285<.0012.9 (2.0-4.2)Yes/noCategoricalBlood product within 48 hours

185682710.0022.0 (1.3-3.1)Yes/NoCategoricalIntraoperative TEEf

227164117<.0011.07 (1.05-1.09)PercentContinuousEURO IIg score

32766401b<.0010.98 (0.97-0.99)gm/dLContinuousPreoperative hemoglobin

6486357<.0012.3 (1.4-3.6)Yes/noCategoricalPreoperative A-Fibh

12329294———OrdinalTiming of IABPi

————.421.4 (0.6-2.9)——Preoperative

————.0026.8 (1.9-23.1)——Intraoperative

17514278<.0012.1 (1.4-3.0)Yes/noCategoricalIntraoperative inotropes

96893314.021.7 (1.1-2.7)Yes/noCategoricalCOPDj

135162913.011.8 (1.1-2.9)Yes/noCategoricalCVDk

59953916.790.9 (0.6-1.4)Yes/noCategoricalDMl

113813012.032.0 (1.1-3.5)Yes/noCategoricalFrail

2293211b<.0018.2 (2.8-24.3)Yes/noCategoricalHistory of turn down

1089339———OrdinalEFm categories

————.181.4 (0.9-2.1)——30%-50%

————.042.1 (1-4.2)——<30%

77523516.471.2 (0.8-1.9)Yes/noCategoricalGender

168992614———OrdinalAortic stenosis

————.431.4 (0.6-2.8)——Moderate

 ———.011.6 (1.1-2.5)——Severe

198992615———OrdinalMitral insufficiency

————.071.4 (0.9-2.1)——Moderate

————.032.3 (1.02-4.6)——Severe

87463411.0021.8 (1.3-2.8)Yes/noCategoricalPostoperative arrhythmias

aAnalysis was done using univariate logistic regression with a P value of <.05 considered to be statistically significant.
bThese variables were all equally ranked as 1st because they had almost equal odds ratios and a P value of <.001.
cICU: intensive care unit.
dNot applicable.
eCABG: coronary artery bypass graft.
fTEE: transesophageal echo.
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gEURO II: European System for Cardiac Operative Risk Evaluation II.
hA-Fib: atrial fibrillation.
iIABP: intra-aortic balloon pump.
jCOPD: chronic obstructive pulmonary disease.
kCVD: cerebrovascular disease.
lDM: diabetes mellitus.
mEF: ejection fraction.

Prediction Model’s Performance Evaluation
There exist several metrics to evaluate the performance of a
predictive model, whereby predictive accuracy is the most
commonly used metric as it relates a model’s ability to correctly
identify observation assignments, irrespective of the class
distribution. However, in the presence of a noted class imbalance
in the dataset, this measure can be misleading because the
minority class (positive cases in our dataset) has a smaller
influence of the model’s output, and as such the model will tend
to favor the majority class [47]. In our dataset, there is a
significant imbalance of the outcome of interest distribution
(delirium: 11.4% positive cases).

To provide a more robust evaluation of the prediction model’s
performance, in the presence of the class imbalance in our
dataset, we used the evaluation measures of F1 measure,
ROC-AUC, and precision-recall curve area under the curve
(PRC-AUC) [44,46,47,51,52]. The ROC-AUC was primarily
used to assess the classifier’s general performance (model
discrimination=how well the predicted risks distinguish between
patients with and without disease) [64]. The F1 score was
primarily used as the harmonic mean of precision and recall
[46,52]. The F1 score provides the most reliable assessment of
a model’s prediction performance, while considering the
worst-case prediction scenario for a classifier (model
calibration=evaluates the reliability of the estimated risks: if
we predict 10%, on average 10/100 patients should have the
disease) [64].

Sensitivity (recall) is considered a measure of completeness
(the percentage of positive cases that have been correctly
identified as positive). Positive predictive value (precision, PPV)
is considered a measure of exactness (the percentage of cases
labeled by the classifier as positive that are indeed positive)
[46,52]. The PRC-AUC is a useful measure in the presence of
class imbalance, and the outcome of interest is to identify the
minority class [65,66]. The PRC identifies the PPV for each
corresponding value on the sensitivity scale (model calibration).
As the PRC is dependent on the class representation in the
dataset, it provides a simple visual representation of the model’s
performance across the whole spectrum of sensitivities. By
doing so, it can aid in identifying the best model (based on the
trade of being either exact vs complete, ideally optimizing both)
[66]. In addition, the PRC enables comparing models at
predetermined recall thresholds (eg, the best precision at 50%
recall). This adds more fixability in choosing the best model
based on the domain and problem in hand.

As our primary interest was to identify patients who were more
likely to develop delirium (minority class) while accounting for
the class imbalance in the test dataset, we decided to evaluate
the models using the ROC-AUC as a measure of the model
discrimination in conjunction with F1 score and PRC-AUC as
measures of the model calibration. Tables 3 and 4 present the
prediction performance of all prediction models based on the
test data. Figure 1 illustrates the ROC-AUCs and PRC-AUCs
for the developed models.

When comparing the prediction performance using the
ROC-AUC (Figure 1) for the test dataset, it may be noted that
the prediction performance of all the prediction models on the
test dataset is quite similar, except for DT, which was lower.
This indicates that there is no obvious difference in the
discriminative power of the classification models—that is, the
ability of a model to distinguish between positive cases from
negative ones. However, given the class imbalance in our
dataset, this result might not be representative of a model’s true
predictive power; hence, a further examination of the results
was needed to identify the best performing model given the
class imbalance.

As LR was the most commonly used algorithm to predict the
manifestation of postoperative delirium in the medical literature
[8,12,13,40,41,67-74], we developed a multivariate step-wise
LR model that identified 8 variables as significant predictors
of postoperative agitated delirium (Multimedia Appendix 2).
The main purpose of developing the LR model was to give
medical experts, who are not familiar with machine learning
algorithms, an algorithm that they are acquainted with and use
as a comparator.

In our study, for every 100 patients who developed delirium,
the RF model had the best sensitivity and was able to correctly
identify 72 patients (see Tables 3 and 4). The SVM model had
the best PPV (out of 100 patients who were labeled positive by
SVM, 30 were actually positive) and the best accuracy,
specificity, and kappa. The PRC-AUC and F1 scores for SVM
were the best out of all models (29.2% and 40.2%, respectively),
with moderate discrimination (ROC-AUC=77.2 %). We also
examined the relationship between precision (PPV) and recall
(sensitivity) at different thresholds (see Table 5). At 50%
sensitivity (recall), the RF model had the best precision, 37%).
At 75% sensitivity (recall), RF was the best model with a
precision of 25% followed by ANN with a PPV of 24%.
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Table 3. Comparison of model’s performance metrics applied on the balanced training dataset using 10-fold cross-validation and the imbalanced test
dataset to predict delirium after cardiac surgery. Performance metrics: accuracy, sensitivity, specificity, positive predictive value, negative predictive
value, and Cohen kappa. All measures are reported out of 100% with standard deviation in brackets as a measure of variability.

ΔKappaΔNPVcΔPPVbΔSpecificityΔSensitivityΔaAccuracyModel

Dataset: 10-fold cross-validation applied on the balanced training dataset (N=1014, delirium=50%)

ns43.3 (9)−71.7 (7)−71.7 (5)−g71.6 (7)+f71.8 (7)nse71.7 (4.3)ANNd

ns43.1 (9)−71.3 (7)−69.9 (5)−71.2 (7)+72.2 (7)ns71.3 (4.4)BBNh

ns43.3 (8)ns72.6 (9)ns72.9 (5)ns72.9 (9)ns68.1 (7)ns70.1 (4.3)DTi

B44.5 (9)B75.6 (6)B75 (5)B76.7 (7)B69.8 (7)Bk73.3 (4.4)LRj

ns42.9 (8)+79.5 (5)ns74.4 (5)+79.5 (5)ns64.8 (7)ns73.0 (4.2)NBl

ns45.7 (9)−72.8 (7)ns72.1 (4)−71.7 (7)+74.3 (7)ns72.5 (4.4)RFm

ns43.2 (9)+83.1 (5)+77.8 (5)+83.8 (5)−60.2 (8)ns71.3 (4.5)SVMn

Dataset: Imbalanced test dataset (N=1117, delirium=11.4%)

ns22.85 (9)ns94.6 (5)ns24.3 (14)ns72.9 (5)+67.7 (5)ns74.3 (3.2)ANN

ns21.81 (11)ns94.5 (6)ns22.9 (15)−70.8 (9)+68.7 (9)ns74.1 (3.8)BBN

ns24.97 (13)ns94.7 (10)ns25.8 (17)ns75.4 (10)+66.9 (10)ns74.4 (5.4)DT

B22.6 (13)B94.4 (8)B26.5 (16)B77.1 (7)B64.6 (9)B75.6 (4.7)LR

ns21.55 (10)ns94.3 (9)ns23.5 (18)−72.4 (8)ns66.1 (12)−71.7 (3.1)NB

ns24.69 (7)+95.3 (4)+25.2 (8)−72.4 (4)+72.4 (4)ns75.4 (3.4)RF

+29.33 (9)ns94.4 (6)+29.7 (12)+81.1(3.2)ns62.2 (4)+78.9 (2.1)SVM

aChange compared to base model (B).
bPPV: positive predictive value.
cNPV: negative predictive value.
dANN: artificial neural networks.
ens: not a statistically significant change in performance (P≥.05).
fStatistically significant improvement of performance metric (P<.05).
gStatistically significant deterioration of performance metric (P<.05).
hBBN: Bayesian belief networks.
iDT: J48 decision tree.
jLR: logistic regression.
kB: base comparator (reference) algorithm.
lNB: naïve Bayesian.
mRF: random forest.
nSVM: support vector machines.
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Table 4. Comparison of model’s performance metrics applied on the balanced training dataset using 10-fold cross-validation and the imbalanced test
dataset to predict delirium after cardiac surgery. Performance metrics: receiver operator curve-area under the curve, harmonic mean of precision and
recall, and precision-recall curve-area under the curve. All measures are reported out of 100% with standard deviation in brackets as a measure of
variability.

PRC-AUCcF1 scorebROC-AUCaModel

ΔAvgΔNoΔYesΔAvggΔNofΔeYesd

Dataset: 10-fold cross-validation applied on the balanced training dataset (N=1014, delirium=50%)

ns79.3 (5)ns80.1 (5)ns78.5 (5)ns71.7 (5)ns71.7 (5)ns71.7 (5)nsi80.4 (4)ANNh

−76.3 (5)ns77.3 (5)ns75.3 (5)ns69.6 (5)ns69.1 (5)ns70.1 (5)−k77.4 (4)BBNj

−73.8 (5)ns73.8 (5)ns74.4 (5)ns71.7 (4)ns72.4 (4)ns70.9 (4)ns77.2 (4)DTl

B80.4 (5)B81 (5)B79.8 (5)B73.2 (5)B74.2 (5)B72.3 (5)Bn81.4 (4)LRm

ns78.9 (5)ns79.8 (5)ns78.1 (5)ns73 (5)ns73.2 (5)ns72.7 (5)ns79.9 (4)NBo

ns79.9 (5)ns81 (5)ns78.8 (5)ns73.3 (5)ns72.6 (5)ns74.1 (5)ns81.3 (4)RFp

ns80.4 (5)ns80.5 (5)ns80.4 (5)−71.1 (6)ns74.4 (6)−67.2 (6)ns81.1 (5)SVMq

Dataset: Imbalanced test dataset (N=1117, delirium=11.4%)

ns88.7 (9)ns96.2 (9)+r30.4 (9)ns77.1 (9)ns82.4 (9)ns35.8 (9)ns78.2 (6)ANN

ns88.4 (8)ns95.8 (8)+30.7 (8)ns76.6 (8)ns82.9 (8)ns34.3 (8)ns77.3 (6)BBN

ns86.5 (8)ns94.3 (8)ns25.3 (8)ns78.6 (8)ns83.9 (8)ns37.3 (8)−74.6 (7)DT

B88.4 (10)B97.1 (10)B27.1 (10)B79.5 (11)B84.9 (11)B37.6 (11)B77.5 (5)LR

ns88.0 (9)ns95.6 (9)ns28.7 (9)ns76.6 (10)ns81.9 (10)ns34.7 (10)ns75.6 (8)NB

ns88.6 (8)ns96.3 (8)ns28.3 (8)ns77.2 (8)ns82.3 (8)ns37.4 (8)ns78.0 (4)RF

ns88.4 (9)ns96.0 (9)+29.6 (9)+81.9 (7)+87.2 (7)+40.2 (7)ns77.2 (6)SVM

aROC-AUC: receiver operator curve-area under the curve.
bF1 score: harmonic mean of precision and recall.
cPRC-AUC: precision-recall curve-area under the curve.
dYes: positive instances or patients who developed delirium.
eChange compared to base model (B)
fNo: negative instances or patients who did not develop delirium.
gAvg: weighted average measured as the sum of all values in that metric, each weighted according to the number of instances with that particular class
label by multiplying that value by the number of instances in that class, then divided by the total number of instances in the dataset.
hANN: artificial neural networks.
ins: not a statistically significant change in performance (P≥.05).
jBBN: Bayesian belief networks.
kStatistically significant deterioration of performance metric (P<.05).
lDT: J48 decision tree.
mLR: logistic regression.
nB: base comparator (reference) algorithm.
oNB: naïve Bayesian.
pRF: random forest.
qSVM: support vector machines.
rStatistically significant improvement of performance metric (P<.05).
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Figure 1. Receiver-operator curves (ROC) and precision-recall curves (PRC) for the training dataset using 10-fold cross-validation and test datasets.
(A) ROC for training using 10-fold cross-validation. (B) ROC for test dataset. (C) PRC for training using 10-fold cross-validation. (D) PRC for test
dataset. ANN: artificial neural networks; BBN: Bayesian belief networks; DT: J48 decision tree; LR: logistic regression; NB: naïve Bayesian; RF:
random forest, SVM: support vector machines; P:N: positive to negative ratio.
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Table 5. Precision of each model for all datasets at different recall thresholds.

Model precision (%)Recall threshold (%)

SVMgRFfNBeLRdDTcBBNbANNa

Dataset: Training with 10-fold cross-validation

91878588818387~25

83837882817880~50

72727073697071~75

Dataset: Test

36323236314035~25

34373134303334~50

23252023212224~75

aANN: artificial neural networks.
bBBN: Bayesian belief networks.
cDT: J48 decision tree.
dLR: logistic regression.
eNB: naïve Bayesian.
fRF: random forest.
gSVM: support vector machine.

On the basis of our experiments using the PRC-AUC and PRC
analysis, the RF and ANN models demonstrated the ability to
distinguish patients at risk of developing delirium (minority
class) when compared with the other models. ANN is considered
to be a black box as it is difficult to explain, especially to people
who are nonexperts, not familiar with the principles and
motivation behind the ANN algorithm, and do not know how
the algorithm reaches its decision and activation thresholds.
However, major work has been conducted over the last decade
and is still ongoing to enhance the expandability of ANN by
unlocking the black box to allow accountability [75-77].
Numerous techniques have been developed and were
successfully applied [78-80], giving some transparency to the
model and making it more human interpretable.

Discussion

Principal Findings
Patients undergo high-risk interventions with the expectation
of improving their quality of life. It is highly undesirable that
any medical intervention, inadvertently, negatively impacts
their cognitive functions and in turn quality of life, especially
if an adverse outcome is preventable.

With the paradigm shift in health care emphasizing the patient’s
quality of life after an intervention [81], innovative approaches
are needed to both pre-emptively identify and effectively treat
delirium. Given the availability of long-term surgical outcome
data and advance machine learning methods, it is now possible
to investigate the formulation of data-driven prediction models
to pre-emptively identify patients susceptible to postsurgery
delirium. LR-based prediction models to detect delirium have
been developed using patient data from electronic medical
records—in one study advanced text mining has been applied
to abstract relevant data from clinical notes [82], and in another
study attribute-based triggers were used [57]. We contend that

with the availability of large volumes of patient data (before,
during, and after the medical intervention), there are practical
opportunities to develop data-driven prediction models to detect
postoperative delirium in patients. Such artificial
intelligence–based machine learning–based models are quite
capable of identifying hidden yet important relations among
variables and representing them in terms of a mathematical
model that can be applied to classify/predict the output for new
scenario. The artificial intelligence-based machine learning
approach is rather different from the traditional statistical data
analysis approaches; however, recently such methods have been
applied to improve early and precise detection of diseases
[16,21,25,27-29], including the prediction of outcomes after
cardiac surgery [22,32,83].

In our study, we investigated the development of delirium
prediction models using long-term (over 5 years) surgical
outcomes data for over 5000 patients. We developed several
prediction models, while addressing the underlying class
imbalance issue, and compared their performance on an
independent test set. Except for SVM (ROC-AUC=71.7%), the
ROC-AUC of the predictive models was at least 75%, indicating
a good general performance by predicting the correct
classification most of the time [84,85]. Using the F1 score and
the PRC-AUC, which are more sensitive to class imbalance,
we were able to demonstrate that the SVM followed by the BBN
models offered the best prediction performance in correctly
identifying adult patients at risk of developing agitated delirium
after cardiac surgery (F1 score: 40.2 and 34.4 and PRC-AUC:
30.7 and 29.6; respectively).

Our predictive models had a worse performance when compared
with the findings of Kumar et al [39] (ROC-AUC of the RF
model ~91%). Although they argue that their data were
imbalanced, they used the ROC-AUC as their evaluation metric,
which does not consider the class imbalance. On the other hand,
PRC-AUC inherently accounts for class distribution (the
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probability is conditioned on the model estimate of the class
label, which will vary if the model is applied on a population
with different baseline distributions). It is more useful if the
goal is improving the prediction of positive class in an
imbalanced population with known baseline probability (eg,
document retrieval, fraud detection, and medical complications)
[44,46,48,51,66].

Compared with the findings of Corradi et al [42] (ROC-AUC
of the RF model ~91% and PRC-AUC ~61 %), our model was
worse. Although they included a lot of physiological parameters,
they did not include any laboratory parameters. In addition, they
applied the algorithm on all patients within the study period
(medical and surgical). Most of the variables used were
correlated—that is, they were a function of each other (eg, RASS
and mechanical ventilation, RASS score and vasopressors, and
dementia and the Charleston Comorbidity Index)—which likely
impacted the generalizability of the model.

The paper published by Davoudi et al [40] is the only paper that
is closely related to our work as they were specifically
addressing the question of predicting delirium after major
surgery and had a large cohort of patients who underwent
cardiothoracic surgery (6890 patients, 13%). They were able to
achieve an ROC-AUC ranging from 79% to 86%, which was
close to the ROC-AUC we were able to achieve (71.7%-78%).
Unfortunately, it is not clear what type of delirium they were
capturing and the urgency of surgery these patients were
undergoing. Also, only 13% of these patients underwent
cardiothoracic surgery. They mainly relied on the ROC-AUC
to compare the model’s performance, which is insensitive to
the target class imbalance.

Lee et al [41] conducted a unique systematic review in 2017,
addressing the issue of predictive models for discovering
delirium after cardiac surgery. They were only able to identify
3 high-quality models (Katznelson, Original PRE-DELIRIC,
and the recalibrated PRE-DELIRIC). As the original
PRE-DELIRIC was recently externally validated, they externally
validated the Katznelson and recalibrated PRE-DELIRIC model
on a local population dataset of 600 patients. Several metrics
were used to evaluate the model’s discrimination and calibration.
All metrics for recalibrated PRE-DELIRIC model outperformed
the Katznelson model (see Multimedia Appendix 1). However,
these metrics cannot distinguish clinical utility. To identify
clinical utility of these models, they performed DCA to ascertain
the clinical utility of each model. The main advantage of DCA
is that it incorporates preferences (patient or physician)
represented as threshold probability of choosing or denying a
treatment, across a range of probabilities [41]. The net benefit
(the expected benefit of offering or denying a treatment at that
threshold) of each algorithm was evaluated. Based on the DCA
analysis, both models had limited clinical utility, with the
recalibrated PRE-DELIRIC having marginally better
performance at low thresholds between 20% and 40%.
Regrettably, they used already validated models that are based
on LR. They mentioned very limited information about the
validation cohort (such as mean age, gender distribution, and
type of cardiac surgery). In addition, they did not address the
significant class imbalance (delirium=13.8%). Finally, the use
of DCA to evaluate clinical utility of the models is very

innovative but it can be only applied to evaluate models that
were developed by the same algorithm but have different
parameters. Its applicability across different modeling algorithms
is still not clear. One of the essential assumptions of DCA is
that the predicted probability and threshold probability are
independent. In the case of delirium, it would be very difficult
to assert that independence, as delirium is multifactorial, and
there is no clear mechanism to its development. Violating this
assumption might significantly affect the results and
interpretation of the DCA.

To our knowledge, this is the first paper that explicitly attempts
to develop several predictive models using machine learning
methodology and compare their performance for the sole
purpose of proactively predicting agitated delirium in adult
patients undergoing cardiac surgery. A notable aspect of our
work is the use of multiple performance evaluation measures
to evaluate the different facets of a prediction model with respect
to its prediction performance. We demonstrated the importance
of using different metrics when analyzing model’s performance
(eg, F1 score and PRC-AUC) and the importance of visual
analysis of the curves across different probabilities (eg, PRC).
Using a static or single measure, like ROC-AUC or accuracy,
might lead to false assumptions and incorrect decisions,
especially in the presence of class imbalance in the dataset [66].

An important factor in the selection of a prediction model is its
interpretability (clarity) to the users (especially health care
providers) who are particularly keen to know the basis for a
recommendation/decision when it is derived from a
computational model. One of the drawbacks of ANN and SVM
is that they are not easy to explain, that is, how the output was
produced (ie, they are regarded as black box models). This
inability to explain the model and its predictions tends to raise
a degree of skepticism among health care practitioners regarding
the prediction produced [46,52,56]. However, the application
of additional methods to decipher the ANN and SVM models’
decision logic in terms of understandable production rules that
illustrate a correlation between clinical attribute values and the
output class can increase their acceptance and subsequent use
by medical practitioners [75-80]. Other machine learning
methods, such as the BBN model provides a simple but elegant
graphical representation of the problem space that can be
interpreted by health care professionals.

Predicting delirium is a challenging problem, but with a
significant health outcome and system use impact. Given the
complexity of how and why delirium manifests in certain
patients, the ability to correctly identify if not all but even a fair
number of the potential patients who are at risk of developing
delirium will be a significant improvement from the current
state where patients are diagnosed with delirium only after it
starts, and hence, the administration of appropriate interventions
is delayed. To address this challenging problem, we investigated
the application of machine learning methods to predict
postoperative delirium after cardiac surgery. Our methodology
involved addressing the target class imbalance and employing
appropriate evaluation metrics to measure the prediction
performance from a clinical utility perspective. We argue that
with the increased use of eHealth records and auxiliary data
collection tools, the volume of health data being collected is
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reaching the level of big data. This brings relief to the need to
apply advance machine learning techniques to analyze the data
for improved and effective data-driven decision support [86,87]
that would enable timely intervention for negative outcomes
[5,56,87] to improve health outcomes and in turn enhance patient
safety and satisfaction.

Limitations
We recognize that our study has certain limitations. First, as
postoperative complications (including delirium) in our database
are captured as binary outcomes (yes/no) but without a time
stamp, it was hard to determine if agitated delirium was a
secondary phenomenon (eg, because of infection, uncontrolled
pain, and prolonged mechanical ventilation) or because of a
pre-existing medical comorbidity. Second, the prevalence of
agitated delirium was only 11.4%. This low representation is
most likely because of the definition of delirium in the source
database (only agitated subtype). This can potentially limit the
ability to generalize the developed models to other types of
delirium [10,11]. Third, there exist more advance machine
learning software than what were available in WEKA, but we
chose WEKA because of its open source, flexibility, and ease
of use [54]; and finally, the study is based on a retrospective
design and hence may suffer from the pitfalls associated with
such a design.

Clinical Equipoise and Key Messages
The key messages of this paper are as follows:

• From a clinical standpoint:
• Patients undergoing cardiovascular surgical procedures

are at higher risk of developing agitated delirium due
to several factors, including surgical complexity,
comorbidities, and age [7,8].

• Preventing delirium should be the goal, especially if
patients at risk were identified. This will mitigate its
negative sequalae and improve the patient’s quality of
life. Some of the proposed preventive interventions
that have been shown to reduce the incidence of
delirium in high-risk patients include early
mobilization, use of patient’s personal aids (reading
glasses, hearing aid, etc), pharmacological interventions
(the use of less sedatives and addressing pain), and
improving sleep environment especially in the intensive
care [38,88-91].

• From a predictive modeling perspective:
• Addressing class imbalance on the training dataset (a

common feature of medical datasets) could enhance
the machine learning model’s performance in
identifying patients likely to develop postoperative
delirium.

• Keeping an open mind and exploring different modeling
methodologies will enable the selection of the most
appropriate model that can generate the best results.

• The PRC offers a more intuitive and direct measure of
the model performance that is representative of its true
performance, especially in the presence of class
imbalance.

Conclusions and Future Research
Postoperative agitated delirium is associated with major
morbidity that impacts the patient postoperative recovery.
Cardiac surgery patients are at high risk of developing
postoperative delirium. To improve health outcomes of cardiac
surgery, the current approach to address the effects of delirium
is a preventive program of care [88-91], such as ABCDE, which
involves awakening and breathing coordination for liberation
from sedation and mechanical ventilation, choosing sedatives
that are less likely to increase risk of delirium, delirium
management, and finally, early mobility and exercise [36]. As
much as the ABCDE approach provides a road map of how to
manage delirium, it does not provide mechanisms to identify
patients at risk of developing delirium. Hence, the ABCDE
approach serves as an after-the-event management strategy,
while leaving a gap in terms of a proactive prevention strategy
for delirium. Our ability to predict delirium in patients, and in
turn proactively administer therapeutic and behavioral therapies
to mitigate the negative effects of delirium, will lead to
significant improvements in health outcomes, patient satisfaction
and quality of life, and health system cost saving.

In this study, we pursued the development of prediction models
using preoperative clinical data to establish a mapping between
the patient’s preoperative clinical variables and the onset of
postoperative delirium. We investigated machine learning
methods to develop a viable postoperative delirium prediction
model which can be operationalized in a clinical setting as a
delirium screening tool to proactively identify patients at risk
of developing postcardiac surgery agitated delirium. We posit
that the use and operationalization of delirium predictive model
can significantly reduce the incidence of delirium by enabling
the administration of preventive measures in a timely manner.
In this paper, we presented work detailing the development of
data-driven delirium prediction models with a reasonable
accuracy. Furthermore, the work contributes 3 findings that are
useful for future efforts to develop advanced delirium prediction
models—that is, (1) addressing class imbalance on the training
dataset will enhance the machine learning model’s performance
in identifying patients likely to develop postoperative delirium,
(2) when evaluating the model’s performance, selecting
unsuitable measures can influence model interpretation and its
utility, and (3) the PRC offers a more intuitive and direct
measure of the model’s performance that is representative of
its true performance, especially in the presence of class
imbalance.

In our future research, we will attempt to apply feature extraction
to identify key features to enhance the model’s performance.
At the same time, we will attempt to isolate modifiable features
that are clinically relevant so that personalized interventions
can be started in a timely fashion. We will also attempt to apply
evolutionary computations to optimize classifiers parameters.
Another interesting application is the use of deep learning
methods to create new features or feature sets to boost the
model’s performance and accuracy.

In conclusion, we argue that any improvement in our ability to
predict delirium using prediction models, even if numerically
small, is of consequential clinical significance—this situation
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is like 2 drugs that have the same treatment profile, but one drug
has fewer side effects, and hence, the ability to precisely select
the right drug has an impact on patient safety. When dealing
with complex medical problems, such as delirium, we posit that
the application of advanced machine learning methods might

actually improve disease prediction capabilities which in turn
will enhance opportunities for preventive, personalized, and
precise medical interventions that would improve the patient’s
quality of life after surgery.
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