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Abstract

Background: Named entity recognition (NER) is a key step in clinical natural language processing (NLP). Traditionally,
rule-based systems leverage prior knowledge to define rules to identify named entities. Recently, deep learning–based NER
systems have become more and more popular. Contextualized word embedding, as a new type of representation of the word, has
been proposed to dynamically capture word sense using context information and has proven successful in many deep learning–based
systems in either general domain or medical domain. However, there are very few studies that investigate the effects of combining
multiple contextualized embeddings and prior knowledge on the clinical NER task.

Objective: This study aims to improve the performance of NER in clinical text by combining multiple contextual embeddings
and prior knowledge.

Methods: In this study, we investigate the effects of combining multiple contextualized word embeddings with classic word
embedding in deep neural networks to predict named entities in clinical text. We also investigate whether using a semantic lexicon
could further improve the performance of the clinical NER system.

Results: By combining contextualized embeddings such as ELMo and Flair, our system achieves the F-1 score of 87.30% when
only training based on a portion of the 2010 Informatics for Integrating Biology and the Bedside NER task dataset. After
incorporating the medical lexicon into the word embedding, the F-1 score was further increased to 87.44%. Another finding was
that our system still could achieve an F-1 score of 85.36% when the size of the training data was reduced to 40%.

Conclusions: Combined contextualized embedding could be beneficial for the clinical NER task. Moreover, the semantic lexicon
could be used to further improve the performance of the clinical NER system.

(JMIR Med Inform 2019;7(4):e14850) doi: 10.2196/14850
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Introduction

History of Clinical Named Entity Recognition
Clinical named entity recognition (NER), an important clinical
natural language processing (NLP) task, has been explored for
several decades. In the early stage, most NER systems leverage
rules and dictionaries to represent linguistic features and domain
knowledge to identify clinical entities, such as MedLEE [1],
SymText/MPlus [2,3], MetaMap [4], KnowledgeMap [5],
cTAKES [6], and HiTEX [7]. To promote the development of

machine learning–based system, many publicly available corpora
have been developed by organizers of some clinical NLP
challenges such as the Informatics for Integrating Biology and
the Bedside (i2b2) 2009 [8], 2010 [9-13], 2012 [14-18], 2014
[19-23], ShARe/CLEF eHealth Evaluation Lab 2013 dataset
[24], and Semantic Evaluation 2014 task 7 [25], 2015 task 6
[26], 2015 task 14 [27], and 2016 task 12 [28] datasets. Many
machine learning–based clinical NER systems have been
proposed, and they greatly improved performance compared
with the early rule-based systems [13,29,30]. Most systems are
implemented based on two types of supervised machine learning
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algorithms: (1) classification algorithms such as support vector
machines (SVMs) and (2) sequence labeling algorithms such
as conditional random fields (CRFs), hidden Markov models
(HMMs), and structural support vector machines (SSVMs).
Among all of the algorithms, CRFs play the leading roles due
to the advantage of the sequence labeling algorithms over
classification algorithms in considering context information
when making the prediction; CRFs, as one type of discriminative
model, tend to achieve better performance for the same source
of testing data compared with generative model-based
algorithms such as HMMs. Even though CRFs have achieved
a huge success in the clinical NER area, they have some obvious
limitations: CRF-based systems lie in manually crafted features,
which are time consuming, and their ability to capture context
in a large window is limited.

Deep Neural Network–Based Named Entity
Recognition Algorithms
In recent years, deep neural network–based NER algorithms
have been extensively studied, and many deep learning–based
clinical NER systems have been proposed. They have an obvious
advantage over traditional machine learning algorithms since
they do not require feature engineering, which is the most
difficult part of designing machine learning–based systems.
They also improve the ability to leverage the context

information. Initially, word embedding [31] is proposed as a
method to represent the word in a continuous way to better
support neural network structure. Then several new neural
network structures including recurrent neural networks (RNNs)
and long short-term memory (LSTM) [32] have been introduced
to better represent sequence-based input and overcome long-term
dependency issues. Recently, contextual word representations
generated from pretrained bidirectional language models
(biLMs) have been shown to significantly improve the
performance of state-of-the-art NER systems [33].

In biLMs, the language model (LM) can be described as: given
a sequence of N tokens, (t1, t2, ..., tN), the probability of token
tk can be calculated given the history (t1, ..., tk–1), and the
sequence probability can be computed as seen in Figure 1.

Recent neural LMs usually include one layer of token input,
which is represented by word embedding or a CNN over
characters, followed by L layers of forward LSTMs. On the top
layer, the SoftMax layer is added to generate a prediction score
for the next token [33]. The biLM combines two such neural
LMs: the forward LM and backward LM; the backward LM is
similar to the forward LM, except it runs over the reverse
sequence. As a whole, the biLM tries to maximize the
log-likelihood of the forward and backward directions as seen
in Figure 2.

Figure 1. Sequence probability in bidirectional language models.

Figure 2. Log-likelihood of the forward and backward directions language models.

Where θx represents the token representation layer, θs represents

the Softmax layer, and LSTM and LSTM represent the forward
and backward directions of the LSTM layer.

In 2017, Peters et al [34] introduced a sequence tagger called
TagLM that combines pretrained word embeddings and biLM
embeddings as the representation of the word to improve the
performance of the NER system. Since the output of each layer
of the biLM represents a different type of contextual information
[35], Peters et al [33] proposed another embedding, a deep
contexualized word representation, ELMo, by concatenating
all the biLM layer outputs into the biLM embedding with a
weighted average pooling operation. The ELMo embedding
adds CNN and highway networks over the character for each
token as the input. ELMo has been proven to enhance the

performance of different NLP tasks such as semantic role
labeling and question answering [33].

Similar to Peters’ELMo, Akbik et al [36] introduced contextual
string embeddings for sequence labeling, which leverages neural
character-level language modeling to generate a contextualized
embedding for each word input within a sentence. The principle
of the character-level LM is that it is the same as biLMs except
that it runs on the sequences of characters instead of tokens.
Figure 3 shows the architecture of extracting a contextual string
embedding for the word “hypotensive” in a sentence. We can
see that instead of generating a fixed representation of the
embedding for each word, the embedding of each token is
composed of pretrained character embeddings from surrounding
text, meaning the same token has dynamic representation
depending on its context.
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Figure 3. Architecture of extracting a contextual string embedding.

Deep Neural Network–Based Clinical Named Entity
Recognition Systems
In the clinical domain, researchers investigated the performance
of clinical NER tasks on various types of deep neural network
structures. In 2015, researchers showed it is beneficial to use
the large clinical corpus to generate word embeddings for
clinical NER systems, and they comparatively investigated the
different ways of generating word embeddings in the clinical
domain [37]. In 2017, Wu et al [38] produced state-of-the-art
results on the i2b2 2010 NER task dataset by employing the
LSTM-CRF structure. Liu et al [39] investigated the effects of
two types of character word embeddings on LSTM-based
systems on multiple i2b2/Veterans Administration (VA) NER
task datasets. In 2018, Zhu et al [40] employed a contextualized
LM embedding on clinical data and boosted the state-of-the-art
performance by 3.4% on the i2b2/VA 2010 NER dataset. The
above studies show that, with the development of methods in
text representation learning, especially contextual word
embedding, more and more hidden knowledge can be learned
from a large unannotated clinical corpus, which is beneficial
for clinical NER tasks. According to the study by Peters et al
[35], contextual word representations derived from pretrained
biLMs can learn different levels of information that vary with
the depth of the network, from local syntactic information to
long-range dependent semantic information. Even without
leveraging traditional domain knowledge such as lexicon and
ontology, deep learning–based NER systems can achieve better
performance than traditional machine learning–based systems.

Besides using pretrained representation from large unlabeled
corpora, researchers started to integrate prior knowledge into
deep learning frameworks to improve the performance of the
NER system. For example, in the general domain, Yu and
Dredze [41] created a semantic word embedding based on
WordNet and evaluated the performance on language modeling,
semantic similarity, and human judgment prediction. In another
example, Weston et al [42] leveraged a CNN to generate a
semantic embedding based on hashtags to improve the
performance of the document recommendation task. In the

clinical domain, Wu et al [43] compared two types of methods
to inject medical knowledge into deep learning–based clinical
NER solutions and found that the RNN-based system combining
medical knowledge as embeddings achieved the best
performance on the i2b2 2010 dataset. In 2019, Wang et al [44]
explored two different architectures that extend the bidirectional
LSTM (biLSTM) neural network and five different feature
representation schemes to incorporate the medical dictionaries.
In addition, other studies also use prior knowledge to generate
embeddings [45-49].

To date, no detailed analysis has been published to investigate
the value of combining different types of word embeddings and
prior knowledge for clinical NER. In this study, we made the
following contributions: (1) we proposed an innovative method
to combine two types of contextualized embeddings to study
their effects on the clinical NLP challenge dataset, (2) we
incorporated prior knowledge from semantic resources such as
medical lexicon to evaluate if it could further improve the
performance of the clinical NER system, and (3) we conducted
a thorough evaluation on our models with different sizes of data
to gain knowledge on how much data are needed to train a
high-performance clinical NER system.

Methods

Datasets
For this study, we used two datasets, the 2010 i2b2/VA concept
extraction track dataset and the Medical Information Mart for
Intensive Care III (MIMIC-III) corpus. The 2010 i2b2/VA
challenge dataset is annotated with named entities, while the
MIMIC-III corpus is unannotated data.

2010 i2b2/VA Concept Extraction Track Dataset
The goal of the 2010 i2b2/VA concept extraction task is to
identify three types of clinical named entities including problem,
treatment, and test from clinical notes. The original dataset
includes 349 notes in the training set and 477 notes in the testing
set, which include discharge summaries and progress notes from
three institutions: Partners HealthCare, Beth Israel Deaconess
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Medical Center, and University of Pittsburgh Medical Center.
Since the University of Pittsburgh Medical Center’s data have
been removed from the original data set, the portion of discharge
summaries that is available contains 170 notes for training and
256 for testing. In total, the training set contains 16,523 concepts
including 7073 problems, 4844 treatments, and 4606 tests. The
test set contains 31,161 concepts including 12,592 problems,
9344 treatments, and 9225 tests.

Medical Information Mart for Intensive Care III Corpus
The MIMIC-III corpus [50] is from MIMIC-III database, which
is a large, freely available de-identified health-related dataset
that integrates de-identified, comprehensive clinical data of
patients admitted to the Beth Israel Deaconess Medical Center
in Boston, Massachusetts.

The dataset comprises 2,083,180 notes from 15 different note
types including “rehab services,” “case management,” “general,”
“discharge summary,” “consult,” “radiology,”
“electrocardiography,” “nutrition,” “social work,” “pharmacy,”
“echocardiography,” “physician,” “nursing,” “nursing/other,”
and “respiratory.”

Embedding Generation
In order to fit our text input into the deep neural network
structure, we generated three types of embeddings: classic word
embeddings, (2) contextualized LM–based word embeddings,
and semantic word embeddings.

Training Classic Word Embeddings
We generated two types of word embeddings based on the
MIMIC-III corpus and a medical lexicon: MIMIC-III
corpus-based embeddings and tagged MIMIC-III corpus-based
embeddings. We adopted the Word2Vec implementation
database from Github [51] to train word embeddings based on
the MIMIC-III corpus. We used a continuous bag-of-words
architecture with negative sampling. In accordance with the
results from the study by Xu et al [52], we set the dimension of
embedding as 50.

Training Contextual Language Model–Based
Embeddings
Besides the word embeddings, we employed two recently
proposed methods to generate contextual LM-based embeddings:
ELMo embeddings and (2) contextual string embeddings for
sequence labeling (Flair).

Training ELMo Embeddings
We followed the method introduced by Zhu et al [40] that uses
a partial MIMIC-III corpus combined with a certain portion of
Wikipedia pages as a training corpus to train the ELMo

contextual LM in the clinical domain. In more detail, it combines
discharge summaries and radiology reports from the MIMIC-III
corpus and all the Wikipedia pages with titles that are items
from the Systematized Nomenclature of Medicine–Clinical
Terms. Such a corpus is trained on a deep neural network that
contains a character-based CNN embedding layer followed by
a two-layer biLSTM. Details have been published elsewhere
[40].

Training Contextual String Embeddings for Sequence
Labeling
Akbik et al [36] proposed a new method to generate a neural
character-level LM. The paper shows the state-of-the-art
performance on the Conference on Computational Natural
Language Learning 2003 NER task dataset. The LM for the
general domain is publicly accessible. The author also integrates
all the codes into an NLP framework called Flair. It achieved
great success on the data in the general domain. However,
according to the research by Friedman et al [53], clinical
language has unique linguistic characteristics compared with
general English, which make models generated from the public
domain poorly adaptable to clinical narratives. It is demanding
to train the LM on the clinical corpus to better support the
clinical NER task. For training corpus preparation, we first did
sentence segmentation on the entire corpus, then we randomly
selected 1500 sentences as the testing set and another 1500
sentences for the validation set. The remaining part serves as
the training set. For the hyperparameters, we kept the default
setting: learning rate as 20.0, batch size as 32, anneal factor as
0.25, patience as 10, clip as 0.25, and hidden size as 1024.

Training Semantic Word Embeddings
Injecting domain knowledge into the deep learning model is a
potential way to further improve the performance of the NER
system. According to the results by Wu et al [43], combining
medical knowledge into the embedding outperforms the method
of representing it as a one-hot vector. Therefore, we similarly
created the embedding to represent medical lexicon and fed it
into the deep learning framework in our study. More specifically,
we initially generated a lexicon dictionary based on a subset of
semantic categories in the Unified Medical Language System.
We then identified all the lexicon occurrences in the corpus
using the dictionary and replaced them with semantic categories.
Figure 4 shows an example of the conversion. In the example
sentence of “No spontaneous thrombus is seen in the left
atrium,” “thrombus” is replaced with the tag “DISORDER” and
“left atrium” is replaced with two “BODYLOC” tags. In this
way, we can integrate semantic information into the word
embeddings. For the embedding generation, we use the same
setting as in the previous section.
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Figure 4. One example of converting the sentence into the tagged sentence.

Deep Neural Network Architecture
After we generated all the embeddings, we started to fit them
as the input into our deep neural network for the supervised
training stage. Since each type of embedding is generated using
one method, meaning each represents different aspects of
knowledge from the large corpus, combining them is an obvious
solution to potentially further improve the performance, which
has also been proven by clinical NER studies [40,43]. Although
there are many options to combine multiple embeddings in the
deep neural network system such as weighting [54] and
ensemble [55], in this study, we adopted the most

straightforward way, which is simply concatenating them as
the input.

We used the biLSTM-CRF sequence labeling module proposed
by Huang et al [56]. Figure 5 shows the architecture of the whole
deep neural network structure; the input is the embedding layer,
which is concatenated by different types of embeddings as
described in the previous section. Before we extracted
embeddings for tagged word embedding, we used the same
medical lexicon–based tagger to replace the tokens with the
semantic tags. All the embedding inputs went through the
biLSTM layer to generate forward and backward output, which
was used to calculate the probability score by CRF layers. On
the top, the prediction was given by a SoftMax layer.

Figure 5. Deep neural network structure with combined embeddings. Bi-LSTM: bidirectional long short-term memory; CRF: conditional random field.

Training the Deep Neural Network–Based Sequence
Tagger
For the implementation, we employed Flair [57], which is a
simple framework for NLP tasks including NER and text
classification. We used the default hyperparameter setting in
Flair, and we used the following configuration: learning rate as
0.1, batch size as 32, dropout probability as 0.5, and maximum
epoch as 500. The learning rate annealing method is basically
the same as the default: we half the learning rate if the training
loss does not fall for the consecutive “patience” number of

epochs. We set the patience number to 12 in this study. A
TITAN V (NVIDIA Corporation) graphics processing unit was
used to train the model. We took about 4 hours to train our
model each time.

Evaluation
In order to get more reliable results, we ran each model three
times. For the measurement of each running, we used precision,
recall, and F-1 score.
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Results

Table 1 shows the performance of the challenge winner system
and different deep neural network systems. We used four
benchmarks as our baseline systems, and then we reported the
performance of the systems when adding ELMo embeddings,
Flair embeddings, and tagged embeddings one at a time. All
evaluation scores were based on exact matching. For the baseline
systems, the first one is the semi-Markov model, developed by
Debruijn et al [13], which reported an F-1 score of 85.23%. The
second and third baselines are both based on the LSTM model,
and they reported F-1 scores of 85.78% and 85.94%,
respectively. The last baseline is the best result for the
nonensemble models from Zhu et al [40], which used ELMo
embedding. The three baseline systems used the original corpus
(training: 349 notes; test: 477 notes), all other systems are based
on the existing modified corpus (training: 170 notes; test: 256
notes). To start, we combined word embeddings with ELMo
and Flair embeddings, respectively. Both models achieved an
F-1 score of 87.01%, which is a little bit higher than what was

reported by Zhu et al [40]. After combining word embeddings
with ELMo and Flair embeddings, the F-1 score increased to
87.30%. When the word embedding on the tagged corpus was
incorporated, the performance was further improved to 87.44%
for the F-1 score.

In order to test if the improvement between different results is
statistically significant, we conducted a statistical test based on
results from bootstrapping. From the prediction result of the
test set, we randomly selected 1000 sentences with replacement
for 100 times and generated 100 bootstrap data sets. For each
bootstrap data set, we evaluated F-measures for three pairs of
results: (1) “biLSTM + ELMo” and “biLSTM + ELMo + Flair,”
(2) “biLSTM + ELMo + Flair” and “biLSTM + ELMo + Flair
+ semantic embedding,” and (3) “biLSTM + ELMo by Zhu et
al [40]” and “biLSTM + ELMo + Flair + semantic embedding.”
After that, we adopted a Wilcoxon signed rank test [58] to
determine if the differences between F-measures from the three
pairs were statistically significant. The results show that the
improvement of F-measures for all three pairs were statistically
significant (P values were .01, .02, and .03, respectively).

Table 1. Performance of all the models on the 2010 i2b2/VA dataset.

Recall (%)Precision (%)F-1 (%)Model

83.6486.8885.23Hidden semi-Markova

—c—c85.78LSTMb by Liu et al [39]a

86.5685.3385.94LSTM by Wu et al [43]a

86.25 (0.26)87.44 (0.27)86.84 (0.16)BiLSTMd + ELMo by Zhu et al [40]a

86.49 (0.21)87.54 (0.15)87.01 (0.18)BiLSTM + Flair

86.40 (0.30)87.64 (0.19)87.01 (0.24)BiLSTM + ELMo

86.85 (0.07)87.78 (0.09)87.30 (0.06)BiLSTM + ELMo + Flair

86.91 (0.10)88.03 (0.14)87.44 (0.07)BiLSTM + ELMo + Flair + semantic embedding

aModel is trained using the complete dataset of i2b2 2010, which contains 349 notes in the training set and 477 notes in the test set.
bLSTM: long short-term memory.
cNot reported.
dBiLSTM: bidirectional LSTM.

Discussion

Principal Findings
NER is a fundamental task in the clinical NLP domain. In this
study, we investigated the effects of combinations of different
types of embeddings on the NER task. We also explored how
to use medical lexicon to further improve performance. Based
on the result, we found that either ELMo or Flair embeddings
could boost the system’s performance, and combining both
embeddings could further improve the performance. Although
both ELMo and Flair embeddings use biLM to train the LM on
MIMIC-III corpus, they actually generate the contextualized
word embeddings in different ways. ELMo concatenates all the
biLM layers to represent all different levels of the knowledge,
while Flair embedding is generated by a character-level LM.
Character-level LM is different from character-aware LM [59]
since it actually uses word-level LM while leveraging

character-level features through a CNN encoding step. It was
composed by the surrounding text’s embedding in the
character-level. The difference between ELMo and Flair
embeddings could explain the reason why they can play
complementary roles in the model.

The results show that adding semantic embeddings could further
improve performance. According to the study by Peters et al
[35], the lower biLM layer specializes in local syntactic
relationships, while the higher layers focus on modeling longer
range relationships. Those relationships are learned from the
pure clinical corpus without any resources from outside such
as medical lexicons and ontologies. This study shows an
effective way to incorporate domain knowledge into the deep
neural network–based NER system.

A large amount of training data is required to achieve success
when applying deep learning algorithms [60]. Within the general
domain, it is more difficult to accumulate a large size of the
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annotated corpus for most of the clinical NLP tasks since it
usually requires the annotator to have in-depth domain
knowledge. Contextualized word embeddings, as an effective
way of transferring the knowledge from the large unlabeled
corpus, could address the issue of lack of training data.
According to the results, by only using the small size of the
training corpus (170 notes), contextualized word
embedding–based models could achieve better performance
than the models that use the large size training corpus (349
notes). To further investigate the effectiveness of transfer
learning in our proposed models, we compared the performance
of our best model generated from different sizes of the training
data. Table 2 shows the F-1 score for the model “biLSTM +
ELMo + Flair + semantic embedding” on randomly selected
80%, 60%, 40%, 20%, and 10% of the training data.
Surprisingly, we found that using only 40% of the training
corpus could achieve comparable performance as the original
state-of-the-art traditional machine learning–based system. Even
using 20% of the training corpus, the model’s F-1 score is still

more than 80%. This result indicates that contextualized word
representation could potentially be an effective way to reduce
the size of the training corpus, which could significantly improve
the feasibility of applying deep learning to real practice.

Besides the performance reported in the Results section, we
also recorded the change of performance for our proposed
models during the fine-tuning stage. Table 3 shows the F-1
score on 1, 20, 40, and 60 epochs for our three models. On epoch
1, comparing to only word embeddings, any contextualized
word embedding boosts the F-1 score. This is mostly because
pretraining on contextualized word embeddings is very
beneficial for the task of named entity recognition. This proves
that the LM is a good way for pretraining that can be adapted
to different downstream NLP tasks. Another interesting finding
is that even though the model ELMo achieved the best
performance among our three models, it was surpassed by the
other two models on later epochs, which indicates that during
the optimization process, the best starting point does not
necessarily lead to the best local optimal solution.

Table 2. Performance of the best model training, BiLSTMa + ELMo + Flair + semantic embedding, on different sizes of the training corpus.

Rec (%)Prec (%)F-1 (%)Amount of training data (%)

72.7469.5971.1310

82.1881.9282.0520

84.9085.8385.3640

85.8686.8186.3360

86.4387.4286.9280

aBiLSTM: bidirectional long short-term memory.

Table 3. F-1 score for our proposed models on different epochs.

60 epochs (%)40 epochs (%)20 epochs (%)1 epoch (%)Model

79.5278.1175.6761.23Classic word embedding

86.6385.6885.6476.18Classic word embedding + ELMo

86.9685.9785.3373.28Classic word embedding + ELMo + Flair

87.1386.4685.8574.38Classic word embedding + ELMo + Flair + semantic embedding

Limitations
This study has some limitations. For contextualized embedding
generation, we followed others’ research methods and didn’t
test different configurations for LM training. For example, for
ELMo embeddings, we followed the work of Zhu et al [40] for
Flair embedding generation and kept the same configuration as
seen in the work by Akbik et al [36]. For the fine-tuning stage,
we only fine-tuned a limited set of hyperparameters including
learning rate and patience. For domain knowledge integration,
there are a lot of options that could be explored to merge the
lexicon information into the input of the deep neural network
structure. In this study, we only tried one way to represent it in
the form of word embeddings. In this paper, we studied two
contextualized embeddings: ELMo and Flair. In the future, we
plan to test our framework by adding bidirectional encoder

representations from transformers, which is another popular
contextualized embedding [61].

Conclusions
In this study, we investigated the effects of the combination of
two contextualized word embeddings including ELMo and Flair
and clinical knowledge for the clinical NER task. Our evaluation
on the 2010 i2b2/VA challenge dataset shows that using both
ELMo and Flair embeddings outperforms using only ELMo
embeddings, which indicates its great potential for the clinical
NLP research. Furthermore, we demonstrate that incorporating
the medical lexicon into the word representation could further
improve the performance. Finally, we found that adopting our
best model would be an effective way to reduce the size of the
required training corpus for the clinical NER task.
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