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Abstract

Background: High numbers of consumable medical materials (eg, sterile needles and swabs) are used during the daily routine
of intensive care units (ICUs) worldwide. Although medical consumables largely contribute to total ICU hospital expenditure,
many hospitals do not track the individual use of materials. Current tracking solutions meeting the specific requirements of the
medical environment, like barcodes or radio frequency identification, require specialized material preparation and high infrastructure
investment. This impedes the accurate prediction of consumption, leads to high storage maintenance costs caused by large
inventories, and hinders scientific work due to inaccurate documentation. Thus, new cost-effective and contactless methods for
object detection are urgently needed.

Objective: The goal of this work was to develop and evaluate a contactless visual recognition system for tracking medical
consumable materials in ICUs using a deep learning approach on a distributed client-server architecture.

Methods: We developed Consumabot, a novel client-server optical recognition system for medical consumables, based on the
convolutional neural network model MobileNet implemented in Tensorflow. The software was designed to run on single-board
computer platforms as a detection unit. The system was trained to recognize 20 different materials in the ICU, while 100 sample
images of each consumable material were provided. We assessed the top-1 recognition rates in the context of different real-world
ICU settings: materials presented to the system without visual obstruction, 50% covered materials, and scenarios of multiple
items. We further performed an analysis of variance with repeated measures to quantify the effect of adverse real-world
circumstances.

Results: Consumabot reached a >99% reliability of recognition after about 60 steps of training and 150 steps of validation. A
desirable low cross entropy of <0.03 was reached for the training set after about 100 iteration steps and after 170 steps for the
validation set. The system showed a high top-1 mean recognition accuracy in a real-world scenario of 0.85 (SD 0.11) for objects
presented to the system without visual obstruction. Recognition accuracy was lower, but still acceptable, in scenarios where the
objects were 50% covered (P<.001; mean recognition accuracy 0.71; SD 0.13) or multiple objects of the target group were present
(P=.01; mean recognition accuracy 0.78; SD 0.11), compared to a nonobstructed view. The approach met the criteria of absence
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of explicit labeling (eg, barcodes, radio frequency labeling) while maintaining a high standard for quality and hygiene with
minimal consumption of resources (eg, cost, time, training, and computational power).

Conclusions: Using a convolutional neural network architecture, Consumabot consistently achieved good results in the
classification of consumables and thus is a feasible way to recognize and register medical consumables directly to a hospital’s
electronic health record. The system shows limitations when the materials are partially covered, therefore identifying characteristics
of the consumables are not presented to the system. Further development of the assessment in different medical circumstances
is needed.

(JMIR Med Inform 2019;7(4):e14806) doi: 10.2196/14806
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Introduction

A large amount of medical materials are consumed in the daily
routine of intensive care units (ICUs). It is estimated that 85%
of their healthcare costs are captured by three cost blocks,
namely staff, clinical support services, and consumable medical
materials [1,2]. The latter include, for example, sterile disposable
material (eg, venous catheters or scalpels), material for body
care (eg, absorbent pads, disposable flaps), or small materials
(eg, needles, swabs or spatulas). A study of the International
Programme for Resource Use in Critical Care (IPOC) quantified
the daily cost for disposables in four European countries between
139.5€ (152.9 United States Dollars [USD]) (104.9€ [115
USD]–177.2€ [194.2 USD]) and 29.6€ (32.4 USD) (17.5€ [19.2
USD]–59.7€ [65.4 USD]), for drugs and fluids between 183.3€
[200.9 USD] (150.6€ [165 USD]–217.4€ [238.3 USD]) and
65.3€ (71.6 USD) (42.2€ [46.2 USD]–91.5€ [100.3 USD]) per
patient [1]. Materials are often stored centrally in a departmental
location, such as a materials warehouse or a centralized room,
from which only the daily required material is taken and stored
in proximity to patients. This is particularly relevant for
infectious patients, as possibly contaminated material may have
to be disposed of for hygienic reasons when the patient is
discharged.

Due to the complexity of an ICU treatment, the financing of
ICUs is often based on a flat-rate reimbursement scheme [3],
resulting in a fixed daily hospital reimbursement for each day
on the unit, not taking into account the reason for admission,
the disease, or the resulting expenditure. In this scheme,
individual medical or nursing measures are only remunerated
with an additional fee in special cases (eg, blood transfusions
or very complex interventions). As the consumption of the
above-mentioned material has also been financed from the
reimbursed lump-sum payment, this means the consumption of
disposable medical material can hardly be recorded on a
patient-related basis. It is largely unknown how many materials
are needed for a single patient with a specific disease, so it is
therefore not possible to carry out analyses in this respect even
though these questions are highly relevant in daily practice.
This is particularly true for storage and investment, as
suboptimal management results in unnecessarily high storage
maintenance costs. Furthermore, from a scientific perspective,
timely and accurate documentation of medical consumables is
critical, as it is especially noticeable in daily scientific work

when medical measures are not documented in a timely manner.
For example, the administration of an infusion solution is usually
not documented until several minutes after the start of the
procedure [4]. This makes retrospective data analysis (eg, in
the field of machine learning) considerably more difficult as
action and reaction are often critically time-linked, thus making
the scientific evaluation of measures and data analysis
significantly more time-consuming [5].

In some hospitals, this problem is solved by scanning a
material-specific barcode when a disposable material is used at
the patient site, which enables patient-specific billing. However,
this means each article needs to be marked with an individual
code. The use of wireless radio-frequency identification (RFID)
has been assessed in the circumstances of patient care, however
this requires the installation of specialized reader infrastructure
and related management systems [6]. However, applying the
previous techniques for identification is impossible for a relevant
part of the materials (such as swabs, needles) because of their
physical structure or their low price in relation to the tagging
technique. An intelligent, cost-effective solution is urgently
needed for this problem, and the developed solution must suit
the specific needs of the ICU with the following characteristics:
(1) recognizes materials without explicit labelling (eg, barcodes,
radio frequency labelling); (2) fulfills the high standards for
quality and hygiene of ICUs (ideally minimizing
touch-interactions); and (3) has minimal consumption of
resources (eg, cost, time, training, and computational power)
[7]. Most notably, the system must fulfill the high data
protection requirements of the sensitive area of intensive care
medicine.

The aim of this work is to develop and evaluate Consumabot,
a novel client-server recognition system for medical consumable
materials based on a convolutional neural network, as an
approach to solve the above-mentioned challenges in the sector
of intensive care medicine. We first described the technical
background (hardware and machine learning), taking the specific
limitations and challenges of the ICU sector into account. In a
proof-of-concept study, we then evaluated the performance of
the system in the adverse circumstances of a real ICU
environment, assessing the feasibility of the application in a
real-world hospital setting.
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Methods

General Layout
We performed a thorough analysis on the technical, medical,
and economic circumstances of ICUs and defined the specific
requirements of the system. This included the identification of
the need for a visual and contact-free recognition of the
consumables, and for detection in proximity to the patient bed

to facilitate assignment to the individual patient. Based on these
considerations, the distributed concept of Consumabot was
developed as follows: multiple low-cost detection units are
located close to the patient bed, then these units are wirelessly
connected to a local training server with high computational
power for model training. This server has a direct connection
to the hospital database and the electronic health record (EHR)
backend (Figure 1).

Figure 1. Client-server setup between bedside detection units, local training server, and hospital database of the Consumabot system.

Hardware Setup
For the bedside detection units (clients), the commercially
available single board computer Raspberry Pi was chosen as
the hardware platform. Raspberry Pi is an inexpensive and
widespread, small, single-board computer, initially developed
to promote teaching of basic computer science in schools and
in developing countries. The system architecture was developed
at the University of Cambridge and is now being promoted by
the charitable foundation the Raspberry Pi Foundation [8]. With
low power consumption, no need for active cooling, and
designed for continuous operation over several weeks, it is the
ideal platform for the bedside detection units. Due to the
popularity of the system, versatile extensions are available (eg,
a powerful camera and hygienic housings). Indeed, Raspberry

Pi has seen widespread use in different Internet of Things (IoT)
applications in the healthcare sector [9-11].

In this work, we specifically used the Raspberry Pi 3 Model B
for the detection units (clients), equipped with a quad-core
processor ARM Cortex A53, a network and wireless network
card, and one gigabyte of random accessible memory. The
official camera module of the Raspberry Pi Foundation version
2.1, with 8-megapixel resolution (Figure 2b), as well as a touch
screen monitor module with 7-inch display for interaction with
the software (Figure 2d) were used. The whole setup was
installed into a stable polyethylene housing (Figure 2c), and the
camera was positioned using flat ribbon cable (Figure 2e). The
local recognition modules could not be used for the training of
the neural network since the computational capabilities of the
processors are too low, thus resulting in a long training time.

Figure 2. Hardware setup of the recognition module on the Raspberry Pi computational platform: a) Raspberry Pi 3 Model B; b) camera module version
2.1; c) Polyethylene housing; d) touch screen monitor module with 7 inch display diagonal; and e) Flat ribbon cable.
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Consequently, a more computationally capable training server
was set up. This server was equipped with an Intel Xeon Gold
6140 processor with four dedicated processor cores, had 40
gigabytes of storage space on a single-state hard disk and had
320 gigabytes of storage space on a conventional magnetic hard
disk for the resulting training data. Both the recognition module
and the server used the open source operating system Linux in
the Debian distribution [12].

Training Setup and Machine Learning Scheme
The software backbone of Consumabot was developed in
Python, a programming language often used in the field of
machine learning. One major advantage of Python is the
availability of a wide range of machine learning tools like
NumPy, used in data preprocessing, scikit-learn, used for data
mining, or Keras as a high-level neural network interface. For
modelling the machine learning backend, we adapted the model
of a convolutional neural network (CNN) [13]. The convoluted
(folded) structure makes CNNs particularly suitable for
processing visual information, especially in the fields of image
recognition and classification [14-16]. However, manual
development of a neural network is very time-consuming, so
software frameworks in which essential mathematical and
preprocessing steps have already been developed are often used.
Consumabot uses the software library TensorFlow, a software
framework that simplifies the programming of data
stream–centered procedures [17], and several adapted
programming code elements for retraining image classifiers
were included into Consumabot’s source code [18]. Since the
training of a full neural network is a complex and
computationally intensive process, we applied a technique called
transfer learning, a machine learning method where a model
developed for a task is reused as the starting point for a model
on a second task [19]. In transfer learning, basic processing
image recognition steps, such as the recognition of edges,
objects, and picture elements, are already trained in many
iteration steps while the classification task is only assigned to
the neural network in its final step, which is analogous to the
training of an infant. However, it is important to note that the
quality of the classification depends on the specificity of the
training of the respective net. Thus, a neural network trained
on images achieves better results in this domain than in the
domain of something like natural language processing, resulting
in the need to choose a task-specific, suited, pretrained network.

In the first step of the training the bottlenecks were generated,
and they are the layer of the network that is located directly
below the output layer [20]. Since each image is used several
times, the bottlenecks do not change during the training as they
can be created once and stored temporarily. In the second step,
a set of random images from the training data set, with
associated bottlenecks, were selected and placed in the output
layer. The network-classified predictions are then compared
with the correct classification, adjusting the weighting of the
layers backwards (backpropagation) [21]. Classification
accuracy and training progress were tracked with Tensorboard,
a software designed for monitoring the training of neural
networks [17,21].

Classification and Feedback
The internal structure of the system must take the particularities
of the ICU environment into account. The detection module's
camera took a picture every second and stored it on a memory
card. This image from the camera was presented to the trained
model of the recognition unit, which then predicted the
probabilities of the recognized objects. If anything other than
an empty surface was detected then the recognized object with
the greatest probability was selected and presented to the user.
After pressing the store in database button on the screen, the
material was then registered in the database of the training
server. This resulted in an additional confirmation step of human
classification, as only images confirmed to have been classified
correctly were included in further training. To facilitate online
learning, at regular intervals the stored images of correctly
recognized materials were transferred as training data to the
training server and the model of the neural network was trained.
The resulting model (the retrained graph) was distributed among
the recognition units, which enabled an improved recognition
of the desired consumables. Finally, the database of the control
server was used to further process the data for either analysis
or optimization.

On-Site Study
After finishing the training, we installed the hardware on an
ICU within the University Hospital Aachen. Testing the system
in real ICU conditions is obligatory due to the specific lighting
and environmental conditions. In a test series, the 20 objects
specified in Textbox 1 were classified using the camera of the
recognition unit. Different rotations and orientations of the
objects were chosen to correspond to the realistic field of
application. To simulate the adverse circumstances of typical
clinical workflow, we simulated a total of three scenarios: (1)
scenario one, where the material was presented without any
visual obstruction to the detection unit; (2) scenario two, where
the material was 50% covered to simulate a visual obstruction
during the routine clinical workflow; and (3) scenario three,
where a secondary material (skin disinfection bottle) was present
in the visual field while the material was presented without
visual obstruction.

Each material was presented 10 times to the system. An object
was classified as correct if it correctly appeared on the screen
as the most probable classification (top-1 accuracy).

A full video of the hardware setup and training process can be
found in Multimedia Appendix 1.

We performed a repeated measures, one-way analysis of
variance (ANOVA) with Geisser-Greenhouse correction and a
Tukey’s multiple comparisons test with individual variances
computed for each comparison. This was performed to assess
the effect of adverse conditions in scenario two and three in
comparison to the nonobstructed view in scenario one. All
calculations were performed using GraphPad Prism 8.1.2
(GraphPad Software Inc, San Diego).
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Textbox 1. Selection of medical consumables.

• Disposable bag valve mask

• Ampoule

• AuraOnce laryngeal mask

• Berotec inhalator

• Hand disinfection bottle

• Documentation sheet

• Boxed Dressings

• Packaged Gauze bandage

• Unpackaged Gauze bandages

• Gelafundin infusion solution

• Intravenous access orange

• Tube set for infusion solutions

• Intravenous access grey

• Braun sterile syringe

• Green Molinea protective pad

• White Protective pad

• Oxygen mask

• Oxygen tubing for mask

• Infusion solution Sterofundin

• Empty scenario (reference)

Results

Principal Findings
We trained the system in the context of a real ICU, taking special
lighting conditions and other circumstances into account. We
randomly chose a total of twenty common medical consumables
from diverse categories with various sizes and formats to train
the system on-site (Textbox 1). An empty scenario where no
materials were present was provided to the system as a reference.

Setup of the System and Training
Figure 3 shows the overall setup of Consumabot. The initial
training was carried out using a newly developed data generation
script, generating a series of 100 images of each medical
consumable to be recognized. A total of 2000 images were
generated. For training, we used 1800/2000 (90%) images, and
200 images were randomly picked from this training set for
validation. Finally, the remaining 200/2000 (10%) were picked
for testing. We ran the system for 500 epochs, or training steps
(training, validation, and testing), each epoch consisting of 100
randomly chosen images per item.

The top layer of the CNN received a 1001-dimensional vector
as input for each image, and we trained a softmax layer on top
of this vector representation [22]. Assuming the softmax layer
contains N labels, this corresponds to learning of 1001 × N
model parameters corresponding to the learned weights and
biases.

For choosing the appropriate network, we took the recognition
accuracy of different convolutional neural networks into
account. For this purpose, we used the top-1 score [23]. Briefly,

in this process, the predicted class multinomial distribution ( )
is obtained and compared to the appearance of the top
classification as the target label (having the highest probability).
The top-1 score is then computed as the times a predicted label
matched the target label, divided by the number of data points
evaluated. Selecting the correct model also needs to take the
computational requirements into account, as the computational
power of the recognition module is limited. Comparing
MobileNet, AlexNet, GoogleNet and VGG16, we decided to
apply a MobileNet, a class of efficient models for mobile and
embedded vision apps, as a compromise between low
requirements for computational power and high accuracy in
image classification [24].
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Figure 3. Overall setup of the Consumabot system. CNN: convolutional neural network.

Evaluation of Training Setup and Machine Learning
Scheme
Figure 4 shows the performance of the learning algorithm on
the training and validation datasets. We observed a >99%
accuracy of the model prediction after 60 training steps and 150
validation steps, as defined by the relation of true positives over
the total number of occurrences. The prediction accuracy
approached asymptotically and remained there during the

training phase, consequently showing a high prediction accuracy.
Of note, there was no sign of overfitting [25], a phenomenon
indicated by an increase or constancy in training accuracy while
there is an observed decrease in validation accuracy. Thus, since
our model did not show any indication of over-learning, the
generalization of the output of the learned model is applicable.
The smoothing linear filter is explained in Multimedia Appendix
2.
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Figure 4. Accuracy of the model. The orange line represents the accuracy of correctly classified consumable material within the training set, while the
blue line represents the accuracy of correctly classified consumable material within the validation set. A smoothing weight of 0.7 was applied and
nonsmoothed curves are shown in pale orange and blue.

Like all common machine learning techniques, the used model
also requires a cost function that has to be minimized. We used
cross-entropy as a cost function [26]:

We applied this function to quantify the difference between the
two probability distributions of the training and the validation
set. As shown in Figure 5, our model revealed a desirable
cross-entropy <0.03, with asymptotic stability after
approximately 170 iteration steps in the validation set and 100
steps in the training set (Figure 5). As for Figure 4, the
smoothing linear filter is explained in Multimedia Appendix 2.

Figure 5. Cross-entropy of the model during training. The orange line represents the entropy of the training set, while the blue line represents the
entropy of the validation set. A smoothing weight of 0.7 was applied, and nonsmoothed curves are shown in pale orange and blue.

The fully trained model (graph visualization, retrained graph,
label list) is provided in Multimedia Appendices 3 and 4.

On-Site Study
We then performed the on-site study at an ICU at the University
Hospital Aachen, taking the particular lighting conditions and
adverse circumstances due to clinical workflow into account.
Each of the 20 consumable materials were presented ten times
to the detection unit and were classified as correct if they
appeared correctly on the screen with the highest associated

probability (Table 1). The data generation for an entirely new
consumable or for retraining, if a previously trained consumable
material significantly changed its outer appearance, took
approximately 100 seconds (1 second per picture, 100 pictures).
We simulated adverse visual conditions as described in the
methods section. For comparability reasons, no human feedback
was included into the model training, and classification was
based only on the first 100 training images. In Table 1, accuracy
is provided in fractions of 1, as in a 0.7 recognition accuracy
represents 70% (7/10) correct predictions.
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Table 1. Top-1 recognition accuracy in the three scenarios.

Multiple materialsPartially coveredNoncoveredConsumable material

0.90.81Bag valve mask

0.60.60.8Ampoule

0.80.80.9AuraOnce laryngeal mask

0.70.80.7Berotec inhalator

0.90.70.9Hand disinfection bottle

0.90.71Documentation sheet

0.70.70.8Boxed Dressings

0.80.70.8Packaged Gauze bandage

0.80.91Unpackaged Gauze bandage

0.80.70.8Gelafundin infusion solution

0.50.40.6Intravenous access orange

0.90.70.9Tube set for infusion solutions

0.70.60.8Intravenous access grey

0.80.70.9Sterile syringe

0.70.80.8Molinea protective pad green

0.80.80.9White Protective pad

0.80.50.7Oxygen mask

0.90.60.9Oxygen tubing

0.90.70.8Infusion solution Sterofundin

0.811Empty scenario (reference)

In nonobstructed visual conditions, the model showed a good
recognition performance, with a mean recognition accuracy of
0.85 (SD 0.11). Materials with large surface areas and many
distinguishable visual features (eg, a disposable bag valve mask
[mean recognition accuracy 1.0] or sterile syringes [mean
recognition accuracy 0.9]) had particularly good detection rates.
For materials only distinguishable by color (eg, intravenous
[IV] accesses in different colors) Consumabot showed lower
recognition accuracies for the grey IV access (mean 0.8) and
the orange IV access (mean 0.6) (Figure 6, Table 1).

In a scenario where the surface area of the material was 50%
covered, the system showed a lower, although still acceptable,
mean recognition accuracy of 0.71 (SD 0.13). This was
particularly true for materials with a small surface or with less

distinguishable features (eg, for an oxygen tube), where the
recognition accuracy dropped by 0.3 between when it was
uncovered (mean 0.9) to when it was covered (mean 0.6).

Assessing the performance of the system in a scenario with
multiple elements present in the scene resulted in a mean
recognition accuracy of 0.78 (SD 0.11). For small elements
compared to the secondary material present in a scene, this
mostly resulted in a drop in recognition accuracy (eg, for a
medication ampoule in the noncovered scenario [mean 0.8]
versus a multiple element scenario [mean 0.6]).

We also performed an ANOVA with repeated measures to
quantify the effect of the different scenarios, representing
adverse real-world circumstances. Results of the ANOVA and
other statistical analyses are given in Tables 2-4.
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Figure 6. Results of the usability study in the context of a real ICU, real-world top-1 recognition accuracy of twenty sample materials. Top-1 recognition
accuracy is provided in fractions of 1. Consumable materials: 1. AmbuBag (Disposable bag valve mask), 2. Ampoule, 3. AuraOnce laryngeal mask, 4.
Berotec inhalator, 5. Hand disinfection bottle, 6. Documentation sheet, 7. Boxed Dressings, 8. Packaged gauze bandage, 9. Unpackaged gauze bandages,
10. Gelafundin infusion solution, 11. Intravenous access orange, 12. Tube set for infusion solutions, 13. Intravenous access grey, 14. Braun sterile
syringe, 15. Molinea protective pad green, 16. White protective pad, 17. Oxygen Mask, 18. Oxygen tubing for mask, 19. Infusion solution Sterofundin,
20. Empty scenario (reference). ICU: intensive care unit.

Table 2. Summary of the repeated measures ANOVA.

Geisser-Greenhouse's epsilonR2P valueFTest

0.760.46<.00116.2ANOVAa summary

—b0.57<.0014.89Matching effectiveness

aANOVA: analysis of variance
bNot applicable.

Table 3. Results of the Tukey's multiple comparisons test.

Adjusted P value95% CIMean differenceComparisons

<.0010.08-0.20.14Noncovered versus covered

.0010.02-0.110.07Noncovered versus multiple

.06–0.15 to 0.003–0.075Covered versus multiple

Table 4. Detailed results of the repeated measures ANOVA.

P valueF (DFna, DFdb)Mean squaresDegrees of freedomSum of squaresMeasures

<.001F (1.5,29)=160.120.20Treatment (between columns)

<.001F (19, 38)=4.90.03190.56Individual (between rows)

——c0.01380.23Residual (random)

———590.99Total

aDFn: degrees of freedom numerator
bDFd: degrees of freedom denominator
cNot applicable.

Independence of the observations among the groups, no
sphericity, and a normal distribution were assumed for the
analysis. The results of the performed ANOVA showed
significant differences between the groups (F=16.2; P<.001;

R2=0.46), and post hoc analyses with Tukey's multiple
comparisons test showed a significant difference between the

noncovered cohort and the partially covered cohort (P=.001;
95% CI 0.08-0.2). Further significant differences between the
noncovered scenario and the scenario with multiple consumables
were also observed (P=.001; 95% CI 0.02-0.11), however, the
differences between the noncovered group and multiple
consumables were not statistically significant (P=.06).
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Discussion

In this work we developed and evaluated Consumabot, a novel
contactless visual recognition system for tracking medical
consumable materials in ICUs using a deep learning approach
on a distributed client-server architecture. In our
proof-of-concept study in the context of a real ICU environment,
we observed a high classificatory performance of the system
for a selection of medical consumables, thus confirming its wide
applicability in a real-world hospital setting.

Building on the foundation of fundamental mathematical
research and technical progress, machine learning technologies
today have the potential to drive ICUs towards a more
sustainable, data-driven environment. In particular, contributions
from other scientific disciplines, such as biology and
engineering, have led to significant breakthroughs in quality
and availability of neural networks, thus forming the backbone
of Consumabot. The development of software for processing
complex visual information is no longer a task requiring
specialized hardware and software, as even the training of a
complex neural network without specialist knowledge is possible
now. This enables researchers and medical professionals alike
to expand the use of artificial intelligence beyond today's
commercial applications, such as in the fields of natural
language processing [27,28], or intention, or pattern analysis
[29], within constantly growing data volumes.

In this work we demonstrated the feasibility of the application
of an on-device, deep learning–based computational platform
for optical material recognition in the context of an ICU. Using
a convolutional neural network infrastructure, the system
Consumabot consistently achieved good results in the
classification of consumables and thus is a feasible way to
directly recognize and register medical consumables to a
hospital’s EHR system. Choosing a transfer learning technique
based on MobileNet assured a fast training time while keeping
steadily high recognition rates, achieving an optimal
compromise of high accuracy and low computational
requirements while maintaining a moderate model size. Using
an optical recognition approach takes the specific conditions of
the ICU into account, such as the need for a low maintenance,
hygienic, contact-free solution. The use of MobileNet allowed
us to apply Consumabot to the inexpensive, computationally
weak, Raspberry Pi platform, while maintaining acceptable
recognition speed. This confirmed the feasibility of use of the
Raspberry Pi platform in healthcare, as described in multiple
earlier works [11,30,31]. The upcoming increase in
computational power of single-board computers could make
the distributed client-server structure of the system unnecessary,
as training could take place directly on the recognition units.
This will enable its direct use in environments where no network
connectivity is available (eg, rural areas), potentially facilitating

scientific research in less developed medical infrastructure and
healthcare systems. Thus, we believe that Consumabot will
ultimately enable hospitals to reduce costs associated with
consumable materials and consequently let them spend their
resources on higher quality care (eg, by employing additional
medical personnel).

Nevertheless, the conducted on-site study showed potential for
optimization, particularly for standard medical consumables
(eg, venous accesses of different sizes) since they did not show
fully satisfactory recognition rates. This occurred if the
distinguishing features were not clearly visible, partially
covered, or multiple consumables were present in the scene. To
solve this problem, a user training course with a note that
identifying features must be clearly presented is recommended.
Further, the model performance is likely to increase with added
training data during daily use in the ICU due to the implemented
feedback mechanism of Consumabot. Further development of
the software and assessment of its performance with larger sets
of medical consumables is desirable. The presentation of an
object unknown to the detection unit results in a prediction with
low confidence. In our prototype we display this confidence
factor (see Multimedia Appendix 1) to the user. When using
Consumabot in scenarios where many objects are unknown to
the system (eg, if the system will only be used for detection of
certain objects), the software should be adapted to only display
predictions above a certain confidence threshold. In addition,
the performance of multiple detection units running in parallel
needs to be assessed as potential conflicts in the distribution of
the model could occur.

Overall, though, the results were satisfactory enough to promote
the further use and development of Consumabot in practice and
research. The system fulfilled the requirements for recognizing
materials without explicit labelling while maintaining the
standard for quality and hygiene of ICUs. The system will make
retrospective data analysis (eg, in the field of machine learning)
considerably easier and enable time-critical research with direct
correlation between action and reaction. The prototype’s
capabilities could potentially be enhanced by the integration of
visual, multi-object detection algorithms, thus enabling it to
detect a multitude of objects in parallel. Further, the need for
tactile manual confirmation could be reduced by the integration
of a microphone array to enable voice commands. The full
source code of the detection unit, the pretrained model, and the
training script have been released under the open source license
Apache Version 2.0, January 2004 [32], and detailed assembly
instructions have been released with the manuscript to encourage
and enable other researchers to contribute to the development
of the system and assess usability and feasibility in other use
cases without increasing the financial burden of ICU patients
[33].
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