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Abstract

Background: Much effort has been put into the use of automated approaches, such as natural language processing (NLP), to
mine or extract data from free-text medical records in order to construct comprehensive patient profiles for delivering better
health care. Reusing NLP models in new settings, however, remains cumbersome, as it requires validation and retraining on new
data iteratively to achieve convergent results.

Objective: The aim of this work is to minimize the effort involved in reusing NLP models on free-text medical records.

Methods: We formally define and analyze the model adaptation problem in phenotype-mention identification tasks. We identify
“duplicate waste” and “imbalance waste,” which collectively impede efficient model reuse. We propose a phenotype
embedding–based approach to minimize these sources of waste without the need for labelled data from new settings.

Results: We conduct experiments on data from a large mental health registry to reuse NLP models in four phenotype-mention
identification tasks. The proposed approach can choose the best model for a new task, identifying up to 76% waste (duplicate
waste), that is, phenotype mentions without the need for validation and model retraining and with very good performance (93%-97%
accuracy). It can also provide guidance for validating and retraining the selected model for novel language patterns in new tasks,
saving around 80% waste (imbalance waste), that is, the effort required in “blind” model-adaptation approaches.

Conclusions: Adapting pretrained NLP models for new tasks can be more efficient and effective if the language pattern landscapes
of old settings and new settings can be made explicit and comparable. Our experiments show that the phenotype-mention embedding
approach is an effective way to model language patterns for phenotype-mention identification tasks and that its use can guide
efficient NLP model reuse.
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Introduction

Compared to structured components of electronic health records
(EHRs), free-text comprises a much deeper and larger volume
of health data. For example, in a recent geriatric syndrome study
[1], unstructured EHR data contributed a significant proportion
of identified cases: 67.9% cases of falls, 86.6% cases of visual
impairment, and 99.8% cases of lack of social support. Similarly,
in a study of comorbidities using a database of anonymized
EHRs of a psychiatric hospital in London (the South London
and Maudsley NHS Foundation Trust [SLaM]) [2], 1899 cases
of comorbid depression and type 2 diabetes were identified from
unstructured EHRs, while only 19 cases could be found using
structured diagnosis tables. The value of unstructured records
for selecting cohorts has also been widely reported [3,4].
Extracting clinical variables or identifying phenotypes from
unstructured EHR data is, therefore, essential for addressing
many clinical questions and research hypotheses [5-7].

Automated approaches are essential to surface such deep data
from free-text clinical notes at scale. To make natural language
processing (NLP) tools accessible for clinical applications,
various approaches have been proposed, including generic,
user-friendly tools [8-10] and Web services or cloud-based
solutions [11-13]. Among these approaches, perhaps, the most
efficient way to facilitate clinical NLP projects is to adapt
pretrained NLP models in new but similar settings [14], that is,
to reuse existing NLP solutions to answer new questions or to
work on new data sources. However, it is very often burdensome
to reuse pretrained NLP models. This is mainly because NLP
models essentially abstract language patterns (ie, language
characteristics representable in computable form) and
subsequently use them for prediction or classification tasks.
These patterns are prone to change when the document set
(corpus) or the text mining task (what to look up) changes.
Unfortunately, when it comes to a new setting, it is uncertain
which patterns have and have not changed. Therefore, in
practice, random samples are drawn to validate the performance
of an existing NLP model in a new setting and subsequently to
plan the adaptation of the model based on the validation results.

Such “blind” adaptation is costly in the clinical domain because
of barriers to data access and expensive clinical expertise needed
for data labelling. The “blindness” to the similarities and
differences of language pattern landscapes between the source
(where the model was trained) and target (the new task) settings
causes (at least) two types of potentially unnecessary, wasted
effort, which may be avoidable. First, for data in the target
setting with the same patterns as in the source setting, any
validation or retraining efforts are unnecessary because the
model has already been trained and validated on these language
patterns. We call this type of wasted effort the “duplicate waste.”
The second type of waste occurs if the distribution of new
language patterns in the target setting is unbalanced, that is,

some—but not all—data instances belong to different language
patterns. The model adaptation involves validating the model
on these new data and further adjusting it when performance is
not good enough. Without the knowledge of which data
instances belong to which language patterns, data instances
have to be randomly sampled for validation and adaptation. In
most cases, a minimal number of instances of every pattern
need to be processed, so that convergent results can be obtained.
This will usually be achieved via iterative validation and
adaptation process, which will inevitably cause commonly used
language patterns to be over represented, resulting in the model
being over validated/retrained on such data. Such unnecessary
efforts on commonly used language patterns result from the
pattern imbalance in the target setting, which unfortunately is
the norm in almost all real-world EHR datasets. We call this
“imbalance waste.”

The ability to make language patterns visible and comparable
will address whether an NLP model can be adapted to a new
task and, importantly, provide guidance on how to solve new
problems effectively and efficiently through the smart adaptation
of existing models. In this paper, we introduce a contextualized
embedding model to visualize such patterns and provide
guidance for reusing NLP models in phenotype-mention
identification tasks. Here, a phenotype mention denotes an
appearance of a word or phrase (representing a medical concept)
in a document, which indicates a phenotype related to a person.
We note two aspects of this definition:

1. Phenotype mention ≠ Medical concept mention. When a
medical concept mentioned in a document does not indicate
a phenotype relating to a person (eg, cases in the last two
rows of Table 1), it is not a phenotype mention.

2. Phenotype mention ≠ Phenotype. Phenotype (eg, diseases
and associated traits) is a specific patient characteristic [15]
and a patient-level feature, (eg, a binary value indicating
whether a patient is a smoker). However, for the same
phenotype, a patient might have multiple phenotype
mentions. For example, “xxx is a smoker” could be
mentioned in different documents or even multiple times
in one document, and each of these appearances is a
phenotype mention.

The focus of this work is to minimize the effort in reusing
existing NLP model(s) in solving new tasks rather than
proposing a novel NLP model for phenotype-mention
identification. We aim to address the problem of NLP model
transferability in the task of extracting mentions of phenotypes
from free-text medical records. Specifically, the task is to
identify the above-defined phenotype mentions and the contexts
in which they were mentioned [10]. Table 1 explains and
provides examples of contextualized phenotype mentions. The
research question to be investigated is formally defined as
mentioned in Textbox 1 and illustrated in Figure 1.
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Table 1. The task of recognizing contextualized phenotype mentions is to identify mentions of phenotypes from free-text records and classify the
context of each mention into five categories (listed in the second column of Table 1). The last two rows give examples of nonphenotype mentions—the
two sentences are not describing incidents of a condition.

Types of phenotype mentionsExamples

Positive mentiona49 year old man with hepatitis c

Negated mentionaWith no evidence of cancer recurrence

Hypothetical mentiona…Is concerning for local lung cancer recurrence

History mentionaPAST MEDICAL HISTORY: (1) Atrial Fibrillation, (2)...

Mention of phenotype in another personaMother was A positive, hepatitis C carrier, and...

Not a phenotype mentionShe visited the HIV clinic last week.

Not a phenotype mentionThe patient asked for information about stroke.

aContextualized mentions.

Textbox 1. Research question.

Definition 1. Given an natural language processing model (denoted as ) previously trained for some phenotype-mention identification task(s), and a
new task (denoted as , where either phenotypes to be identified are new or the dataset is new, or both are new), m is used in to identify a set of phenotype
mentions—denoted as S. The research question is how to partition S to meet the following criteria:

1. A maximum p-known subset Sknown where m’s performance can be properly predicted using prior knowledge of m;

2. p-unknown subsets: {Su1, Su2…Suk}, which meet the following criteria:

Figure 1. Assess the transferability of a pretrained model in solving a new task: Discriminate between differently inaccurate mentions identified by
the model in the new setting.

The identification of “p-known” subset (criterion 1) will help
eliminate “duplicate waste” by avoiding unnecessary validation
and adaptation on those phenotype mentions. On the other hand,
separating the rest of the annotations into “p-unknown” subsets

allows processing mentions based on their performance-relevant
characteristics separately, which in turn helps avoid “imbalance
waste.” The abovementioned criterion 2a ensures completeness
of coverage of all performance-unknown mentions and criterion
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2b ensures no overlaps between mention subsets, so that no
duplicated effort will be put on the same mentions. Criterion
2c requires that the partitioning of the mentions is
performance-relevant, meaning that model performance on a
small number of samples can be generalized to the whole subset
that they are drawn from. Lastly, a small (criterion 2d) enables
efficient adaptation of a model.

Methods

Dataset and Adaptable Phenotype-Mention
Identification Models
Recently, we developed SemEHR [10]—a semantic search
toolkit aiming to use interactive information retrieval
functionalities to replace NLP building, so that clinical
researchers can use a browser-based interface to access text
mining results from a generic NLP model and (optionally) keep
getting better results by iteratively feeding them back to the
system. A SLaM instance of this system has been trained for
supporting six comorbidity studies (62,719 patients and
17,479,669 clinical notes in total), where different combinations
of physical conditions and mental disorders are extracted and
analyzed. Multimedia Appendix 1 provides details about the
user interface and model performance. These studies effectively
generated 23 phenotype-mention identification models and
relevant labelled data (>7000 annotated documents), which we
use to study model transferability.

Foundation of the Proposed Approach
Our approach is based on the following assumption about a
language pattern representation model:

• Assumption 1. There exists a pattern representation model,
A, for identifying language patterns of phenotype mentions
with the following characteristics:
1. Each phenotype mention can be characterized by only

one language pattern.
2. Patterns are largely shared by different mentions.
3. There is a deterministic association between NLP

models’ performances with such language patterns.

• Theorem 1. Given A, a pattern model meeting Assumption
1, m—an NLP model, T—a new task, let Pm be the pattern
set Aidentifies from dataset(s) that m was trained or
validated on; let PT be the pattern set A identifies from Sthe
set of all mentions identified by m in T. Then, the problem
defined in Definition 1 can be solved by a solution, where
Pm ∩ PTis the “p-known” subset and PT – Pm ∩ PT is
“p-unknown” subsets.

Proof of Theorem 1 can be found in the Multimedia Appendix
2. The rest of this section provides details of a realization of
Ausing distributed representation models.

Distributed Representation for Contextualized
Phenotype Mentions
In computational linguistics, statistical language models are,
perhaps, the most common approach to quantify word
sequences, where a distribution is used to represent the

probability of a sequence of words: P(w1…wn). Among such
models, the bag-of-words (BOW) model [15] is perhaps the
earliest and simplest, yet widely used and efficient in certain
tasks [16]. To overcome BOW’s limitations (eg, ignoring
semantic similarities between words), more complex models
were introduced to represent word semantics [17-19]. Probably,
the most popular alternative is the distributed representation
model [20], which uses a vector space to model words, so that
word similarities can be represented as distances between their
vectors. This concept has since been extensively followed up,
extended, and shown to significantly improve NLP tasks
[21-26].

In original distributed representation models, the semantics of
one word is encoded in one single vector, which makes it
impossible to disambiguate different semantics or contexts that
one word might be used for in a corpus. Recently, various
(bidirectional) long short-term memory models were proposed
to learn contextualized word vectors [27-29]. However, such
linguistic contexts are not the phenotype contexts (Table 1) that
we seek in this paper.

Inspired by the good properties of distributed representations
for words, we propose a phenotype encoding approach that aims
to model the language patterns of contextualized phenotype
mentions. Compared to word semantics, phenotype semantics
are represented in a larger context, at the sentence or even
paragraph level (eg, he worries about contracting HIV; here,
HIV is a hypothetical phenotype mention). The key idea of our
approach is to use explicit mark-ups to represent phenotype
semantics in the text, so that they can be learned through an
approach similar to the word embedding learning framework.

Figure 2 illustrates our framework for extending the continuous
BOW word embedding architecture to capture the semantics of
contextualized phenotype mentions. Explicit mark-ups of
phenotype mentions are added to the architecture as placeholders
for phenotype semantics. A mark-up (eg, C0038454_POS) is
composed of two parts: phenotype identification (eg, C0038454)
and contextual description (eg, POS). The first part identifies
a phenotype using a standardized vocabulary. In our
implementation, the Unified Medical Language System (UMLS)
[30] was chosen for its broad concept coverage and the provision
of comprehensive synonyms for concepts. The first benefit of
using a standardized phenotype definition is that it helps in
grouping together mentions of the same phenotype using
different names. For example, using UMLS concept
identification of C0038454 for STROKE helps combining
together mentions using Stroke, Cerebrovascular Accident,
Brain Attack, and other 43 synonyms. The second benefit is
from the concept relations represented in the vocabulary
hierarchy, which helps the transferability computation that we
will elaborate on later (step 3 in the next subsection). The second
part of a phenotype mention mark-up is to identify the mention
context. Six types of contexts are supported: POS for positive
mention, NEG for negated mention, HYP for hypothetical
mention, HIS for history mention, OTH for mention of the
phenotype in another person, and NOT for not a phenotype
mention.
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Figure 2. The framework to learn contextualized phenotype embedding from labelled data that an natural language processing model m was trained
or validated on. TIA: transient ischemic attack.

The phenotype mention mark-ups can be populated using
labelled data that NLP models were trained or validated on. In
our implementation, the mark-ups were generated from the
labelled subset of SLaM EHRs.

Using Phenotype Embedding and Their Semantics for
Assessing Model Transferability
The embeddings learned (including both word and
contextualized phenotype vectors) are the building blocks
underlying the language pattern representation model—A, as
introduced at the beginning of this section, which is to compute
Pm (the landscape of language patterns that m is familiar with)

and PT (the landscape of language patterns in the new task T)
for assessing and guiding NLP model adaptation for new tasks.

Figure 3 illustrates the architecture of our approach. The
double-circle shape denotes the embeddings learned from m’s
labelled data. Essentially, the process is composed of two
phases: (1) the documents from a new task (on the left of the
figure) are annotated with phenotype mentions using a pretrained
model m and (2) a classification task uses the abovementioned
embeddings to assess each mention—whether it is an instance
of p-known (something similar enough to what m is familiar
with) or any subset of p-unknown (something that is new to m).
Specifically, the process is composed of the following steps:

Figure 3. Architecture of phenotype embedding-based approach for transferring pretrained natural language processing models for identifying new
phenotypes or application to new corpora. The word and phenotype embedding model is learned from the training data of the reusable models in its
source domain (the task that m was trained for). No labelled data in the target domain (new setting) are required for the adaptation guidance. NLP:
natural language processing.

1) Vectorize phenotype mentions in a new task: Each mention
in the new task will be represented as a vector of real numbers
using the learned embedding model to combine its surrounding

words as context semantics. Formally, the reference is chosen
as shown in Textbox 2.
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Textbox 2. Vector representation of a phenotype mention.

Let s be a mention identified by m in the new task, where scan be represented by a function defined as follows:

(1)

Where

is the embedding model to convert a word token into a vector, tj is the jth word in a document, i is the offset of the first word of s in the document, l
is the number of words in s, and f is a function to combine a set of vectors into a result vector (we use average in our implementation).

With such representations, all mentions are effectively put in a
vector space (depicted as a 2D space on the right of the figure
for illustration purposes).

2) Identify clusters (language patterns) of mention vectors: In
the vector space, clusters are naturally formed based on
geometric distances between mention vectors. After trying
different clustering algorithms and parameters, DBScan [31]
was chosen on Euclidean distance in our implementation for
vector clustering. Essentially, each cluster is a set of mentions
considered to share the same (or similar enough) underlying
language pattern, meaning that language patterns in the new
task are technically the vector clusters. We chose the cluster
centroid (arithmetic mean) to represent a cluster (ie, its
underlying language pattern).

3) Choose a reference vector for classifying language patterns:
After clusters (language patterns) are identified, the next step

is to classify them as p-known or subsets of p-unknown. We
choose a reference vector–based approach, classifying patterns
using the distance to a selected vector. Such a reference vector
is picked up (when the phenotype to be identified has been
trained in m) or generated (when the phenotype is new to m)
from the learned phenotype embeddings the model m has seen
previously. Apparently, when the phenotype to be identified in
the new task is new to m (not in the set of phenotypes it was
developed for), the reference phenotype needs to be carefully
selected, so that it can help produce a sensible separation
between p-known and p-unknown clusters. We use the semantic
similarity (distance between two concepts in the UMLS tree
structure) to choose the most similar phenotype from the
phenotype list m was trained for. Formally, the reference is
chosen as shown in Textbox 3.

Textbox 3. Reference phenotype selection

Let cp be the Unified Medical Language System concept for a phenotype to be identified in the new task and Cm be the set of phenotype concepts that
m was trained for, the reference phenotype choosing function is

(2)

Where D is a distance function to calculate the steps between two nodes in the Unified Medical Language System concept tree.

Once the reference phenotype has been chosen, the reference
vector can be selected or generated (eg, use the average) from
this phenotype’s contextual embeddings.

4) Classify language patterns to guide model adaptation: Once
the reference vector has been selected, clusters can be classified
based on the distances between their centroids (representative
vectors of clusters) and the reference vector. Once a distance
threshold is chosen, this distance-based classification partitions
the vector space into two subspaces using the reference vector
as the center: the subspace whose distance to the center is less
than the threshold is called p-known subspace and the remainder
is the p-unknown subspace. The union of clusters whose
centroids are within the p-known subspace is p-known, meaning
m’s performances on them can be predicted without further
validation (removing duplicate waste). Other clusters are
p-unknown clusters, and m can be validated or further trained
on each p-unknown cluster separately instead of blindly across
all clusters. This will remove imbalance waste.

Results

Associations Between Embedding-Based Language
Patterns and Model Performances
As stated in the beginning of Method section, our approach is
based on three assumptions about language patterns. Therefore,
it is essential to quantify to what extent the language patterns
identified by our embedding-based approach meet these
assumptions. The first assumption—a phenotype mention can
be assigned to one and only to one language pattern—is met in
our approach, since (1) (Equation 1) is a one-to-one function
and (2) DBScan algorithm (the vector clustering function chosen
in our implementation) is also a one-to-one function.
Assumption 2 can be quantified by the percentage of mentions
that can be assigned to a cluster. This percentage can be
increased by increasing the epsilon (EPS) parameter (the
maximum distance between two data items for them to be
considered in the same neighborhood) in DBScan. However,
the degree to which mentions are clustered together needs to be
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balanced against the consequence of the reduced ability to
identify performance-related language patterns, which is the
third assumption: associations between language patterns and
model performance. To quantify such an association, we propose

a metric called bad guy separate power (SP), as defined in
Equation 3 below (Textbox 4). The aim is to measure to what
extent a clustering can assemble incorrect data items
(false-positive mentions of phenotypes) together.

Textbox 4. Bad Guy Separate Power.

Let C be a set of binary data items –

(stands for true; stands for false), given a clustering result {C1…Ck｜C1∪C2…∪Ck=C}, its separate power for f typed data items is defined as follows:

(3)

In our scenario, we would like to see clustering being able to
separate easy cases (where good performance is achieved) from
difficult cases (where performance is poor) for a model .

To quantify the clustering percentage, the ability to separate
mentions based on model performances and the interplay
between the two, we conducted experiments on selected
phenotypes by continuously increasing the clustering parameter

EPS from a low level. Figure 4 shows the results. In this
experiment, we label mentions into two types—correct and
incorrect—using SemEHR labelled data on the SLaM corpus.
Specifically, for the mention types in Table 1, incorrect mentions
are those denoted “not-a-phenotype-mention” and the remainder
are labelled as correct. We chose incorrect as the f in equation
3, as we evaluate the separate power on incorrect mentions.
Four phenotypes were selected for this evaluation: Diabetes
and Hypertensive disease were selected because they were most
validated phenotypes and Abscess (with 13% incorrect mentions)
and Blindness (with 47% incorrect mentions) were chosen to
represent NLP models with different levels of performance. The
figure shows a clear trend in all cases: As EPS increases, the

clustered percentage increases, but with decreasing separate
power. This confirms a trade-off between the coverage of
identified language patterns and how good they are. Regarding
separate power, the performance on two selected common
phenotypes (Figure 4a and 4b) is generally worse than that for
the other phenotypes, starting with lower power, which
decreases faster as the EPS increases. The main reason is that
the difficult cases (mentions with poor performance) in the two
commonly encountered phenotypes are relatively rare (diabetes:
8.5%; hypertensive disease: 5.5%). In such situations, difficult
cases are harder to separate because their patterns are
underrepresented. However, in general, compared to random
clustering, the embedding-based clustering approach brings in
much better separate power in all cases. This confirms a
high-level association between identified clusters and model
performance. In particular, when the proportion of difficult
cases reaches near 50% (Figure 4d), the approach can keep SP
values almost constantly near 1.0 when the EPS increases. This
means it can almost always group difficult cases in their own
clusters.
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Figure 4. Clustered percentage versus separate power on difficult cases. The x-axis is the Epsilon (EPS) parameter of the DBScan clustering algorithm---the
longest distance between any two items within a cluster; the y-axis is the percentage. Two types of changing information (as functions of EPS) are
plotted on each panel: clustered percentage (solid line) and SP on incorrect cases (false-positive mentions of phenotypes). The latter has two series: (1)
SP by chance (dash dotted line) when clustering by randomly selecting mentions and (2) SP by clustering using phenotype embedding (dashed line).
N: number of all mentions; N_f: number of false-positive mentions; SP: separate power.

Model Adaptation Guidance Evaluation
Technically, the guidance to model adaptation is composed of
two parts: avoid duplicate waste (skip validation/training efforts
on cases the model is already familiar with) and avoid imbalance
waste (group new language patterns together, so that
validation/continuous training on each group separately can be
more efficient than doing it over the whole corpus). To quantify
the guidance effectiveness, the following metrics are introduced.

• Duplicate waste: This is the number of mentions whose
patterns fall into what the model m is familiar with. The
quantity

is the proportion of mentions that needs no validation or
retraining before reusing .

• Imbalance waste: To achieve convergence performance,
an NLP model needs to be trained on a minimal number
(denoted as e) of samples from each language pattern.
Calling the language pattern set in a new task as
C={C1…Ck}, the following equation counts the minimum
number of samples needed to achieve convergent results
in “blind” adaptations:

(4)

When the language patterns are identifiable, the Imbalance
waste that can be avoided is quantified as

• Accuracy: To evaluate whether our approach can really
identify familiar patterns, we quantify the accuracy of those
within-threshold clusters and those within-threshold single
mentions that are not clustered. Both macro-accuracy
(average of all cluster accuracies) and micro-accuracy
(overall accuracy) are used (detailed explanations provided
elsewhere [32]).

Figure 5 shows the results of our NLP model adaptation
guidance on four phenotype-identification tasks. For each new
phenotype-identification task, the NLP model (pre)trained for
the semantically most similar (defined in Equation 2) phenotype
was chosen as the reuse model. Models and labelled data for
the four pairs of phenotypes were selected from six physical
comorbidity studies on SLaM data. Figure 5 shows that
identified mentions have a high proportion of avoidable
duplicate waste in all four cases: Diabetes and heart attack start
with 50%, whereas stroke and multiple sclerosis are >70%.
Such avoidable duplicate waste decreases when the threshold
increases. The threshold is on similarity instead of distance,
meaning that new patterns need to be more similar to the reuse
model’s embeddings to be counted as familiar patterns.
Therefore, it is understandable that duplicate waste decreases
in such scenarios. In terms of accuracy, one would expect this
to increase, as only more similar patterns are left when the
threshold increases. However, interestingly, in all cases, both
macro- and micro-accuracies decrease slightly before increasing
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to reach near 1.0. This is a phenomenon worth future
investigation. In general, the changes in accuracy are small
(0.03-0.08), while accuracy remains high (>0.92). Given these
observations, the threshold is normally set at 0.01, to optimize
the avoidance of duplicate waste with minimal effect on
accuracy. Specifically, in all cases, more than half of the
identified mentions (>50% for Figure 5a and 5b; >70% for

Figure 5c and 5d) do not need any validation/training to obtain
an accuracy of >0.95. In terms of effective adaptation on new
patterns, the percentages of avoidable imbalance waste in all
cases are around 80%, confirming that a much more efficient
retraining on data can be achieved through language
pattern-based guidance.

Figure 5. Identifying new phenotypes by reusing natural language processing models pretrained for semantically close phenotypes: The four pairs of
phenotype-mention identification models are chosen from SemEHR models trained on SLaM data; DBScan Epsilon (EPS) value=3.8, and imbalance
waste is calculated on e=3, meaning at least 3 samples are needed for training from each language pattern. The x-axis is the similarity threshold, ranging
from 0.0 to 0.8; the y-axes, from top to bottom, are the proportion of duplicate waste saved over total number of mentions, macro-accuracy, and
micro-accuracy, respectively.

Effectiveness of Phenotype Semantics in Model Reuse
When considering NLP model reuse for a new task, if there is
no existing model that has been developed for the same
phenotype-mention identification task, our approach will choose
a model trained for a phenotype that is most semantically similar
to it (based on Equation 2). To evaluate the effectiveness of
such semantic relationships in reusing NLP models, we
conducted experiments on the previous four phenotypes by

using phenotype models with different levels of semantic
similarities. Table 2 shows the results. In all cases, reusing
models trained for more similar phenotypes can identify more
duplicate waste using the same parameter settings. The first
three cases in the table can also achieve better accuracies, while
multiple sclerosis had slightly better accuracy by reusing the
diabetes model than the more semantically similar myasthenia
gravis. However, the latter identified 46% more duplicate waste.
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Table 2. Comparisons of the performance of reusing models with different semantic similarity levels. Similarity threshold: 0.01; DBScan EPS: 0.38.
Reusing models trained for more (semantically) similar phenotypes achieved adaptation results with less effort (more duplicate waste identified) in all
cases, and the results were more accurate in three of four cases. Performance metrics of better reusable models are highlighted as bold numbers.

Micro-accuracyMacro-accuracyDuplicate wasteModel reuse cases

0.933b0.966b0.502bDiabetes by Type 2 Diabetesa

0.9300.9650.477Diabetes by Hypercholesterolemia

0.955b0.948b0.711bStroke by Heart Attacka

0.9380.8840.220Stroke by Fatigue

0.966b0.989b0.569bHeart attack by Infarcta

0.8890.8210.529Heart attack by Bruise

0.9710.9440.761bMultiple Sclerosis by Myasthenia Gravisa

0.979b0.993b0.522Multiple Sclerosis by Diabetes

aMore similar model reuse cases.
bPerformance metrics of better reusable models.

Ethical Approval and Informed Consent
Deidentified patient records were accessed through the Clinical
Record Interactive Search at the Maudsley NIHR Biomedical
Research Centre, South London, and Maudsley (SLaM) NHS
Foundation Trust. This is a widely used clinical database with
a robust data governance structure, which has received ethical
approval for secondary analysis (Oxford REC 18/SC/0372).

Data Availability Statement
The clinical notes are not sharable in the public domain.
However, interested researchers can apply for research access
through https://www.maudsleybrc.nihr.ac.uk/facilities/clinical-
record-interactive-search-cris/. The natural language processing
tool, models, and code of this work are available at
https://github.com/CogStack/CogStack-SemEHR.

Discussion

Principal Results
Automated extraction methods (as surveyed recently by Ford
and et al [33]), many of which are freely available and open
source, have been intensively investigated in mining free-text
medical records [10,34-36]. To provide guidance in the efficient
reuse of pretrained NLP models, we have proposed an approach
that can automatically (1) identify easy cases in a new task for
the reused model, on which it can achieve good performance
with high confidence and (2) classify the remainder of the cases,
so that the validation or retraining on them can be conducted
much more efficiently, compared to adapting the model on all
cases. Specifically, in four phenotype-mention identification
tasks, we have shown that 50%-79% of all mentions are
identifiably easy cases, for which our approach can choose the
best model to reuse, achieving more than 93% accuracy.
Furthermore, for those cases that need validation or retraining,
our approach can provide guidance that can save 78%-85% of
the validation/retraining effort. A distinct feature of this
approach is that it requires no labelled data from new settings,
which enables very efficient model adaptation, as shown in our

evaluation: zero effort to obtain >93% accuracy among the
majority (>63% in average) of the results.

Limitations
In this study, we did not evaluate the recall of adapted NLP
models in new tasks. Although the models we chose can
generally achieve very good recall for identifying physical
conditions (96%-98%) within the SLaM records, investigating
the transferability on recalls is an important aspect of NLP
model adaptation.

The model reuse experiments were conducted on identifying
new phenotypes on document sets that had not previously been
seen by the NLP model. However, these documents were still
part of the same (SLaM) EHR system. To fully test the
generalizability of our approach will require evaluation of model
reuse in a different EHR system, which will require a new set
of access approvals as well as information governance approval
for the sharing of embedding models between different hospitals.

We chose a phenotype embedding model to represent language
patterns. One reason is that we have a limited number of
manually annotated data items. The word embedding approach
is unsupervised, and the word-level “semantics” learned from
the whole corpus can help group similar words together in the
vector space, so that it can help improve the phenotype-level
clustering performances. However, thorough comparisons
between different language pattern models are needed to reveal
whether other approaches, in particular, simpler or less
computing-intensive approaches can achieve similar or different
performances.

In addition, implementation-wise, vector clustering is an
important aspect of this approach. We have compared DBScan
with k-nearest neighbors algorithm in our model, which revealed
that DBScan could achieve better SP powers in most scenarios.
Using a 64-bit Windows 10 server with 16 GB memory and 8
core central processing units (3.6 GHz), DBScan uses 200 MB
memory and takes 0.038 seconds on about 300 data points on
average of 100 executions. However, it is worth the in-depth
comparisons between more clustering algorithms. In particular,
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a larger dataset might be needed to compare the clustering
performances on both computational aspect and SP powers.

Comparison With Prior Work
NLP model adaptation aims to adapt NLP models from a source
domain (with abundant labelled data) to a target domain (with
limited labelled data). This challenge has been extensively
studied in the NLP community [37-41]. However, most existing
approaches assume a single language model (eg, a probability
distribution) from each domain. This limits the ability to identify
and subsequently deal differently with data items with different
language patterns. Such a limitation prevents fine-grained
adaptations, such as the reuse or adaptation of one NLP model
on those items for which it performs well, and the retraining of
the same model or reuse of other models on those items for
which the original NLP model performs poorly. In contrast, our
work aimed to depict the language patterns (ie, different
language models) of both source and target domains and
subsequently provide actionable guidance on reusing models
based on these fine-grained language patterns. Further, very
few NLP model reuse studies have focused on free text in
electronic medical records. To the best of our knowledge, this
work is among the first to focus on model reuse for
phenotype-mention identification tasks on real-world free-text
electronic medical records.

Modelling language patterns have been investigated for different
applications, such as the k-Signature approach [42] for
identifying unique “signatures” of micro-message authors. This
paper models language patterns for characterizing “landscape”
of phenotype mentions. One main difference is that we do not
know how many clusters (or “signatures”) of language patterns
exist in our scenario. Technically, we use phenotype embeddings
to model such patterns and, particularly, utilize phenotype
semantic similarities (based on ontology hierarchies) for reusing
learned embeddings, when necessary.

Conclusions
Making fine-grained language patterns visible and comparable
(in computable form) is the key to supporting “smart” NLP
model adaptation. We have shown that the phenotype
embedding-based approach proposed in this paper is an effective
way to achieve this. However, our approach is just one way to
model such fine-grained patterns. Investigating novel pattern
representation models is an exciting research direction to enable
automated NLP model adaptation and composition (ie,
combining various models together) for efficiently mining
free-text electronic medical records in new settings with
maximum efficiency and minimal effort.

Acknowledgments
This research was funded by Medical Research Council/Health Data Research UK Grant (MR/S004149/1), Industrial Strategy
Challenge Grant (MC_PC_18029), and the National Institute for Health Research (NIHR) Biomedical Research Centre at South
London and Maudsley NHS Foundation Trust and King’s College London. The views expressed are those of the authors and not
necessarily those of the NHS, the NIHR, or the Department of Health and Social Care.

Conflicts of Interest
None declared.

Multimedia Appendix 1
User interface and model performances of phenotype natural language processing models.
[DOCX File , 968 KB-Multimedia Appendix 1]

Multimedia Appendix 2
Proof of Theorem 1.
[DOCX File , 8 KB-Multimedia Appendix 2]

References

1. Kharrazi H, Anzaldi LJ, Hernandez L, Davison A, Boyd CM, Leff B, et al. The Value of Unstructured Electronic Health
Record Data in Geriatric Syndrome Case Identification. J Am Geriatr Soc 2018 Aug;66(8):1499-1507. [doi:
10.1111/jgs.15411] [Medline: 29972595]

2. Perera G, Broadbent M, Callard F, Chang C, Downs J, Dutta R, et al. Cohort profile of the South London and Maudsley
NHS Foundation Trust Biomedical Research Centre (SLaM BRC) Case Register: current status and recent enhancement
of an Electronic Mental Health Record-derived data resource. BMJ Open 2016 Mar 01;6(3):e008721 [FREE Full text] [doi:
10.1136/bmjopen-2015-008721] [Medline: 26932138]

3. Roque FS, Jensen PB, Schmock H, Dalgaard M, Andreatta M, Hansen T, et al. Using Electronic Patient Records to Discover
Disease Correlations and Stratify Patient Cohorts. PLoS Comput Biol 2011 Aug 25;7(8):e1002141. [doi:
10.1371/journal.pcbi.1002141]

JMIR Med Inform 2019 | vol. 7 | iss. 4 | e14782 | p. 11http://medinform.jmir.org/2019/4/e14782/
(page number not for citation purposes)

Wu et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=medinform_v7i4e14782_app1.docx&filename=1cb5a7c05657de718bec390ac140d449.docx
https://jmir.org/api/download?alt_name=medinform_v7i4e14782_app1.docx&filename=1cb5a7c05657de718bec390ac140d449.docx
https://jmir.org/api/download?alt_name=medinform_v7i4e14782_app2.docx&filename=4c05d4c91f5ba24af40396ac6414e883.docx
https://jmir.org/api/download?alt_name=medinform_v7i4e14782_app2.docx&filename=4c05d4c91f5ba24af40396ac6414e883.docx
http://dx.doi.org/10.1111/jgs.15411
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29972595&dopt=Abstract
https://bmjopen.bmj.com/content/6/3/e008721
http://dx.doi.org/10.1136/bmjopen-2015-008721
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26932138&dopt=Abstract
http://dx.doi.org/10.1371/journal.pcbi.1002141
http://www.w3.org/Style/XSL
http://www.renderx.com/


4. Wang Y, Ng K, Byrd R, Hu J, Ebadollahi S, Daar Z. Early detection of heart failure with varying prediction windows by
structured and unstructured data in electronic health records Internet. 2015 Presented at: 37th Annual International Conference
of the IEEE Engineering in Medicine and Biology Society (EMBC); 2015; Milano, Italy. [doi: 10.1109/embc.2015.7318907]

5. Abhyankar S, Demner-Fushman D, Callaghan FM, McDonald CJ. Combining structured and unstructured data to identify
a cohort of ICU patients who received dialysis. J Am Med Inform Assoc 2014 Sep;21(5):801-807 [FREE Full text] [doi:
10.1136/amiajnl-2013-001915] [Medline: 24384230]

6. Margulis AV, Fortuny J, Kaye JA, Calingaert B, Reynolds M, Plana E, et al. Value of Free-text Comments for Validating
Cancer Cases Using Primary-care Data in the United Kingdom. Epidemiology 2018;29(5):e41-e42. [doi:
10.1097/ede.0000000000000856]

7. Bell J, Kilic C, Prabakaran R, Wang YY, Wilson R, Broadbent M, et al. Use of electronic health records in identifying drug
and alcohol misuse among psychiatric in-patients. Psychiatrist 2018 Jan 02;37(1):15-20 [FREE Full text] [doi:
10.1192/pb.bp.111.038240]

8. Jackson MSc RG, Ball M, Patel R, Hayes RD, Dobson RJB, Stewart R. TextHunter--A User Friendly Tool for Extracting
Generic Concepts from Free Text in Clinical Research. AMIA Annu Symp Proc 2014;2014:729-738 [FREE Full text]
[Medline: 25954379]

9. Savova GK, Masanz JJ, Ogren PV, Zheng J, Sohn S, Kipper-Schuler KC, et al. Mayo clinical Text Analysis and Knowledge
Extraction System (cTAKES): architecture, component evaluation and applications. J Am Med Inform Assoc 2010 Sep
01;17(5):507-513. [doi: 10.1136/jamia.2009.001560]

10. Wu H, Toti G, Morley K, Ibrahim Z, Folarin A, Jackson R, et al. SemEHR: A general-purpose semantic search system to
surface semantic data from clinical notes for tailored care, trial recruitment, and clinical research. J Am Med Inform Assoc
2018 May 01;25(5):530-537 [FREE Full text] [doi: 10.1093/jamia/ocx160] [Medline: 29361077]

11. Christoph J, Griebel L, Leb I, Engel I, Köpcke F, Toddenroth D, et al. Secure Secondary Use of Clinical Data with
Cloud-based NLP Services. Methods Inf Med 2018 Jan 22;54(03):276-282. [doi: 10.3414/me13-01-0133]

12. Tablan V, Roberts I, Cunningham H, Bontcheva K. GATECloud.net: a platform for large-scale, open-source text processing
on the cloud. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2012
Dec 10;371(1983):20120071-20120071. [doi: 10.1098/rsta.2012.0071]

13. Chard K, Russell M, Lussier YA, Mendonça EA, Silverstein JC. A cloud-based approach to medical NLP. AMIA Annu
Symp Proc 2011;2011:207-216 [FREE Full text] [Medline: 22195072]

14. Carroll R, Thompson W, Eyler A, Mandelin A, Cai T, Zink R, et al. Portability of an algorithm to identify rheumatoid
arthritis in electronic health records. J Am Med Inform Assoc 2012 Jun;19(e1):e162-e169 [FREE Full text] [doi:
10.1136/amiajnl-2011-000583] [Medline: 22374935]

15. Harris ZS. Distributional Structure. WORD 2015 Dec 04;10(2-3):146-162. [doi: 10.1080/00437956.1954.11659520]
16. Salton G, Wong A, Yang CS. A vector space model for automatic indexing. Commun ACM 1975;18(11):613-620. [doi:

10.1145/361219.361220]
17. Brown PF, Desouza PV, Mercer RL, Pietra VJD, Lai JC. Class-based n-gram models of natural language. Computational

Linguistics 1992;18:479.
18. Deerwester S, Dumais ST, Furnas GW, Landauer TK, Harshman R. Indexing by latent semantic analysis. J Am Soc Inf

Sci 1990 Sep;41(6):391-407. [doi: 10.1002/(sici)1097-4571(199009)41:6<391::aid-asi1>3.0.co;2-9]
19. Blei D, Ng A, Jordan M. Latent Dirichlet Allocation. Journal of Machine Learning Research 2003;3:933-1022.
20. Hinton G. Carnegie-Mellon University. 1984. Distributed representations. URL: http://www.cs.toronto.edu/~hinton/absps/

pdp3.pdf [accessed 2019-11-06]
21. Bengio Y, Ducharme R, Vincent P, Jauvin C. A neural probabilistic language model. Journal of machine learning research

2003;3:1137-1155.
22. Collobert R, Weston J. A unified architecture for natural language processing: Deep neural networks with multitask learning.

2008 Presented at: Proceedings of the 25th international conference on Machine learning; 2008; Helsinki, Finland p. 160-167.
23. Glorot X, Bordes A, Bengio Y. Domain adaptation for large-scale sentiment classification: A deep learning approach. 2011

Presented at: The 28th international conference on machine learning; 2011; Bellevue, Washington p. 513-520.
24. Mikolov T, Sutskever I, Chen K, Corrado G, Dean J. Distributed representations of words and phrases and their

compositionality. In: Advances in neural information processing systems. 2013 Presented at: Neural Information Processing
Systems (NIPS); 2013; Lake Tahoe, Nevada.

25. Gouws S, Bengio Y, Corrado G. Bilbowa: Fast bilingual distributed representations without word alignments. 2015 Presented
at: The 32nd International Conference on Machine Learning; 2015; Lille, France.

26. Hill F, Cho K, Korhonen A. Learning Distributed Representations of Sentences from Unlabelled Data Internet. In: Proceedings
of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies. 2016 Presented at: NAACL 2016; 2016; San Diego, California.

27. Peters M, Neumann M, Iyyer M, Gardner M, Clark C, Lee K. Deep Contextualized Word Representations Internet. In:
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Papers). 2018 Presented at: NAACL 2018; 2018; New Orleans, Louisiana
p. 2227-2237.

JMIR Med Inform 2019 | vol. 7 | iss. 4 | e14782 | p. 12http://medinform.jmir.org/2019/4/e14782/
(page number not for citation purposes)

Wu et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://dx.doi.org/10.1109/embc.2015.7318907
https://academic.oup.com/jamia/article/21/5/801/757962
http://dx.doi.org/10.1136/amiajnl-2013-001915
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24384230&dopt=Abstract
http://dx.doi.org/10.1097/ede.0000000000000856
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/7C7BEF23485C724728CCDDBD3FBC1E90/S1758320900008246a.pdf/use_of_electronic_health_records_in_identifying_drug_and_alcohol_misuse_among_psychiatric_inpatients.pdf
http://dx.doi.org/10.1192/pb.bp.111.038240
http://europepmc.org/abstract/MED/25954379
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25954379&dopt=Abstract
http://dx.doi.org/10.1136/jamia.2009.001560
http://europepmc.org/abstract/MED/29361077
http://dx.doi.org/10.1093/jamia/ocx160
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29361077&dopt=Abstract
http://dx.doi.org/10.3414/me13-01-0133
http://dx.doi.org/10.1098/rsta.2012.0071
http://europepmc.org/abstract/MED/22195072
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22195072&dopt=Abstract
http://europepmc.org/abstract/MED/22374935
http://dx.doi.org/10.1136/amiajnl-2011-000583
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22374935&dopt=Abstract
http://dx.doi.org/10.1080/00437956.1954.11659520
http://dx.doi.org/10.1145/361219.361220
http://dx.doi.org/10.1002/(sici)1097-4571(199009)41:6<391::aid-asi1>3.0.co;2-9
http://www.cs.toronto.edu/~hinton/absps/pdp3.pdf
http://www.cs.toronto.edu/~hinton/absps/pdp3.pdf
http://www.w3.org/Style/XSL
http://www.renderx.com/


28. McCann B, Bradbury J, Xiong C, Socher R. Learned in translation: Contextualized word vectors. In: Advances in Neural
Information Processing Systems. 2017 Presented at: NIPS 2017; 2017; California p. 6294-6305.

29. Peters M, Ammar W, Bhagavatula C, Power R. Semi-supervised sequence tagging with bidirectional language models
Internet. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers). 2017 Presented at: ACL 2017; 2017; Vancouver, Canada.

30. Bodenreider O. The Unified Medical Language System (UMLS): integrating biomedical terminology. Nucleic Acids Res
2004 Jan 01;32(Database issue):D267-D270 [FREE Full text] [doi: 10.1093/nar/gkh061] [Medline: 14681409]

31. Schubert E, Sander J, Ester M, Kriegel HP, Xu X. DBSCAN Revisited, Revisited. ACM Trans Database Syst 2017 Aug
24;42(3):1-21. [doi: 10.1145/3068335]

32. Van Asch V. Macro-and micro-averaged evaluation measures. 2013. URL: https://pdfs.semanticscholar.org/1d10/
6a2730801b6210a67f7622e4d192bb309303.pdf [accessed 2019-11-07]

33. Ford E, Carroll JA, Smith HE, Scott D, Cassell JA. Extracting information from the text of electronic medical records to
improve case detection: a systematic review. J Am Med Inform Assoc 2016 Sep 05;23(5):1007-1015 [FREE Full text] [doi:
10.1093/jamia/ocv180] [Medline: 26911811]

34. Wu Y, Denny JC, Trent Rosenbloom S, Miller RA, Giuse DA, Wang L, et al. A long journey to short abbreviations:
developing an open-source framework for clinical abbreviation recognition and disambiguation (CARD). J Am Med Inform
Assoc 2017 Apr 01;24(e1):e79-e86. [doi: 10.1093/jamia/ocw109] [Medline: 27539197]

35. Savova GK, Ogren PV, Duffy PH, Buntrock JD, Chute CG. Mayo Clinic NLP System for Patient Smoking Status
Identification. Journal of the American Medical Informatics Association 2008 Jan 01;15(1):25-28. [doi: 10.1197/jamia.m2437]

36. Albright D, Lanfranchi A, Fredriksen A, Styler WF, Warner C, Hwang JD, et al. Towards comprehensive syntactic and
semantic annotations of the clinical narrative. J Am Med Inform Assoc 2013 Sep 01;20(5):922-930 [FREE Full text] [doi:
10.1136/amiajnl-2012-001317] [Medline: 23355458]

37. Moriokal T, Tawara N, Ogawa T, Ogawa A, Iwata T, Kobayashi T. Language Model Domain Adaptation Via Recurrent
Neural Networks with Domain-Shared and Domain-Specific Representations Internet. In: 2018 IEEE International Conference
on Acoustics, Speech and Signal Processing. 2018 Presented at: 2018 IEEE International Conference on Acoustics, Speech
and Signal Processing; 2018; Calgary, Canada p. 6084-6088.

38. Samanta S, Das S. Unsupervised domain adaptation using eigenanalysis in kernel space for categorisation tasks Internet.
IET Image Processing 2015;9(11):925-930. [doi: 10.1049/iet-ipr.2014.0754]

39. Xiao M, Guo Y. Domain Adaptation for Sequence Labeling Tasks with a Probabilistic Language Adaptation Model. 2013
Presented at: International Conference on Machine Learning 2013; 2013; Atlanta, Georgia p. 293-301.

40. Xu F, Yu J, Xia R. Instance-based Domain Adaptation via Multiclustering Logistic Approximation. IEEE Intell Syst 2018
Jan;33(1):78-88. [doi: 10.1109/mis.2018.012001555]

41. Jiang J, Zhai C. Instance weighting for domain adaptation in NLP. In: Proceedings of the 45th Annual Meeting of the
Association of Computational Linguistics. Association for Computational Linguistics. 2007 Presented at: ACL 2007; 2007;
Prague, Czech Republic p. 264-271.

42. Schwartz R, Tsur O, Rappoport A, Koppel M. Authorship Attribution of Micro-Messages. In: Proceedings of the 2013
Conference on Empirical Methods in Natural Language Processing. 2013 Presented at: EMNLP 2013; 2013; Seattle,
Washington p. 1880-1891.

Abbreviations
BOW: bag of words
EHR: electronic health record
EPS: epsilon
LSTM: long short-term memory
NLP: natural language processing
SLaM: South London and Maudsley NHS Foundation Trust
SP: separate power

JMIR Med Inform 2019 | vol. 7 | iss. 4 | e14782 | p. 13http://medinform.jmir.org/2019/4/e14782/
(page number not for citation purposes)

Wu et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://europepmc.org/abstract/MED/14681409
http://dx.doi.org/10.1093/nar/gkh061
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=14681409&dopt=Abstract
http://dx.doi.org/10.1145/3068335
https://pdfs.semanticscholar.org/1d10/6a2730801b6210a67f7622e4d192bb309303.pdf
https://pdfs.semanticscholar.org/1d10/6a2730801b6210a67f7622e4d192bb309303.pdf
http://europepmc.org/abstract/MED/26911811
http://dx.doi.org/10.1093/jamia/ocv180
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26911811&dopt=Abstract
http://dx.doi.org/10.1093/jamia/ocw109
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27539197&dopt=Abstract
http://dx.doi.org/10.1197/jamia.m2437
http://europepmc.org/abstract/MED/23355458
http://dx.doi.org/10.1136/amiajnl-2012-001317
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23355458&dopt=Abstract
http://dx.doi.org/10.1049/iet-ipr.2014.0754
http://dx.doi.org/10.1109/mis.2018.012001555
http://www.w3.org/Style/XSL
http://www.renderx.com/


Edited by G Eysenbach; submitted 22.05.19; peer-reviewed by V Vydiswaran, B Polepalli Ramesh; comments to author 03.10.19;
revised version received 08.10.19; accepted 22.10.19; published 17.12.19

Please cite as:
Wu H, Hodgson K, Dyson S, Morley KI, Ibrahim ZM, Iqbal E, Stewart R, Dobson RJB, Sudlow C
Efficient Reuse of Natural Language Processing Models for Phenotype-Mention Identification in Free-text Electronic Medical Records:
A Phenotype Embedding Approach
JMIR Med Inform 2019;7(4):e14782
URL: http://medinform.jmir.org/2019/4/e14782/
doi: 10.2196/14782
PMID: 31845899

©Honghan Wu, Karen Hodgson, Sue Dyson, Katherine I Morley, Zina M Ibrahim, Ehtesham Iqbal, Robert Stewart, Richard JB
Dobson, Cathie Sudlow. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 17.12.2019. This is an
open-access article distributed under the terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work, first published in JMIR Medical Informatics, is properly cited. The complete bibliographic information,
a link to the original publication on http://medinform.jmir.org/, as well as this copyright and license information must be included.

JMIR Med Inform 2019 | vol. 7 | iss. 4 | e14782 | p. 14http://medinform.jmir.org/2019/4/e14782/
(page number not for citation purposes)

Wu et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://medinform.jmir.org/2019/4/e14782/
http://dx.doi.org/10.2196/14782
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31845899&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

