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Abstract

Background: Cloud computing for microbiome data sets can significantly increase working efficiencies and expedite the
translation of research findings into clinical practice. The Amazon Web Services (AWS) cloud provides an invaluable option for
microbiome data storage, computation, and analysis.

Objective: The goals of this study were to develop a microbiome data analysis pipeline by using AWS cloud and to conduct a
proof-of-concept test for microbiome data storage, processing, and analysis.

Methods: A multidisciplinary team was formed to develop and test a reproducible microbiome data analysis pipeline with
multiple AWS cloud services that could be used for storage, computation, and data analysis. The microbiome data analysis pipeline
developed in AWS was tested by using two data sets: 19 vaginal microbiome samples and 50 gut microbiome samples.

Results: Using AWS features, we developed a microbiome data analysis pipeline that included Amazon Simple Storage Service
for microbiome sequence storage, Linux Elastic Compute Cloud (EC2) instances (ie, servers) for data computation and analysis,
and security keys to create and manage the use of encryption for the pipeline. Bioinformatics and statistical tools (ie, Quantitative
Insights Into Microbial Ecology 2 and RStudio) were installed within the Linux EC2 instances to run microbiome statistical
analysis. The microbiome data analysis pipeline was performed through command-line interfaces within the Linux operating
system or in the Mac operating system. Using this new pipeline, we were able to successfully process and analyze 50 gut
microbiome samples within 4 hours at a very low cost (a c4.4xlarge EC2 instance costs $0.80 per hour). Gut microbiome findings
regarding diversity, taxonomy, and abundance analyses were easily shared within our research team.

Conclusions: Building a microbiome data analysis pipeline with AWS cloud is feasible. This pipeline is highly reliable,
computationally powerful, and cost effective. Our AWS-based microbiome analysis pipeline provides an efficient tool to conduct
microbiome data analysis.

(JMIR Med Inform 2019;7(4):e14667) doi: 10.2196/14667
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Introduction

Big data and data-driven analysis has become a primary driver
of precision health [1,2]. The human microbiota and their

genomes, collectively called the human microbiome, is one
form of big data [3]. The human body harbors trillions of
microbes, including bacteria, viruses, fungi, and archaea [4,5],
which vary from host to host and across body sites within a
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single host [6,7]. The human microbiome plays a critical role
in human health and disease [8,9]. With advances in
next-generation sequencing technology and the rise of shotgun
metagenomics and metabolomic techniques, microbiome data
sets have rapidly expanded, especially following the initiatives
of the Human Microbiome Project [10] and the American Gut
Project [11]. Computation and analysis of big data sets in local
infrastructures via traditional computational methods (eg, use
of personal computers and local computational clusters) often
requires prolonged run times, delaying further analytic work
that needs to be performed and postponing the translation of
research findings into clinical practice [12]. Another
shortcoming of classical data analysis methods is the difficulty
involved in sharing the data and findings among research
collaborators. Advances in cloud computing have provided the
technical capabilities to help resolve difficulties posed by
standard computational methods [12,13].

Beyond data storage, assessing human microbiome data sets
requires bioinformatic tools that enable deeper mining, the
deciphering of the mechanistic connections among the microbes,
and the potential functions of these communities. To examine
significant associations between metadata (eg, demographic
and clinical variables) and DNA sequencing data, special
bioinformatic and statistical tools for conducting microbiome
analyses are needed [14]. It was not until recently that
researchers have developed software for microbiome data
analysis (eg, Quantitative Insights Into Microbial Ecology
[QIIME] and Mothur) [15]. One popular bioinformatics tool,
QIIME 2, can be installed natively within a conda environment
through a docker or a cloud platform. The Amazon Web
Services (AWS) cloud provides an invaluable computational
environment for running bioinformatics tools, such as QIIME
2, without the overhead of implementing and supporting a
large-scale computing infrastructure [12]. Cloud-based
computational pipelines have been developed for a variety of
data analysis, including CloudNeo [16] and RNA-Sequencing
(RNA-Seq) Analysis Pipeline [17], for next-generation
sequencing data, and Clustered Regularly Interspaced Short
Palindromic Repeats Cloud (CRISPRcloud) for the
deconvolution of pooled screening data [18]. The development
of a comprehensive microbiome data analysis pipeline, including
data storage, computations, and analysis, along with its testing
using microbiome data sets from actual studies, would help
researchers further investigate the impact of the microbiome on
human health and disease (eg, cancer, metabolic syndromes,

and neurodegenerative disorders) [8,19-21]. A reliable and
validated microbiome data analysis pipeline operating through
the AWS cloud could be used to provide a consistent
communication platform for research collaborators to share
information on data processing, data analysis, and research
findings. Thus, the AWS pipeline could increase both the
reproducibility of microbiome studies and the proficiency of
the research team [22].

For clinical scientists, several challenges need to be overcome
before conducting microbiome projects: (1) collective storage
space for big microbiome data sets needs to be created so that
the data and results can be easily shared within the research
team; (2) centralized data computing capabilities need to be
established to foster the replicability of results across all current
and future projects; and (3) the cost for cloud computing services
needs to be determined so that the team can cost-effectively
study the human microbiome. The AWS cloud has become a
popular platform for big data storage, high performance
computing, and analytics [16-18,23]. Thus, the purpose of this
study was to develop a microbiome data analysis pipeline using
the AWS cloud service (MAP-AWS) and conduct a
proof-of-concept test for microbiome data computation and
analysis with this newly developed MAP-AWS.

Methods

Overview
The process of developing and testing the MAP-AWS comprised
of four stages, as illustrated in Figure 1. We first collected
resources regarding microbiome data analysis and the use of
MAP-AWS, built a multidisciplinary research team, and lined
up available support systems from our institution and the AWS
Support Center. Second, we initiated the development of the
microbiome analysis pipeline, including a tutorial, with support
of the Research Informatics Team from the Winship Cancer
Institute at Emory University (Atlanta, Georgia, USA).

Third, we began pilot testing: we ran a small vaginal microbiome
data set (n=19), refined the pipeline and the tutorial, and retested
the pipeline with a larger data set from the gut microbiome
(n=50). Last, we disseminated the MAP-AWS within our
institutional research groups via presentations and workshops
and obtained feedback regarding this newly developed
MAP-AWS.

JMIR Med Inform 2019 | vol. 7 | iss. 4 | e14667 | p. 2http://medinform.jmir.org/2019/4/e14667/
(page number not for citation purposes)

Bai et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 1. Design process of the microbiome analysis pipeline.

Preparation
Through our previous work analyzing microbiome data sets
[22,24], we found that assembling a team with the necessary
skill sets, ensuring financial feasibility, and establishing system
resources were essential components of developing a system
for big data analysis. Building a multidisciplinary team with
specific expertise is key to successfully deploying AWS cloud
for use in microbiome data processing, computing, and analysis.
The MAP-AWS team was built within a multidisciplinary group
of nurses, physicians, biostatisticians, epidemiologists, and
microbiologists from the Schools of Nursing, Public Health,
and Medicine, and the Winship Cancer Institute at Emory
University. One nurse researcher, primarily trained in the human
microbiome and cancer science, led the team and formed
extensive collaborations with several other team members: one
research informatics analyst from the Winship Cancer Institute,
one biostatistician from the School of Public Health, and one
predoctoral student from the School of Nursing. All team
members had considerable experience in microbiome data
analysis [24,25], including previous QIIME 2 training, active
participation in microbiome-related internal and external
workshops, and publications on the human microbiome and its
impact on human health [24,25].

Recruiting information technology (IT) resources early in the
preparation phase is critical to ensuring that all IT resources are
coordinated by the time they are needed, and support services
for troubleshooting activities can be provided in a timely
manner. IT staff can help coordinate and organize the diverse
data sets that will be used, including the DNA sequencing data,
metadata, project-related information, and research protocols.
Assignment of policies and permissions for access to all AWS
resources is a critical role of the Research Informatics IT group.
Assistance with AWS command-line interface (CLI) was
provided through the IT support group as well. We set up AWS
accounts for each team member intensively involved in
developing the MAP-AWS with the support of our IT support
group and the online AWS Support Center.

Development of the Microbiome Data Analysis Pipeline
Using Amazon Web Services
AWS cloud provides various options for microbiome data
storage, computing, and analysis. For data storage, the Amazon
Simple Storage Service (S3) buckets were used. For microbiome
data computing, Amazon Elastic Compute Cloud (EC2)
instances (ie, virtual servers in the AWS cloud) were primarily
used, and for microbiome data analysis and specific
bioinformatics, statistical packages that included QIIME 2 [22]
and RStudio (RStudio, Boston, Massachusetts), were installed
within the EC2 instances. For most of the EC2 instances we
created we opted to use the Linux operating system, which has
an optimized central processing unit (CPU), memory, and
storage configurations [26]. During this specific developmental
stage, we produced a step-by-step tutorial on how to run
processes on microbiome data sets within AWS. This tutorial
included the topics: logging into AWS, data importation and
storage, data analysis using QIIME 2, and exportation of analysis
results. This newly developed MAP-AWS provides a complete
workflow to run microbiome data analysis in AWS.

The use of QIIME 2 for microbiome data analysis has been
tested by our group in a variety of computer systems, such as
the Linux operating system, the Mac operating system (OS),
and AWS cloud [24]. The QIIME 2 pipeline generates the
bacterial community’s information for each sample [22], and
this process includes two phases which are referred to as the
upstream and downstream stages (Figure 2). The upstream stage
consists of importing 16S rRNA sequences, ensuring sequence
quality control, constructing a feature table, and generating a
phylogenetic tree which illustrates the ecologic similarities of
the bacterial taxa present in a sample [24]. The feature table
describes the features present and the number of samples
associated with each feature in the sample set. The downstream
stage consists of taxonomic, diversity, and abundance analysis
[14,22]. In this stage, statistics and interactive visualizations of
the data are used to display the findings via figures and tables
[27].
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Figure 2. QIIME 2 workflow. QIIME: Quantitative Insights Into Microbial Ecology; OTU: operational taxonomic unit; PCoA: principal coordinates
analysis; ANCOM: analysis of composition of microbiomes.

Testing the Microbiome Data Analysis Pipeline Using
Amazon Web Services
To test the feasibility of the MAP-AWS, we undertook three
rounds of testing using a case-based formative approach to refine
the microbiome analysis pipeline. In round one, we trained two
novice students to use the MAP-AWS to determine where major
changes were needed to improve the usability of the content
and presentation formats of the tutorial and pipeline. Then, we
demonstrated the MAP-AWS to a group of cancer scientists to
get feedback regarding the content and presentation of the
tutorial. In round two, we conducted a pilot test of the workflow
in AWS cloud with a small training data set (19 deidentified
vaginal microbiome samples from women with gynecologic
cancers), which we had prepared for the purpose of training
research scientists in microbiome data analysis [24]. This step
enabled us to identify and troubleshoot issues before running a
larger microbiome data set. In round three, two team members
(JB and IJ) independently analyzed the same vaginal
microbiome data set (ie, 16S rRNA V3-V4 gene sequences with
corresponding metadata) using the MAP-AWS with the same
Greengenes classifiers to determine the reproducibility of the
pipeline. Final findings were compared between the two team
members. Lastly, we ran a larger sample (50 deidentified gut
microbiome samples) sequenced by the Emory Integrated
Genomics Core. For each project, we regularly tracked costs
and the processing times using the built-in QIIME 2 provenance
feature that captures system environment variables, including
processing time and system versions (ie, Linux and QIIME).

Dissemination of the Microbiome Data Analysis
Pipeline Using Amazon Web Services
After testing and refining the MAP-AWS processes and tutorial,
we expanded the use of this pipeline to other microbiome
projects within our team, including a gut microbiome and
colorectal carcinogenesis study which involved sequence and
metadata import, data quality control, results analysis, and model
building. We disseminated our pipeline through presentations
and workshops.

Ethical Consideration
All the microbiome data we used in this study have been
deidentified and no Institutional Review Board (IRB) approval
is needed.

Results

Description of the Developed Microbiome Data
Analysis Pipeline Using Amazon Web Services
The main components of the MAP-AWS include a
multidisciplinary research team, bacterial sequences and
corresponding metadata, Amazon S3 buckets for microbiome
data storage, Linux EC2 instances (with QIIME 2 and RStudio
installed) to run microbiome data analysis, and security keys to
create and manage the use of encryption (Figure 3). With our
platform, microbiome data analysis can be performed using
AWS’s CLI within the Linux operating system or in the Mac
OS system.
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Figure 3. The microbiome data analysis pipeline using AWS. AWS: Amazon Web Services; S3: Simple Storage Service; VPC: virtual private cloud;
QIIME: Quantitative Insights Into Microbial Ecology; EBS: Elastic Block Store; EC2: Elastic Compute Cloud.

We primarily used S3 buckets for storage and EC2 instances
for analysis. With our MAP-AWS, we used two specific types
of storage. The first was Amazon Elastic Block Store (EBS),
which is closely integrated with our EC2 instance. EBS is used
to store hard drive contents of EC2 instances, as well as
snapshots of these instances [28]. The other storage class used
was Amazon S3 bucket, which is simply cloud object storage.
We carefully planned permissions for storage, encryption, and
EC2 instance access. The AWS EC2 provides virtual machines
that are optimized for running CPU-intensive cloud-based
applications [28]. Depending upon the analysis and virtual server
purpose, our EC2 instances were configured for general purpose
or optimized specifically for memory, computational power, or
storage. For each EC2 instance, we were able to specify random
access memory (RAM), virtual CPUs, storage, and network
performance.

A Secure Shell (SSH) client (either a Mac OS terminal or
MobaXterm for Windows) was used to securely connect to our
EC2 instances, enabling remote access to a terminal through
which Linux commands could be entered to process data. The
AWS CLI was installed and used extensively to interact with
our AWS resources and infrastructure.

Next, we set up encryption to ensure our S3 buckets were
secured from unauthorized access. We assigned encryption at
the bucket level so that all objects moved into the bucket were
automatically encrypted.

Testing of the Microbiome Data Analysis Pipeline
Using Amazon Web Services

Feasibility
Two undergraduate nursing students were trained to use the
MAP-AWS tutorial we developed and were interviewed after
they finished performing analysis of the training microbiome
data set (the vaginal microbiome samples). They both

successfully completed the training data set analysis under the
guidance of the tutorial and our team member (IJ). Both
undergraduates were positive about the use of the MAP-AWS
and the tutorial, supporting the feasibility of the MAP-AWS.

Reproducibility
All steps performed using the MAP-AWS in this study were
tested with support from the QIIME 2 Development Team and
the AWS Support Center. A total of three incidents involving
the S3 bucket and EC2 instances needed addressing and were
resolved by the AWS Support Center during the MAP-AWS
development process. Two trained microbiome team members
(JB and IJ) independently analyzed the same vaginal
microbiome data set (ie, 16S rRNA V3-V4 gene sequences with
the corresponding metadata, n=19) using the MAP-AWS.
Comparisons of the final findings showed identical results in
upstream and downstream analyses (Figure 2) [24], supporting
the reproducibility of the MAP-AWS for microbiome data
analysis.

Cost and Efficiency
The 50 gut microbiome samples were successfully processed
within 4 hours with the MAP-AWS and subsequently processed
for microbiome diversity, taxonomy, and abundance analyses
using QIIME 2, version 2018.4 (Table 1). Performing
microbiome data analysis for the same data set with typical
client-server architecture took >6 hours. These running times
were retrieved from the QIIME 2 provenance. We duplicated
our efforts on a more recent QIIME 2, version 2019.4, and the
running times for completion were congruent with previous
results. Compared with standard methods of microbiome data
analysis, the MAP-AWS processed these samples efficiently
and at a low cost. We used a c4.4xlarge EC2 instance, which
costs $0.80 per hour. This pricing level is similar to the Nephele
pipeline published in 2017, a c3.4xlarge EC2 instance at the
time costing $0.84 per hour [23].
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Table 1. Running Time for the Gut Microbiome Sample Analysis (n=50).

Traditional methodsMAP-AWSaStage, step

Upstream stage

1 min 48 s4 sData import

6 h 38 min 49 s3 h 22 min 27 sQuality control (ie, Dada2)

<1 min32 sPhylogeny

Downstream stage

3 min 27 s1 min 23 sTaxonomy analysis

8 s2 sDiversity analysis

aMAP-AWS: Microbiome Data Analysis Pipeline Using Amazon Web Services.

Discussion

Key Findings
This paper developed a microbiome data analysis pipeline by
using AWS cloud and conducted a proof-of-concept test for
microbiome data storage, processing, and analysis. This pipeline
is highly reliable, computationally powerful, and cost effective.
This study was a proof of concept for building and testing a
newly developed pipeline (MAP-AWS) for microbiome data
analysis. This pipeline is efficient and highly cost effective. It
will provide a convenient environment to share analysis tools
and results between collaborators. To accurately assess and
utilize this data, we rely on the development of tools, pipelines,
and standard operating procedures to handle big data effectively
and efficiently via the AWS cloud. Microbiome pipelines using
on-demand EC2 instances showed a great capacity for
microbiome data analysis at a low cost. This pipeline improved
productive and insightful collaboration with clinical scientists
across different institutions to help the multidisciplinary research
team continue the collaborative use of AWS.

With growing interest in evaluating the human microbiome and
deciphering its relationship with health and disease, more
efficient and cost-effective tools are needed for microbiome big
data analysis. The purpose of this study was to develop and
evaluate the MAP-AWS platform for use by clinical scientists.
We described how researchers can construct their own
microbiome data analysis pipeline using AWS. The AWS cloud
can significantly expedite the microbiome analysis process and
provide a collaborative platform for sharing data and results
among research collaborators. The MAP-AWS tool successfully
completed all microbiome processing and analysis steps both
efficiently and reproducibly. The MAP-AWS not only maintains
essential reproducibility of processing steps and analyses but
also facilitates the efficiency and cost-effectiveness of
microbiome data analysis in contrast with basic, commonly
used methods of microbiome data analysis [12].

Compared with standard processing for big data analysis, the
AWS cloud brings extensive benefits to current microbiome
data analysis, including optimized computational capabilities,
flexible EC2 instance configurations, and robust security and
policies for all resources. Although common server and desktop
environments can provide microbiome processing capabilities,
AWS brings a supportive systems environment for storage,

computational, and analytical capabilities. For instance, many
methods in the microbiome platform benefit from
compute-optimized processing since their focus is serving high
performance computing targeted for compute-intensive
applications. The MAP-AWS includes an integrated tool with
a combined tutorial for using AWS tools (such as S3 bucket
retrieval and EC2 instances use) and performing raw data
processing, advanced QIIME 2 and RStudio analysis, and data
sharing and management between researchers. This MAP-AWS
platform establishes a common environment for sharing analysis
tools and results between project managers and researchers
across institutions. Given the appropriate permissions,
researchers internal to the University and external collaborators
can reliably rerun analyses and share findings. It is easy to
deploy the microbiome data platform in multiple regions around
the world with just a few clicks.

AWS cloud has been widely adopted for whole-genome
sequencing (WGS) analysis tasks. For large-scale WGS
analyses, AWS was shown to be an efficient and affordable
WGS analysis tool [29]. Specifically, Wang and colleagues
evaluated the performance of GT-WGS with a 55×WGS data
set (400 gigabyte fastq sequences), provided by the
genome-wide complex trait analysis (GCTA) 2017 competition,
and found that their system took only 18.4 minutes to finish the
analysis and that the cost of the whole process was only $16.50
(United States Dollars) [29]. Likewise, our initial microbiome
pilot study was completed quickly (within 4 hours) using the
MAP-AWS, in contrast with 2-3 days for runs using local
computers. Thus, implementing MAP-AWS can significantly
improve computing efficiency and speed up the translation of
research findings into clinical practice.

Several EC2 pricing models exist, including on-demand,
reserved, and spot instances. Users can increase or decrease
their computing capacity according to the real-time demand of
their applications with on-demand instances and by paying by
a specified hourly rate. We tested our microbiome pipeline using
on-demand instances, showing a great capacity for microbiome
data analysis at a low cost.

One of the biggest challenges facing researchers is the ability
to integrate and correlate the massive amounts of data produced
by these protocols and identify biologically relevant information
that can be used to formulate testable hypotheses. As a
proof-of-concept test for the utilization of AWS in microbiome
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data analysis, our findings support its value and affordability.
Our MAP-AWS efficiently integrated and correlated significant
amounts of omics data stored and utilized in a cloud-based
environment and provided a streamlined platform for
communication between researchers. Microbiome research is
on the precipice of producing large data sets of great magnitude.
To accurately assess and utilize this data, investigators must
rely on the development of tools, pipelines, and standard
operating procedures to handle big data effectively and
efficiently via the AWS cloud. Together, researchers, clinicians,
and computer scientists, with the help of AWS cloud computing
services, are poised to revolutionize microbiome research and
its applications in human health.

Our microbiome data analysis pipeline was undertaken within
a cancer nursing research group and tested with data sets of
small sample sizes. The technical pipeline should also be
applicable to other microbiome data sets, such as oral or skin
microbiome data. A dysbiotic human microbiome is associated
with a variety of human disease susceptibility [21,30], including
endocrine-related disorders (eg, diabetes [31] and inflammatory
bowel diseases [32]) and neurodevelopmental disorders (eg,
autism spectrum disorders [33] and Alzheimer’s disease [34]).
Therefore, the MAP-AWS can be extended to analyze the
microbiome data of various chronic diseases and conditions.
Our goal is to further test our MAP-AWS using large data sets.

In addition, the current pipeline is primarily embedded with
QIIME 2 and RStudio, which limits the use of other microbiome
analysis packages like Mothur [35]. As QIIME 2 is gaining
more attention as a bioinformatics tool, the MAP-AWS is an
ideal example of conducting microbiome data analysis with the
AWS cloud. As there is increased access to deidentified
microbiome data sets, such as the Human Microbiome Project
[10], American Gut [11], and the Qiita platform [36], the
MAP-AWS will provide our clinical scientists and clinicians a
new cloud-based tool to understand the role of the microbiome
in quality of care and patient outcomes.

Conclusions
This study was a proof of concept for building and testing a
newly developed pipeline (MAP-AWS) for microbiome data
analysis. This pipeline is efficient and highly cost effective. It
will provide a convenient environment to share analysis tools
and results between collaborators. The long-term goal for this
platform is to continue the collaborative use of AWS among
clinical scientists across different institutions to make our
multidisciplinary research team more productive and insightful.
A larger-scale testing of the MAP-AWS across different clinical
conditions will enhance communications between
multidisciplinary researchers and confirm our proposed
efficiencies for running a microbiome pipeline in a cloud-based
environment.
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