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Abstract

Background: Research on disease-disease association (DDA), like comorbidity and complication, provides important insights
into disease treatment and drug discovery, and a large body of the literature has been published in the field. However, using
current search tools, it is not easy for researchers to retrieve information on the latest DDA findings. First, comorbidity and
complication keywords pull up large numbers of PubMed studies. Second, disease is not highlighted in search results. Finally,
DDA is not identified, as currently no disease-disease association extraction (DDAE) dataset or tools are available.

Objective: As there are no available DDAE datasets or tools, this study aimed to develop (1) a DDAE dataset and (2) a neural
network model for extracting DDA from the literature.

Methods: In this study, we formulated DDAE as a supervised machine learning classification problem. To develop the system,
we first built a DDAE dataset. We then employed two machine learning models, support vector machine and convolutional neural
network, to extract DDA. Furthermore, we evaluated the effect of using the output layer as features of the support vector
machine-based model. Finally, we implemented large margin context-aware convolutional neural network architecture to integrate
context features and convolutional neural networks through the large margin function.

Results: Our DDAE dataset consisted of 521 PubMed abstracts. Experiment results showed that the support vector machine-based
approach achieved an F1 measure of 80.32%, which is higher than the convolutional neural network-based approach (73.32%).
Using the output layer of convolutional neural network as a feature for the support vector machine does not further improve the
performance of support vector machine. However, our large margin context-aware-convolutional neural network achieved the
highest F1 measure of 84.18% and demonstrated that combining the hinge loss function of support vector machine with a
convolutional neural network into a single neural network architecture outperforms other approaches.

Conclusions: To facilitate the development of text-mining research for DDAE, we developed the first publicly available DDAE
dataset consisting of disease mentions, Medical Subject Heading IDs, and relation annotations. We developed different conventional
machine learning models and neural network architectures and evaluated their effects on our DDAE dataset. To further improve
DDAE performance, we propose an large margin context-aware-convolutional neural network model for DDAE that outperforms
other approaches.
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Introduction

Background
The origin and treatment of disease is an important research
field in the life sciences, covering a wide range of research
topics such as comorbidity, complication, genetic disorder, drug
treatment, and adverse drug reaction. As disease is involved in
many areas, new scientific findings are frequently made or
updated.

Disease-disease association (DDA) is an important research
topic in the biomedical domain [1-5]. The influence of one
disease on others is wide ranging and can manifest in any
patient. Diabetes, for example, may cause macrovascular
diseases [6], such as cardiovascular disease [7] and
cerebrovascular disease [8]. Treating a disease without
consideration of potential DDAs may result in poor treatment
outcomes. Therefore, DDAs are often a prime concern for
researchers and doctors involved in drug discovery and disease
treatment. Figure 1 illustrates examples of DDAs in the literature
(refer to Multimedia Appendix 1 for more examples, including
comorbidity, complications, general associations, and risk
factors). There have been several studies attempting to generate
disease connectivity networks [3-5]. However, the enormous
and rapidly growing disease-related literature has not been
utilized.

Finding DDA in the literature is a time-consuming and
challenging task for researchers. First, there are huge numbers
of DDA papers to sort through, and existing search engines,
such as PubMed, do not mark up all relevant disease mentions
in search results. Although there are text-mining tools available

that could automatically identify diseases [9-11], genes
[10,12,13], chemicals [14,15], and associations among them
[16-22], they have not been integrated into a single interface to
assist researchers in searching through the latest DDA findings.
The main obstacle in creating a DDA extraction (DDAE) system
is the lack of a relevant dataset. Moreover, only a few
text-mining approaches [23] are suitable for extracting DDA.

In this study, we compiled a DDAE dataset consisting of 521
annotated PubMed abstracts. As it is hard for a human annotator
to distinguish one DDA type from another without reading a
broader context, such as a whole paragraph, we therefore
annotated only 3 DDA types: positive, negative, and null
associations:

1. Positive associations include comorbidity, complications,
physical associations, and risk factors.

2. Negative associations are counted when the text clearly
states that there is no association between 2 diseases.

3. Null associations are annotated when 2 diseases co-occur
in a sentence, but no association is stated, suggested, or
apparent.

In this study, we formulated DDAE as a supervised machine
learning (ML) classification task in which, given a sentence
containing a disease pair, the goal was to classify the pair into
one of the DDA types. For classification, we employed 2
machine learning models, support vector machine (SVM) [24]
and convolutional neural network (CNN) [25]. We compared
different combinations of SVM and CNN to maximize
performance, arriving at a novel neural network architecture,
which we termed as large margin context-aware CNN
(LC-CNN). LC-CNN achieved the highest F1 measure of
84.18% on our DDAE test set.

Figure 1. Disease-disease association extraction examples.
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Related Work
In this section, we first review published disease annotation
datasets. Then, we briefly review different methods of relation
extraction in biomedical domains.

Disease Annotation Datasets
Before identifying DDAs, we have to identify diseases in the
text first. Fortunately, there are many datasets for developing
such disease name recognition and normalization systems. The
National Center for Biotechnology Information (NCBI) disease
dataset [26] is the most widely used. For instance, Leaman and
Lu [9] proposed a semi-Markov model trained on an NCBI
disease dataset that achieved an F1 measure of 80.7%. However,
DDAs are not annotated in the NCBI dataset abstracts, limiting
its usefulness for the DDAE task.

As DDAs can give insights into disease etiology and treatment,
many studies focus on generating DDA networks [1-5]. For
example, Sun et al [4] used disease-gene associations in the
Online Mendelian Inheritance in Man [27] to predict DDAs
with similar phenotypes. Bang et al [3] used disease-gene
relations to define disease-disease network, and the causalities
of disease pairs are confirmed through using clinical results and
metabolic pathways. However, the constructed networks lack
text evidence and therefore cannot be used to develop a DDAE
dataset.

Xu et al [23] proposed a semisupervised iterative
pattern-learning approach to learn DDA patterns from PubMed
abstracts. They constructed a disease-disease risk relationship
knowledge base (dRiskKB) consisting of 34,000 unique disease
pairs. However, there are some limitations of dRiskKB that
make it hard to use in developing DDAE systems. First,
dRiskKB only provides positive DDA sentences. Owing to the
lack of negative instances, it cannot be used to train ML-based
classifiers. In addition, as the development of dRiskKB is based
on a pattern-learning approach, it only includes DDA sentences
with very simple structures and thus is not ideal for training a
DDA system capable of analyzing complicated sentences.

To solve the above problems, we developed a DDAE dataset.
Our dataset was different from dRiskKB in 3 aspects. First, our
DDAE dataset contained positive, negative, and null DDAs.
Second, it did not use patterns to annotate DDAs and therefore
included DDA sentences with more complex expressions.
Finally, it annotated DDAs in the entire abstract, allowing an
ML-based classifier to use document-level features.

Relation Extraction
Rule-based approaches are commonly used in new domains or
tasks that do not have large-scale annotated datasets. Lee et al’s
[28] approach is an example. They extracted protein-protein
interactions (PPIs) from plain text using handcrafted dependency
rules. Their approach did not require a training set, but it
achieved a high precision of 97.4% on the Artificial Intelligence
in Medicine (AIMed) dataset [29]. However, it was difficult for
them to create rules that can extract all PPIs, and their system,
therefore, achieved a low recall of 23.6%. Moreover, Nguyen
et al [30] used predicate-argument structure (PAS) [31] rules
to extract more general relations including PPI and drug-drug

interaction. Their rules detected PPIs by examining where
relation verbs and proteins are located in the spans of predicates
and arguments. Their approach required less effort to design
rules and was able to adapt to different relation types. Compared
with Lee et al’s system, it achieved a higher recall of 52.6% on
the AIMed dataset but a lower precision of 30.4%.

ML-based approaches can usually achieve relatively higher
performance than rule-based ones. For instance, Zhang et al
[32] used hybrid feature–based and tree-based kernels
implemented with SVM-LIGHT-TK [33] for PPI extraction.
The feature-based kernel uses SENNA (Semantic/syntactic
Extraction using a Neural Network Architecture)’s pretrained
word-embedding model [34]. In the tree-based kernel
configuration, the sentence dependency structure is used as
input. The structure is decomposed into substructures and then
transformed into one-hot encoding features for SVMs. Zhang
et al’s approach achieved an F score of 69.7% on the AIMed
dataset, which is higher than Lee et al’s 26.3% and Nguyen et
al’s 38.5%.

In addition to sentence-level features, document-level features
are also useful in relation extraction. Peng et al [17] proposed
an SVM-based approach for document-level chemical-disease
relation (CDR) extraction. They used statistical features, such
as whether a chemical or disease name appears in the title, to
classify document-level chemical-disease pairs. By adding the
features, they improved their F score from a baseline of 46.82%
to 57.51% on the BioCreative V CDR dataset [35]. Our
LC-CNN is partly inspired by Peng et al’s [17] statistical
features; our context vector adopts document-level features for
sentence-level DDA classification.

Although the abovementioned feature-based approaches have
made gains in many relation extraction tasks [36-38], it is
difficult to find novel features to further improve performance.
Several researchers are exploring deep learning approaches as
a way forward. For instance, Peng and Lu [39] proposed a
multichannel dependency-based CNN model (McDepCNN).
McDepCNN uses 2 channels to represent an input sentence.
One is the word-embedding layer, whereas the other is the
head-word-embedding layer. Each embedding layer concatenates
pretrained word-embedding vectors, one-hot encodings of part
of speech, chunks, named entity labels, and dependency words.
In PPI prediction, Peng and Lu’s CNN model achieved F scores
of 63.5% on AIMed and 65.3% on BioInfer.

For drug-drug interaction extraction, Lin et al [20] proposed a
syntax CNN (SCNN) that integrates syntactic features, including
words, predicates, and shortest dependency paths into a CNN.
They trained their model with word2vec [40] and the Enju parser
[31]. The Enju parser breaks the sentence into PASs, and
non-PAS words or phrases are removed. The pruned sentences
are then used to train the word-embedding model. Their
approach achieved an F score of 68.6% on the 2013
DDIExtraction dataset.

Our LC-CNN was also inspired by Zhao et al’s [20] SCNN
architecture with 3 main differences. First, we replaced the log
loss function with the hinge loss function. Second, SCNN uses
a fully connected layer for traditional features before merging
them with the CNN’s output. However, LC-CNN directly
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merges the CNN’s output with traditional features. Finally,
SCNN’s traditional features only use sentence-level information,
whereas LC-CNN also uses both sentence-level and
document-level features.

Methods

Study Process
In this section, we have first described the process of DDAE
dataset construction. We then introduced our LC-CNN
architecture in subsection The Neural Network Architecture.
Further, we described each layer of LC-CNN in subsection
Composite Embedding Vector to Output Layer of Combined

Sentence and Context Vector. Finally, we introduced backward
propagation for learning parameters of each layer.

Dataset Construction
The process of DDAE dataset construction is illustrated in
Figure 2. Our DDAE dataset consisted of abstracts found in
PubMed. To generate PubMed search queries related to DDA,
we selected all disease nodes of the MeSH [41] tree whose tree
number prefix starts with C and F, indicating diseases. We then
selected any nodes related to human diseases. This produced a
list of approximately 4700 disease names, which we then used
to retrieve 236,000 abstracts whose titles or content contain one
or more query terms.

Figure 2. Disease-disease association extraction dataset construction process. MeSH= Mesdical Subject Headings.

As some of these abstracts do not contain any DDAs, we used
simple heuristic rules and a disease name recognizer/normalizer
to select abstracts with a higher likelihood of containing DDAs.
The process was as follows:

1. We selected only abstracts published from 2013 to 2017.
2. We used DNorm [42] to annotate disease mentions and

their Medical Subject Heading (MeSH) IDs in these
abstracts.

3. To ensure that the selected abstracts contain rich DDAs for
training classifier, we removed abstracts that have fewer
than 3 sentences that contain at least two different disease
MeSH IDs.

4. To ensure the selected abstracts contain at least one DDA,
we applied a DDA-adapted version of Lee et al’s [28]
dependency tree-based relation rules and removed any
abstract not matched by any rule.
5. We randomly selected 521 abstracts from the remaining
abstracts for annotation.

For the manual annotation step, we employed 2 biomedical
specialists. Annotator 1 is a PhD candidate in a bioinformatics
program, whereas Annotator 2 is a full-time research assistant
in a hospital. Both have at least 6 years of biomedical
experience. After agreeing on initial annotation guidelines (refer
to Multimedia Appendix 1—Annotation Guideline), they used
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the brat rapid annotation tool [43] to annotate 10 abstracts and
then compare results. In the first independent annotation
processing, Cohen kappa value was 34%. Once both annotators
agreed that all annotations that indicate consistency is
satisfactory, they each annotated all remaining abstracts. Thus,
each abstract was annotated independently twice. Inconsistent
annotations were resolved afterward through discussion. The
final Cohen kappa value was 76%.

The Neural Network Architecture
We formulated relation extraction as a classification problem
in which, given a sentence containing a mention pair, the goal
was to classify the pair into one of relation types. For
classification, we propose an LC-CNN architecture as illustrated
in Figure 3. The network is fed input in 2 forms: sentence
representation and context representation (CR). Sentence
representation is a nemb x T matrix representing the sentence.

nemb and T are the length of composite embedding vector and
the length of the sentence, respectively. The sentence
representation uses only word embedding, part of speech (POS)
encoding and Named Entity (NE) distance information, and
parameters are learned through the next CNN and max-pool
layers, which outputs an m-dimension sentence-level feature
vector. The CR is a feature-rich n-dimension vector containing
both syntactic and document-level features, such as whether the
disease pair also appears in the title. Next, the m-dimension
vector and the n-dimension vector are concatenated to form the
final feature vector with (m+n) dimension. To compute the
confidence of each relation type, the feature vector is fed into
a fully connected layer, where we use a linear activation function
with categorical hinge loss [44]. The output layer is a
three-dimensional vector, with each dimension value
representing the confidence of a predefined relation type.

Figure 3. Large margin context-aware convolutional neural network (LC-CNN) architecture. BOW: Bag of words; POS: Part of speech; NE: Named
Entity.

Composite Embedding Vector
In a sentence, each word is represented as a composite
embedding vector, as shown in Figure 3 (or in Multimedia
Appendix 2). A composite embedding vector consists of 3 parts:
word embedding, POS one-hot coding, and the distance between
the word and disease pair. A matrix represents a sentence. The
matrix contains the composite embedding vectors in the
sentence, each placed in the order in its row. The sentence matrix
is a matrix of size nemb x T, wherenemb is the dimension of the
composite embedding vector and T represents the maximum
length of the sentence in the dataset.

Word Embedding
The embedding of a word is a mapping of the word to a vector
of real values. Generally, the word embeddings of semantically
similar words are closer together in the vector space. Word
embedding learned by neural networks has been demonstrated
to be able to capture linguistic regularities and patterns in
language models [40]. Therefore, it is commonly used in features

in popular NN approaches, such as CNN [20,39] and long-short
term memory (LSTM) [19]. In general, word embeddings are
learned from large corpora such as Wikipedia or PubMed. For
example, Pyysalo et al [45] applied word2vec to learn word
embeddings from different texts, including Wikipedia, PubMed
abstracts, and PubMed Central full-text papers, and developed
a word-embedding lookup dictionary. Here, we employed their
dictionary to generate word embeddings.

Part of Speech
The embedding of a word is a single vector and, therefore,
cannot fully represent the multiple syntactic/semantic roles of
a word like good, which can be either an adjective or a noun.
The POS feature is designed to provide syntactic information
(part of speech) to help the model separate the different semantic
senses of a word. We used Zhao et al’s [20] approach, in which
similar POSs are assigned to the same group. We divided POSs
into 11 groups, including adjectives, adverbs, articles,
conjunctions, foreign words, interjections, nouns, prepositions,
pronouns, punctuation, and verbs. If a word belongs to a POS
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group, the corresponding bit value will be 1; otherwise, it will
be 0.

Named Entity Distance
Zeng et al [46] proposed the use of NE distance (position
features) to improve a CNN by keeping track of how close words
are to the target nouns. We adopted their NE distance in this
study. The NE distance feature is a two-dimensional vector (d1,
d2). d1 and d2 represent the distance (number of words) between
the current word and the first and second diseases of the pair.

Context Representation Layer
Contextual information, such as pair and document information,
is very useful for classification and has been widely used in
previous research. The purpose of using contextual
representation is to introduce traditional contextual features into
a neural network architecture through simple representation.
We can then apply the fully connected layer to the context vector
to obtain a condensed vector that combines 2 different
representations.

Here are the features used in our contextual representation (refer
to Multimedia Appendix 3 for more details).

Bag of Words
Word embedding has been shown to represent abstract
information about words. However, word embedding can
sometimes change the original meaning of a word. For example,
not usually appears in negative relation statements. However,
in the word2vec model trained on news, the 3 words most
similar to not are do, did, and anymore. This violates our
intuition that don’t, doesn’t, and isn’t are more similar to not
in the relation statement. As the embedded vector words of
certain words may differ in the news and biomedicine domains,
we use BOW features for context vector. Our BOW features
include unigram, bigram, and surrounding diseases.

Part of Speech
The POS tags are commonly used for relation extraction. We
used one-hot encoding to represent each word’s POS tag type.

Named Entity Information
The number of diseases is useful when classifying relations.
We used 3 different features to capture information, including
the following:

1. The number of tokens between disease pairs.
2. The number of diseases between disease pairs.
3. The number of diseases in the sentence.

Document-Level Information
Biological papers usually follow a certain flow to describe their
experimental and scientific findings. Therefore, article structure
often provides valuable information about relations. We used
2 types of document-level feature, core pair and pair location.
The core pair features indicate whether the current disease is a
top-3 frequent disease pair in the article. The 3 most frequent
pairs are treated as 3 features. The pair location feature is used
to indicate the position of the sentence containing the relation
in the article. If the sentence is the article title, it usually contains
the subject of the article, which might be a relation investigated

in the paper. Similarly, if the sentence is the last sentence of the
abstract, it may summarize the main scientific discovery of the
article. We used 3 binary features to represent relation pairs that
appear in the title, the first sentence of the abstract, the last
sentence of the abstract.

Output Layer of Combined Sentence and Context
Vector
We used mconcat = [sr cr] to represent the concatenation of
sentence representation sr and context representation cr. The
size of the vector mconcat is nconcat = nsr + ncr. We then applied
a fully connected layer to mconcat to obtain a 3D vector out, each
value of which refers to the confidence of a predefined category.

out = Wout x mconcat + Biasout

Wout is a matrix with a size of nout x nconcat and Biasout is a bias
matrix with a size of nout x 1. nout is the number of predefined
categories. out is the output of this fully connected layer and is
defined as matrix Wout multiplied by matrix mconcat, plus bias
Biasout Therefore, the size of out is nout x 1. out is the final output
of the prediction, and each dimension value of out refers to the
score of its predefined category. out is calculated by a linear
activation function, the values of out could be R × R × R.

Backward Propagation With Large Margin Loss
We used the following parameters:

1. k weight matrices, convWf each with a size of ne x f. Here,
ne is the size of the input embedding vector of a word, and
f is the window size of the filter.

2. k biases, convBf, each with size of ne x 1.
3. Weight matrix Wsr with a size of nsr x npool. Here, nsr is

the output dimension of sentence vector and a
hyperparameter.

4. Bias Biassr with a size of nsr x 1.
5. Weight matrix wout with a size of nout x nconcat. Here,

nout is the number of relation types.
6. Bias BiasmaxF with a size of nout x 1.

In forward propagation, given those parameters, we calculated
out with the methods mentioned in section The Neural Network
Architecture to Context Representation Layer. In backward
propagation, gradient descent is used to learn these parameters
through minimizing the hinge loss of out. Given a sentence and
its disease-disease pair, we defined a vector y as the pair’s
relation label vector. y is a 3D vector, and each dimension value
of y represents the score of one relation type. According to the
definition of hinge loss [44], the value is either -1 or 1. 1 means
that the pair belongs to the relation type, whereas –1 means it
does not. Therefore, one value of the 3D vector must be 1, and
the others must be –1. For instance, the 3 vectors <1, –1, –1>,
<–1, 1, –1>, and <–1, –1, 1> indicate that 3 vectors are Positive,
Negative, and Null, respectively. We used the hinge loss function
to evaluate the loss between prediction out and its truth label y;
a larger loss indicates a larger gap between out and y. The hinge
loss function is defined as follows:

loss(out, y)=sumi=1 tonout(max(1 - yi * outi, 0))/nout
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Here, yi is the i-th dimension value of y. out is calculated by
using forward propagation (sections The Neural Network
Architecture to Context Representation Layer), and each
dimension value of o refers to the prediction score of one
predefined relation type. outi is the i-th dimension value of out.
outi belongs to R. If outi is a positive value, then the pair may
be the i-th relation type. Otherwise, if outi is a negative value,
then the pair is less likely to be the i-th relation type.

In the equation, 1 is the value of the decision boundary. Ideally,
yi * outi will be larger than the decision boundary value. If yi

and outi have the same sign, then yi * outi will be a positive
value belong to R. If yi * outi is larger than the decision
boundary value 1, then the loss(out, y) must be 0. If yi * outi is
smaller than the decision boundary value 1, then the loss(out,
y) must be 1 - yi * outi which is equal to the cost. If yi and outi
are different signs, then yi * outi will be a negative value ε R.
Therefore, the loss(out, y) is a value greater than 1.

Given the training set

T={(x(i),y(i)) | i = 1,…, N },

x(i) is the i-th instance in the training set, y(i) is its label vector,
and N is the number of training instances. Weight learning
consists of the following optimization:

argminconvWf, convBf, Wst, Biassr, Wout, Biasout loss(out,y)

Finally, mini-batch stochastic gradient descent [47] is applied
to update the learned parameters in each iteration.

Results

Dataset
Currently, there are no available annotated datasets for training
DDA extraction systems. To create one, we used our DDAE
dataset development process, described in section Dataset
Construction. The DDAE dataset consists of 521 annotated
abstracts. After annotation, we used Cohen kappa coefficient
to evaluate annotation consistency. The final kappa value is
76%, suggesting a high level of agreement.

For the experiments in this study, we divided our DDAE dataset
into a training set of 400 abstracts and a test set of 121 abstracts.
Before testing, we tuned the hyperparameters on one-third of
abstracts randomly chosen from the training set called tuning
set. Finally, our classifiers were trained on the whole training
set and evaluated on the test set. A summary of the final DDAE
dataset is shown in Table 1.

Table 1. Summary of disease-disease association extraction dataset.

Total, nTest set, nTraining set, nType

521121400Abstracts

636915494820Sentences

12,34628249522Diseases

11,50524199086Total pairs

31616232538Positive pairs

16135126Negative pairs

818317616422Null pairs

Experiment Setup
We conducted 3 experiments to evaluate our LC-CNN. The first
experiment was designed to measure the effects of different NN
architectures and ML models. In the second experiment, we
evaluated the effects of different approaches combining context
features with NN methods. In the third experiment, we evaluated
the effects of different word embeddings. The hyperparameters
are listed in Multimedia Appendix 4. The performances of

experiments on the tuning set can be found in Multimedia
Appendix 5.

Our system is implemented on TensorFlow with Keras and runs
on an Nvidia GTX 1080ti GPU. The process used in our
experiments to generate the word-embedding model can be
found in Multimedia Appendix 6.

Evaluation Metric
We used the F1 measure to evaluate system performance. The
precision and recall are defined as given in Figure 4.
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Figure 4. Precision and recall formula.

Experiment 1—Performance Comparison With Other
Models
The performance comparison between LC-CNN and different
methods is listed in Table 2. It shows the performances on the
tuning and test sets. The NN models (models 1 to 3) use only
sentence representation. The CRcross-entropy and SVM methods
use only CR. CRcross-entropy is implemented using a single hidden
fully connected layer with the context vector as its input layer,
and its architecture can be found in Multimedia Appendix 7.
Furthermore, we also compared LC-CNN with LSTM and
bidirectional LSTM (BiLSTM) models. They have been used
in many relation extraction tasks, such as those seen in the
studies by Hsieh et al and Zhao et al [19,48]. In our experiment,
we were surprised to find that LSTM achieved the lowest F1
measure (65.02%) on the test set among all tested models.
Furthermore, we also evaluated the performance of SCNN,
Bidirectional Transformers for Language Understanding (BERT)
[49], and BioBERT [50]. As we would like to compare the
architecture of SCNN with LC-CNN, LC-CNN and SCNN use
the same sentence representation, CR, and hinge loss function.
The architecture of SCNN is illustrated in Multimedia Appendix
8.

As shown in Table 2, NN models trained on the entire training
set (models 1 to 3) performed worse on the test set than on the
tuning set. One potential reason is that the selected
hyperparameters and parameters may be less likely to find
unseen data, which could cause the hyperparameters and

parameters of the NN models to overfit the tuning set. This
problem is especially obvious in the LSTM and BiLSTM
models. In contrast, CRcross-entropy, SVM, and LC-CNN models
trained on the entire training set with context information
performed better on the test set than on the tuning set.

Furthermore, as shown in Table 2, CNN and CRcross-entropy

performed similarly on the tuning set. The F1 measures of CNN
and CRcross-entropy were 75.35% and 75.76%, respectively. CNN’s
recall rate was better than CRcross-entropy’s recall rate by 2.84%,
whereas CRcross-entropy’s precision was 3.95% higher than that
of CNN. This may be because the document feature provides
CRcross-entropy with the information on the entire document, thus
causing the model to generate fewer false positive cases. As
CNN does not directly encode document information, it predicts
more FPs. However, as CNN does not use any particular feature
to separate positive, negative, and null relation pairs, it may be
able to extract potential positive and negative pairs missed by
CRcross-entropy, resulting in higher recall rates. In addition, the
SVM and CRcross-entropy use the same input features, but SVM
mainly uses large margin for learning. The result shows that
the SVM implemented with LibSVM [24] outperforms the
CRcross-entropy by an F1 measure of 2.83%. Moreover, LC-CNN
is able to combine the advantages of CNN and SVM to achieve
the highest precision/recall/F1 measure among the tested models
and outperforms SCNN, BERT, and BioBERT by F1 measures
of 3.25%, 2.06%, and 1.91, respectively.
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Table 2. Performances of different models. P: Precision; R: Recall; F: F1-Measure.

Test setTuning setModelInput

F (%)R (%)P (%)F (%)R (%)P (%)

65.0263.9566.1367.7670.1565.53LSTMbSRa

65.4065.6465.1671.9070.1273.78BiLSTMcSR

73.3271.8474.8675.3575.3975.31CNNdSR

77.4977.1977.7875.7672.5579.26CRcross-entropyCRe

80.3282.2978.4477.8681.0374.86SVMfCR

80.9387.4475.3183.5288.3079.23SCNNgSR+CR

84.1885.0082.3685.0787.7282.58LC-CNNhSR+CR

82.1285.2379.2478.7280.2777.23BERTSentence+pair

82.2785.3580.2481.9583.7580.22BioBERTSentence+pair

aSR: sentence representation.
bLSTM: long-short term memory.
cBiLSTM: bidirectional long-short term memory.
dCNN: convolutional neural network.
eCR: context representation.
fSVM: support vector machine.
gSCNN: syntax convolutional neural network.
hLC-CNN: Large margin context-aware convolutional neural network.

Experiment 2—Effect of Different Uses of Context
Information
To demonstrate the advantage of integrating CNN and context
information in a single LC-CNN architecture, we evaluated
different ways of combining them. The performances of these
combinations are shown in Table 3. There are 3 baseline models
that use only either CNN or context information. Baselines 1
to 3 are CRcross-entropy, SVM, and CNN and are used in
Experiment 1. Only CRcross-entropy and SVM use contextual
information.

SVM + CNN is an intuitive method in which the output vector
of CNN is considered an additional feature vector of SVM, and
its architecture is illustrated in Multimedia Appendix 9. As
shown in Table 3, the F1-measure of SVM + CNN is
significantly lower than that of SVM by 6.98%. One possible
reason is that the CNN used in SVM + CNN is adjusted on the
tuning set, so it causes the model to overfit CNN predictions,
making it difficult to learn feature weights well.

We designed the LC-CNN to learn the model in a single stage.
LC-CNN achieves an F1 measure of 84.18% on the test set,
which is the highest score among all methods and outperform
SCNN. The results showed that LC-CNN can learn CNN and
context information well in a single stage.
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Table 3. Performance of combined classifiers. P: Precision; R: Recall; F: F1-Measure.

F (%)R (%)P (%)Method

77.4977.1977.78Baseline 1 (CRa
cross-entropy)

80.3282.2978.44Baseline 2 (SVMb)

73.3271.8474.86Baseline 3 (CNNc)

80.9387.4475.31SCNNd

84.1885.0082.36LC-CNNe

73.3472.2674.45SVM+CNN (2-stage)

aCR: context representation.
bSVM: support vector machine.
cCNN: convolutional neural network.
dSCNN: syntax convolutional neural network.
eLC-CNN: large margin context-aware convolutional neural network.

Experiment 3—Effect of Composite Embedding
Vectors on Large Margin Context-Aware
Convolutional Neural Networks
In our third experiment, we evaluated the effect of different
composite embedding vectors on LC-CNN (the effect of
different features on LC-CNN can be found in Multimedia
Appendix 10). The performance on the test set is shown in Table
4. We compared 3 different word embeddings. The word
embeddings of LC-CNNPubMed are from Pyysalo et al [45], who
learned them from Wikipedia, PubMed abstracts, and PubMed
Central full texts. The word embeddings of LC-CNNNews are

learned from Google News using word2vec. In contrast,
LC-CNNno pretrain does not use any pretrained word embeddings.
Its word embeddings are treated as parameters and are learned
through training LC-CNNno pretrain on the training set. Moreover,
we also evaluated the effect of 3 different embedding features
(word embedding, POS, and NE distance) by removing them
individually from the LC-CNNPubMed.

As shown in Table 4, the model with PubMed word embeddings
(LC-CNNPubMed) outperformed LC-CNNNews and LC-CNNno

pretrain. In addition, our removal tests indicated that both POS
and NE distance have strong impact on performance.

Table 4. The effect of different composite embedding vectors on large margin context-aware convolutional neural network performance. P: Precision;
R: Recall; F: F1-Measure.

F (%)R (%)P (%)Method

84.1885.0082.36LC-CNNa
PubMed

83.4187.3679.80LC-CNNnews

81.9786.5877.83LC-CNNno pretrain

82.1984.2680.23LC-CNNPubMed—POSb

82.1187.0877.68LC-CNNPubMed—distance

aLC-CNN: large margin context-aware convolutional neural network.
bPOS: part of speech.

Discussion

Large Margin Context-Aware Convolutional Neural
Network Error Cases Distribution
We randomly sampled approximately 60 error cases of the
LC-CNN’s predictions, and their distribution is illustrated in
Table 5. FP and FN denote the false positive and false negative
cases, respectively. As shown in Table 5, the symptom/subclass
is a common error category in the FPs, and it contains a ratio
of 28% in the sampled error cases. The symptom/subclass
indicates that a disease is either a subclass or a symptom of

another disease in the FP/FN disease pair. For example, an FP
case: “Other large-artery aneurysms, including carotid,
subclavian, and iliac artery aneurysmsDISEASE1, have also been
associated with Marfan syndromeDISEASE2. --- PMID:23891252”
[51].

Here, the carotid, subclavian, and iliac artery aneurysms are 3
Traumatic syndrome for Marfan syndrome. They are the
symptoms of Marfan syndrome. The symptom is not included
in our DDA definition. Therefore, iliac artery aneurysmsDISEASE1

does not have a relation with the Marfan syndromeDISEASE2.

However, in this case, the keyword phrase been associated with
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makes LC-CNN predict it as positive relation, and thus results
in an FP case.

In contrast with the FP cases, the FN cases are relatively sparse,
and most of them cannot be categorized. For example,
“CONCLUSION: CataractDISEASE1, uncorrected refractive error,
and fundus diseases are ranked in the top 3 causes of moderate
to severe visual impairment DISEASE2 and blindness in adults
aged 50 years or more in rural Shandong Province. --- PMID:
23714032” [52].

In the sentence, Cataract is one cause of visual impairment;
however, the description also lists the other 2 diseases that cause
visual impairment. For example, “it can be associated with any
type of vision lossDISEASE1 including that related to
maculardegenerationDISEASE2, corneal diseaseDISEASE3, diabetic
retinopathyDISEASE4, and occipital infarctDISEASE5. ---
PMID:24339694” [53].

Here, the LC-CNN correctly identifies the relation between
DISEASE1 and DISEASE2. However, it failed to identify the
relations between DISEASE1 and the other diseases
(DISEASE3, DISEASE4, and DISEASE5).

Table 5. The distribution of sampled large margin context-aware convolutional neural network error cases.

Ratio (%)DescriptionType, category

FPa

28A disease is a symptom/subclass of another diseaseSymptom/subclass

242 diseases co-occur in the sentenceCo-occur

82 diseases are negative relationNegation

40The error cannot be categorizedOthers

FNb

23There is an obvious relation keyword for disease pairSimple FN

162 diseases are negative relationNegation

61No obvious relation keyword, or the statements of DDAc are too complicatedOthers

aFP: False positive.
bFN: False negative.
cDDA: disease-disease association.

The Result of Using Automatic Annotated Disease
Mentions
In our experiment, we used the manually annotated disease
mentions, which may not reflect the actual performance of the
fully automated DDAE task. Hence, we conducted an
experiment, in which we used the TaggerOne [9], a
state-of-the-art disease mention recognizer/normalizer, to
annotate the disease mentions of the test set. Then we used the
LC-CNN to extract DDAs from the TaggerOne-annotated test
set. As the boundaries of some predicted mentions may be
inconsistent with the gold mentions, we used an approximate
matching to allow this. In the fully automatic process, the
LC-CNN achieved a Precision/Recall/F1 measure of
75.28/55.03/63.57, respectively. The recall is significantly lower
because it failed to recognize some diseases. However, the
performance is reasonable but 7.08% lower than that of the
semiautomatic process (using gold disease mentions).

Principal Findings
Our objective was to develop a DDAE dataset and a neural
network–based approach to extract DDAs. In our experiments,
the LC-CNN trained on our dataset achieved an F1 measure of
84.18%. We also compared LC-CNN with common NN models
including CNN, Bi-LSTM, and SVM. The results showed that
the LSTM and BiLSTM models achieved relatively lower F1
measures of 65.02% and 65.40%, respectively. This may be

because the hyperparameters and parameters tend to overfit the
training set. The CNN and SVM models achieved relatively
higher F1 measures of 73.32% and 77.49%, respectively, but
LC-CNN still outperformed all tested methods. In addition, the
results showed that the 2-stage SVM + CNN model scored
significantly lower in terms of F1 than SVM and LC-CNN by
6.98% and 10.84%, respectively. This suggests that simple
methods may achieve better results than complex ones.
Furthermore, in our experiments, the model with PubMed word
embeddings (LC-CNNPubMed) outperformed the LC-CNNNews

and LC-CNNno pretrain models, indicating that PubMed word
embeddings may be more compatible with our DDAE dataset.

Conclusions
In this paper, we proposed a text-mining approach for
automatically extracting DDAs from abstracts. We collected
disease-related abstracts from PubMed and annotated the first
publicly available DDAE dataset consisting of 521 abstracts
and 3322 disease-disease pairs. Moreover, to extract DDAs, we
used several different ML models, including BiLSTM, CNN,
and SVM. We also evaluated the effect of combining CNN and
context features. Finally, we implemented a novel neural
network called LC-CNN to integrate context features and CNN
through the large margin function. Our experiment results
showed that LC-CNN achieved an F1 measure of 84.18%, the
highest among the tested models.
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