
Original Paper

Automatic Detection of Hypoglycemic Events From the Electronic
Health Record Notes of Diabetes Patients: Empirical Study

Yonghao Jin1, BSc; Fei Li1, PhD; Varsha G Vimalananda2,3, MPH, MD; Hong Yu1,2,4,5, PhD
1Department of Computer Science, University of Massachusetts Lowell, Lowell, MA, United States
2Center for Healthcare Organization and Implementation Research, Bedford, MA, United States
3Section of Endocrinology, Diabetes and Metabolism, School of Medicine, Boston University, Boston, MA, United States
4Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States
5Department of Computer Science, University of Massachusetts Amherst, Amherst, MA, United States

Corresponding Author:
Hong Yu, PhD
Department of Computer Science
University of Massachusetts Lowell
220 Pawtucket St
Lowell, MA, 01854
United States
Phone: 1 9789343620
Email: Hong_Yu@uml.edu

Abstract

Background: Hypoglycemic events are common and potentially dangerous conditions among patients being treated for diabetes.
Automatic detection of such events could improve patient care and is valuable in population studies. Electronic health records
(EHRs) are valuable resources for the detection of such events.

Objective: In this study, we aim to develop a deep-learning–based natural language processing (NLP) system to automatically
detect hypoglycemic events from EHR notes. Our model is called the High-Performing System for Automatically Detecting
Hypoglycemic Events (HYPE).

Methods: Domain experts reviewed 500 EHR notes of diabetes patients to determine whether each sentence contained a
hypoglycemic event or not. We used this annotated corpus to train and evaluate HYPE, the high-performance NLP system for
hypoglycemia detection. We built and evaluated both a classical machine learning model (ie, support vector machines [SVMs])
and state-of-the-art neural network models.

Results: We found that neural network models outperformed the SVM model. The convolutional neural network (CNN) model
yielded the highest performance in a 10-fold cross-validation setting: mean precision=0.96 (SD 0.03), mean recall=0.86 (SD
0.03), and mean F1=0.91 (SD 0.03).

Conclusions: Despite the challenges posed by small and highly imbalanced data, our CNN-based HYPE system still achieved
a high performance for hypoglycemia detection. HYPE can be used for EHR-based hypoglycemia surveillance and population
studies in diabetes patients.

(JMIR Med Inform 2019;7(4):e14340) doi: 10.2196/14340
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Introduction

An estimated 29.1 million Americans aged 20 years or older
have diabetes mellitus [1]. Current standards of care call for
stringent glycemic control to prevent the complications of
diabetes. Intensive drug therapy, particularly in older adults,
increases the frequency of hypoglycemia, defined as blood

glucose less than 70 mg/dL [2]. Treatment-associated
hypoglycemia is the third-most common adverse drug event in
patients with diabetes mellitus. Severe hypoglycemia, requiring
third-party help or with blood glucose below 54 mg/dL, is
associated with seizures, coma, and death and results in about
25,000 emergency department visits and 11,000 hospitalizations
annually among Medicare patients in the United States [3]. In
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addition, mild hypoglycemia causes troublesome symptoms,
such as anxiety, palpitations, and confusion, and is associated
with increased mortality. A cross-sectional study of Veterans
Health Administration patients with diabetes indicated that 50%
of those aged 75 years or older taking insulin and/or
sulfonylureas were at risk of hypoglycemia [2].

Electronic health records (EHRs) are important resources for
documenting hypoglycemia [3]. However, studies have shown
that many hypoglycemic events are not represented within the
structured EHR information but are described in EHR notes [4].
Manual chart review could be prohibitively expensive compared
to automatic methods [5,6]. Automatically extracting
hypoglycemia-related information from EHR notes can be a
valuable complement to structured EHR data for guiding the
management of diabetes, developing high-risk alerts, monitoring
the impact of quality-improvement work, and informing research
on hypoglycemia prevention [3]. In clinical settings, similar
systems could be used to prefill structured EHR information
from patient notes.

However, reliably detecting hypoglycemic events in EHR notes
is very challenging. First, the descriptions of hypoglycemia vary
broadly across clinical notes (eg, “patient with hypoglycemia,”
“she has low bs [blood sugar] level,” and “bs is in low 20”) and
it is difficult to manually specify rules to accurately detect all
the variations. Second, hypoglycemia, as with most adverse
events, is relatively rare. Therefore, it is difficult to collect
enough patient data to train a high-performing machine learning
model.

In this paper, we are aiming to develop a machine
learning–based natural language processing (NLP) system that
is able to reliably detect hypoglycemic events from EHR notes.
As we are the first group to develop such a system, there are no
publicly available reference datasets and baseline models for
this task. We assembled an annotated dataset from 500 EHR
notes, with sentences labeled as hypoglycemia related or not
by experts. We trained and evaluated different sentence
classification models on this dataset to find the best model
architecture and hyperparameter settings for this task.

Methods

Dataset
With approval from the Institutional Review Board at the
University of Massachusetts Medical School, we randomly
selected 500 deidentified EHR notes from among all diabetic
patients who had been treated at the UMass Memorial Medical

Center in 2015. Since hypoglycemia is a relatively rare event
in the general population [2,3], we only selected notes containing
hypoglycemia code 251 from the International Classification
of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM):
Other disorders of pancreatic internal secretion. We selected
only these notes to increase the frequency of hypoglycemia
occurrence and still cover most of the patterns in descriptions
of hypoglycemic symptoms.

For annotation, we divided each note into sentences with the
natural language toolkit [7]. Two domain experts annotated
each sentence as containing a hypoglycemic event (Positive) or
not (Negative). A sentence was annotated as Positive if it
described any hypoglycemia-related diagnosis or symptoms
(eg, “patient has low blood sugar level”). To measure the
accuracy of the annotation, we randomly selected 50 annotated
EHR notes and asked a third domain expert to review the
annotations in those notes. The third domain expert agreed with
all existing annotations, which reflects the high quality of our
annotation.

Problem Formalization
We formalized the detection of hypoglycemic events as a
sentence classification problem: given sentence x, our models
will classify its category y as either Positive or Negative. We
proposed three deep learning models to tackle the classification
task, the details of which are described in the following section.

Model Designs

Deep Learning Model

Overview

Deep learning models have been widely adopted in various
machine learning tasks, including computer vision [8,9], speech
recognition [10], and NLP [11-13]. These models typically take
raw data as input and apply one or more hidden layers of
transformation to automatically learn the mapping between
input and output. Deep learning models have already been
investigated in sentence classification problems [14]. In this
paper, we followed Kim’s work [14] by adopting a feed-forward
neural network architecture (see Figure 1). Our model,
High-Performing System for Automatically Detecting
Hypoglycemic Events (HYPE), is composed of three layers: an
input layer, a hidden layer, and an output layer. We investigated
three kinds of hidden layers: recurrent neural network (RNN)
[15], convolutional neural network (CNN) [16], and temporal
convolutional neural network (TCN) [17]. We describe the
details of our system in the following sections.
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Figure 1. Model architecture of our High-Performing System for Automatically Detecting Hypoglycemic Events (HYPE). The architecture can be
divided into three parts: (1) an input layer computing word embeddings for each word, (2) a sentence embedding layer always generating sentence
vectors of a fixed dimension regardless of the input sentence length, and (3) an output layer projecting the sentence vector onto a probability score for
each class.

Input Layer

Given a sentence, we first tokenized it into l words. We then
represented each word by a distributed vector using an
embedding resource that was pretrained using Word2Vec on a
combined text corpus of PubMed and PubMed Central Open
Access [18,19]. In this work, we used 100-dimensional
pretrained embeddings. For the words that were not in the
pretrained embeddings, we randomly initialized them.
Specifically, the input layer takes a tokenized sentence
containing l words as input and outputs an ln matrix W, where
the i-th row of W is the n-dimensional embedding of the i-th
word in the sentence.

Hidden Layer

The dimension of the matrix W we get from the input layer is
ln, where l is the sentence length. Therefore, W cannot be
directly processed by a standard feed-forward neural network.
To handle this problem, we used a hidden layer to transform W
to a fixed-length vector C. In this work, we experimented with
three variations: RNN, CNN, and TCN.

For RNN, we used long short-term memory (LSTM) [20], which
is a common type of neural network for processing sequential
data [21,22] (see Figure 2). Given a matrix W, we sequentially
fed each row vector into the LSTM unit, along with the hidden
vector generated at the previous step. We then used the hidden
vector at the previous step, hl, as the representation of this
sentence. At the same time, we could process the sentences in

both forward and reverse orders using a bidirectional version
of the RNN. The final sentence vector H is the concatenation
of the last vectors from both directions hl and hl. A formalized
description and details of the RNN are provided in Multimedia
Appendix 1.

For the CNN, we utilized a widely used architecture [14] (see
Figure 3). Specifically, we applied several filters with
fixed-length windows to slide on the sentence. For the i-th filter,
it generated multiple value ci=[ci,1, ci,2, ..., ci,l-m+1], where m is
the length of the window. Next, a max-over-time pooling was
applied to c to produce the output value of this filter. Finally,
the outputs of these filters were concatenated to form the
sentence representation H. A formalized description and details
of the CNN are provided in Multimedia Appendix 1.

For the TCN, we employed a recently proposed architecture
[17]. It utilized a one-dimensional fully convolutional network
and a causal convolution network at the same time. In a fully
convolutional network, the output layer is the same length as
the input layer after the convolution operation. The causal
convolution ensures that there is no leakage of information from
the future to the past (ie, the output at time t is convolved only
with elements from time t and earlier in the input layer). Dilated
convolution and residual connections were used in each layer
to help maintain a long history size and train a deep network
[23]. A formalized description and details of the TCN are
provided in Multimedia Appendix 1.
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Figure 2. Recurrent neural network layer with forward and backward connections. In a unidirectional setting, the backward connections (dashed lines)
are absent.

Figure 3. Convolutional neural network layer. Each color represents a different filter with possibly different window size. The max pooling operation
produces a single signal value for each filter and the sentence vector is constructed by concatenating signal values from all filters.

Output Layer

The output layer predicts whether the current sentence contains
a hypoglycemic event (Positive) or not (Negative), based on the
hidden representation H from the previous layer. The output
layer squashes the hidden representation to a two-dimensional
vector (ie, matrix multiplication) and transforms it to probability
scores of Positive and Negative classes (ie, computing softmax).
To train our model, we used the cross-entropy loss and standard
backpropagation algorithm. The models were trained for 50
epochs with early stopping (ie, the parameter settings with the
best performance on the development set were chosen for
evaluation on the testing set).

Baseline Model

We applied support vector machines (SVMs) [24], commonly
used learning algorithms for classification problems, as our
baseline model. SVMs have been shown to outperform neural

network models in some clinical applications [25]. SVMs use
kernels to separate data points belonging to different classes in
a nonlinearly transformed space. We used the scikit-learn
package, version 0.19.0 [26], in Python, version 2.7 (Python
Software Foundation), to implement the SVM model and
performed grid search for the best hyperparameter settings, such
as different kernel functions, down-sampling rate, class weights,
penalty parameters, and various n-grams. Training was repeated
until convergence of the cost function. We experimented with
two kinds of feature vectors: word embedding and term
frequency-inverse document frequency (TFIDF) matrix. With
word embedding vectorization, each sentence is vectorized by
the mean of its word embeddings. With TFIDF vectorization,
each sentence is vectorized by a long sparse vector with the
dimension equal to the vocabulary size. Each dimension of the
vector is the TFIDF of the corresponding word in the sentence
with respect to the training set corpus; common stop words are
removed.
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Hyperparameter Settings of Deep Learning Models
We performed a grid search for the optimal hyperparameter
settings for the deep learning models using the development set
(see Table 1). Overall, the final performance was not very
sensitive to the hyperparameter settings. However, we observed
that different choices of the learning rate could greatly affect

the convergence time. Our best-performing model was trained
using the Adam algorithm [27] with an optimum batch size of

64 and learning rate of 5×10-5. To prevent overfitting, we added
a dropout layer [28] with an optimum dropout rate of 0.5 in the
output layer. The dimension of the word embeddings was set
to 100 and the optimum sentence vector setting was 300.

Table 1. Hyperparameter settings in our model.

Search rangeOptimum valueHyperparameter

{1×10-3, 1×10-4, ..., 1×10-6}5×10-5Learning rate

{16, 32, 64, 128, 256}64Batch size

{100, 200, 300, 400, 500}300Sentence vector size

{0.1, 0.2, 0.3, ..., 0.8}0.5Dropout rate

{0, 0.1, ..., 1}0aDown-sampling rate

aThe optimum setting had no down-sampling.

Evaluation Metrics
We performed 10-fold cross-validation. The dataset was
randomly split into 10 groups of 50 notes. For each fold, we
used one group as the testing set and the rest made up the
training set. The development set was constructed by randomly
selecting 10% of the notes from the training set.

We report recall, precision, and F1 scores for the performance
of our models. They are all quantities between 0 and 1. Let P
denote the set of the positive instances in the testing dataset and
A denote the set of instances that are predicted to be positive
by the model. Obviously, the set P∩A represents the set of
positive instances that get correctly classified. Recall is the
number of true positive instances divided by the number of
positive instances in the dataset (ie, |P∩A|/|P|). Precision is the
number of true positive instances divided by the number of
predicted positive instances (ie,|P∩A|/|A|). However, either
precision or recall is a good measure for model performance.
For example, a simple model could consistently predict every
instance to be positive and therefore achieve the maximum
recall. On the other hand, it could reject every instance and
achieve the maximum precision. The F1 score, which is defined
by the harmonic mean of the recall and precision (ie,
2×[precision×recall]/[precision+recall]), is a much more
objective measure and is common for comparing model
performance. In our 10-fold cross-validation scheme, precision,
recall, and F1 scores were calculated for each fold, and we report
the means and standard deviations for all the folds.

We also report the receiver operating characteristic (ROC) curve,
which is created by plotting the true positive rate and false
positive rate with different thresholds. However, in a highly
imbalanced dataset as in this case, where only 3% of sentences
are Positive, the ROC curve is not sufficient to reflect the true
performances of different models because a classifier could
achieve a high-performing ROC curve via bias toward the
majority class [29]. Thus, the precision-recall (PR) curve is used
to remedy this problem. Because we used 10-fold

cross-validation, every sentence in the dataset was assigned to
the testing set once and thus received a decision score. The ROC
and PR curves were constructed by pooling all the decision
scores. We performed two-sample t tests for measuring statistical
differences between different models.

Results

Dataset
After removing identical sentences from the dataset, the 500
EHR notes contained a total of 41,034 sentences (mean 82, SD
50) with 1316 (3.21%) (mean 2.6, SD 3) annotated as Positive.
The average number of words per sentence was 11.2 (SD 11),
with a minimum of 2 and a maximum of 318. The distribution
of positive instances among notes was not particularly even, as
is common in the case of adverse events. A total of 387 out of
500 notes (77.4%) contained positive instances and the
maximum number of positive sentences from one note was 17.
A total of 46.73% (615/1316) of positive sentences mentioned
the word hypoglycemia directly and 22.11% (291/1316)
mentioned keywords concerning blood sugar level; this includes
quantitative lab results (eg, “BS [blood sugar] is 68”) or
qualitative descriptions (eg, “blood sugar is high”). The rest of
the sentences were mostly concerned with various hypoglycemic
symptoms (eg, “feeling dizzy”).

Comparisons Between the HYPE and the Baseline
Model
As shown in Table 2, all deep learning models outperformed
the best baseline SVM model—with TFIDF vectorization and
radial basis function kernel—in precision, recall, and F1 scores.
For the RNN-based HYPE, LSTM and bidirectional long
short-term memory (bi-LSTM) had similar performances. The
TCN-based HYPE slightly outperformed the RNN-based HYPE
and achieved a balanced precision and recall. The CNN-based
HYPE performed the best and was the most time-efficient model
due to the simplicity and parallelism of its architecture.
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Table 2. Performance of the SVM (support vector machine) baseline and HYPE (High-Performing System for Automatically Detecting Hypoglycemic
Events) based on different kinds of neural networks.

P valueCNNeP valueTCNdP valueBi-LSTMcP valueLSTMbP valueaSVMPerformance measures

N/Af0.96 (0.03).050.92 (0.03)<.0010.91 (0.02)<.0010.91 (0.02)<.0010.74 (0.07)Precision, mean (SD)

.100.86 (0.03)N/A0.89 (0.04).100.87 (0.04).020.86 (0.02)<.0010.57 (0.05)Recall, mean (SD)

N/A0.91 (0.02).300.90 (0.02).0010.88 (0.02)<.0010.88 (0.02)<.0010.64 (0.03)F1, mean (SD)

N/A0.966N/A0.964N/A0.942N/A0.934N/A0.745PR-AUCg

N/A0.998N/A0.998N/A0.997N/A0.996N/A0.970ROC-AUCh

aP values are based on two-sample t tests between the performance of the system and the best-performing system; values <.05 are significant.
bLSTM: long short-term memory.
cbi-LSTM: bidirectional long short-term memory.
dTCN: temporal convolutional neural network.
eCNN: convolutional neural network.
fN/A: not applicable.
gPR-AUC: precision-recall area under the curve.
hROC-AUC: receiver operating characteristic area under the curve.

In terms of the receiver operating characteristic area under the
curve (ROC-AUC), all of our models achieved good scores
(>0.95) because of the highly imbalanced nature of our dataset.
We also reported the precision-recall area under the curve
(PR-AUC) value of each model, which is more suitable for
skewed datasets [29], as in our case. The ROC and PR curves
show that the CNN model has the best PR curve and PR-AUC
value (see Figure 4).

Down-Sampling for Data Imbalance
To address data imbalance, we experimented with
down-sampling by randomly selecting a subset of the negative
training examples at the start of each epoch. We used the
best-performing CNN-based HYPE in the down-sampling

experiments. As shown in Table 3, down-sampling increased
the weight of the minority class, thus increasing the recall.
However, the precision dropped because of the lack of the
negative examples during training. Therefore, the overall
performance decreased when using down-sampling.

Influence of the Training Data Size
To investigate the influence of the training data size on the
model performance, we varied the number of examples in the
training set. A certain percentage of training examples were
randomly selected, while the development and test sets remained
the same. We again used the CNN-based HYPE for these
experiments. As shown in Table 4, the precision of our model
was only sensitive to the training size at the very smallest level.

Figure 4. Precision-recall (PR) and receiver operating characteristic (ROC) curves of each model. Bi-LSTM: bidirectional long short-term memory;
CNN: convolutional neural network; LSTM: long short-term memory; SVM: support vector machine; TCN: temporal convolutional neural network.

Table 3. Effect of down-sampling on convolutional neural network (CNN) model performance.

Ratio of positive to negative training examples, mean (SD)Performance measures

1:91:41:1

0.93 (0.03)0.86 (0.04)0.46 (0.03)Precision

0.88 (0.02)0.89 (0.03)0.92 (0.02)Recall

0.91 (0.02)0.87 (0.03)0.62 (0.03)F1
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Table 4. Convolutional neural network (CNN) model performance with percentage reduction in training examples.

Percentage reduction in training examples, mean (SD)Performance measures

80%40%20%10%5%

0.95 (0.02)0.96 (0.03)0.96 (0.02)0.97 (0.02)0.81 (0.38)Precision

0.85 (0.03)0.77 (0.04)0.67 (0.03)0.43 (0.05)0.03 (0.03)Recall

0.90 (0.02)0.86 (0.03)0.79 (0.03)0.60 (0.04)0.05 (0.05)F1

However, recall progressively deteriorated as the training size
decreased. As the example size becomes smaller, the model
tends to be more conservative about making positive predictions.
The overall performance (F1) increases as the number of training
examples increases, which is expected.

Discussion

Principal Findings
Our results show that HYPE outperformed SVMs by a large
margin in every evaluation metric. One major difference
between HYPE and SVMs is how they represent an input
sentence. SVMs use bag-of-words and n-grams to represent the
input sentence as a sparse vector. In contrast, HYPE uses neural
networks to convert the input sentence into a dense vector,
which is able to improve the representation ability while
avoiding sparsity [18]. Our results also show that neural network
models can successfully be trained using a relatively small and
imbalanced dataset: a total of 41,034 sentences, of which 1316
sentences were positive instances. The implication is significant
as the “knowledge-bottleneck” challenge has made it unrealistic
to annotate a large amount of clinical data for supervised
machine learning applications.

Comparisons Between Different Hidden Layers of
HYPE
In our results, HYPE achieved good performance for detecting
sentence-level hypoglycemia, even though the data were
imbalanced. We also found that the commonly used approach
of down-sampling did not improve performance. While
CNN-based HYPE achieved the best precision (mean 0.96, SD
0.03), TCN-based HYPE achieved the best recall (mean 0.89,
SD 0.04). One possible explanation for the difference in recall
is that CNN is able to capture only the local contextual
expressions of hypoglycemic events. TCN is a version of CNN
that is equipped with residual connections and diluted
convolutions; as such, TCN has the advantage of capturing
information in a long context. However, CNN outperformed
TCN for the overall performance. CNN also outperformed the
two RNN-based models (ie, LSTM and bi-LSTM). This suggests
that RNN is less effective than CNN in capturing the contextual
patterns of hypoglycemic events. The performance of CNN
might be further improved by adding an attention mechanism
but we leave this investigation for future work. As for time
efficiency, RNN-based HYPE was 10 times slower than the
CNN in training. This is because we need to perform many
expensive computations in the LSTM units and RNN is hard to
parallelize due to its recurrent nature. Thus, CNN is more
suitable for our task than RNN.

Effects of Tuning Word Embeddings
A common practice for NLP tasks when working with a small
dataset is to fix the pretrained word embeddings during training.
The rationale is that when the model encounters a word in the
testing set that is not presented in the training set, the model is
still able to make correct predictions because its embedding is
close to a similar word presented in the training set. However,
in our experiments if the embeddings were fixed, we observed
a 3%-4% performance loss in F1 score. The best-performing
approach was to update word embeddings through
backpropagation. The reason for the performance loss of fixed
pretrained embeddings might be that the vocabulary size used
for describing hypoglycemic events is both small and domain
specific. Pretrained embeddings allow a model to attain useful
information on general words in the open domain, but
fine-tuning word embeddings allows the model to learn
domain-specific knowledge. An interesting example is that, if
word embeddings were fixed, the model would not be able to
discriminate “blood sugar is low” from “blood sugar is high.”
This may be because the words “high” and “low” have similar
distributions in the open domain and because their embeddings
are very close to each other. If we tuned their embeddings, the
model could learn that “low” and “high” have very different
semantics.

Error Analysis
We manually examined the error cases and identified two types
of common errors. First, HYPE often failed in cases where
hypoglycemic events were indicated by numerical measurements
of blood sugar levels. Our model could easily identify sentences
such as “BS is low” as hypoglycemic events but it often made
mistakes when it encountered sentences such as “BS is 68” or
“fsbs [finger stick blood sugar] noted to be 9.” Such sentences
are difficult to identify for many reasons. One reason is that the
word embedding we used in this work transformed numbers to
zero during training in order to avoid sparsity [18]. Therefore,
the number value was lost in the embedding space and it was
impossible for the model to learn a less than operation to identify
low blood sugar value. Also, the units of the numeric value were
often absent and, therefore, needed to be inferred from the
context. In the above examples, “68” should be “68 mg/dL”
and “9” should be “9 nmol/L.” Since such information may not
be obtained from the sentence, external human knowledge along
with clear definitions for hypoglycemic blood glucose values
must be incorporated. In the future, we will explore effective
approaches to cope with this issue.

The second type of error was negated events, such as “The
patient had no seizures, headaches, abdominal pain, sweating,
or other adrenergic symptoms of hypoglycemia.” In this
example, HYPE failed to understand the negated word “no”
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and identified this sentence as a hypoglycemic event. Because
the number of such sentences was small, it would be difficult
to solve this problem by adding additional features to capture
the negation expression. Therefore, we need to incorporate
additional approaches for negation identification [30].

Limitations and Future Work
The main limitation of our study is that we selected EHR notes
using only diabetes-related ICD-9-CM codes, so the scale of
our dataset was relatively small and may not have reflected the
true distribution of hypoglycemia sentences in real-world
applications. Moreover, because HYPE focuses on
sentence-level event detection, it will miss hypoglycemic events

that are expressed across multiple sentences. In future work,
we will explore document-level hypoglycemic event detection.

Conclusions
In this study, we developed and evaluated state-of-the-art
machine learning models to detect hypoglycemia events from
EHR notes. We explored three different deep learning
models—RNN, CNN, and TCN—and found that the CNN
model performed the best, achieving 96% precision and 89%
recall. Our work is an important step toward automated
surveillance of hypoglycemic events in EHRs and helping
clinicians, health care system leaders, and researchers in their
efforts to prevent hypoglycemia and to safely manage diabetes
mellitus.
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