
Original Paper

Impact of Automatic Query Generation and Quality Recognition
Using Deep Learning to Curate Evidence From Biomedical
Literature: Empirical Study

Muhammad Afzal1,2, PhD; Maqbool Hussain1, PhD; Khalid Mahmood Malik2, PhD; Sungyoung Lee3, PhD
1Department of Software, Sejong University, Seoul, Republic of Korea
2Department of Computer Science and Engineering, Oakland University, Rochester, MI, United States
3Department of Computer Science and Engineering, Kyung Hee University, Yongin, Republic of Korea

Corresponding Author:
Sungyoung Lee, PhD
Department of Computer Science and Engineering
Kyung Hee University
Room 313
Yongin, 446-701
Republic of Korea
Phone: 82 312012514
Fax: 82 312022520
Email: sylee@oslab.khu.ac.kr

Abstract

Background: The quality of health care is continuously improving and is expected to improve further because of the advancement
of machine learning and knowledge-based techniques along with innovation and availability of wearable sensors. With these
advancements, health care professionals are now becoming more interested and involved in seeking scientific research evidence
from external sources for decision making relevant to medical diagnosis, treatments, and prognosis. Not much work has been
done to develop methods for unobtrusive and seamless curation of data from the biomedical literature.

Objective: This study aimed to design a framework that can enable bringing quality publications intelligently to the users’ desk
to assist medical practitioners in answering clinical questions and fulfilling their informational needs.

Methods: The proposed framework consists of methods for efficient biomedical literature curation, including the automatic
construction of a well-built question, the recognition of evidence quality by proposing extended quality recognition model
(E-QRM), and the ranking and summarization of the extracted evidence.

Results: Unlike previous works, the proposed framework systematically integrates the echelons of biomedical literature curation
by including methods for searching queries, content quality assessments, and ranking and summarization. Using an ensemble
approach, our high-impact classifier E-QRM obtained significantly improved accuracy than the existing quality recognition model
(1723/1894, 90.97% vs 1462/1894, 77.21%).

Conclusions: Our proposed methods and evaluation demonstrate the validity and rigorousness of the results, which can be used
in different applications, including evidence-based medicine, precision medicine, and medical education.

(JMIR Med Inform 2019;7(4):e13430) doi: 10.2196/13430
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Introduction

Objective and Contributions
Personalized health care and wellness management have rapidly
grown during recent years because of the increase in data influx,

the development of innovative tools, and the advancement of
artificial intelligence techniques. These innovations can engage
patients and offer additional modalities in the treatment of
chronic diseases [1]. In addition, with the advent of the
next-generation sequencing and the widespread use of electronic
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health records (EHRs), clinicians and researchers have the
opportunity to have a wealth of data and the precise
characterization of individual patient genotypes and phenotypes
[2]. It is now evident that the research on internet health
information–seeking behavior is on the rise [3].

Furthermore, people’s interest in seeking the support of scientific
research evidence is increasing daily for their level of
satisfaction over medical decisions or advice, and it keeps them
aware of the research about the matter. Clinicians seek for
external evidences to make informed clinical decisions,
particularly when internal evidences (information derived from
unicenter data) are insufficient because of lack of required data.
Likewise, medical researchers and students are interested in the
external evidences to educate themselves on the substance of a
medical problem, whereas the patients could use such evidences
for their own awareness and comparative analysis of available
treatments. Fortunately, an overwhelming amount of biomedical
information is available in the form of scientific publications,
which can be retrieved to support the process of medical
decision making and for self-awareness. PubMed, which is a
search engine for biomedical literature, can provide access to
a set of more than 27 million articles from more than 7000
journals, including full text for about 4 million of these articles
[4]. However, the current process of retrieving research
publications from the external biomedical literature is a daunting
task and is largely done manually, which requires not only a
high level of expertise but also time and money. As the demand
for evidence-based medicine (EBM) is increasing, it is important
to lower the costs to identify and evaluate the best evidence.
Little has been done to improve the overall efficiency of curating
the quality evidences automatically from the biomedical
literature until recently. One of the major challenges in this
regard is to design the search query from the input information
and to embed the user context in an automatic and intelligent
manner to save time and cost. In addition, the low quality of
the articles from where the evidence is retrieved for the decisions
adds further to the challenge of an automated acquisition of
evidence. Moreover, the results are summarized and ranked
majorly with manual efforts.

In this paper, we contributed to the design of a comprehensive
framework architecture to achieve the goal of curating
biomedical literature and mining data from scientific
publications to construct precise evidence to assist medical
practitioners, researchers, medical students, and patients in the
clinical decision-making process. The proposed framework
consists of several methods for automating the process of
biomedical curation. The main contributions of this paper are
as follows:

• It presents the design of a comprehensive framework for
biomedical literature curation. It describes proposed
architecture in detail, which includes designs for methods
of well-built automatic query construction, evidence quality
recognition, and article summarization and ranking.

• It describes the proposed process of the construction of a
well-built query. We designed a set of methods and
guidelines to construct a well-structured question from the
input information in a standard format for a better user
understandability and content categorization.

• It presents the design of proposed extended quality
recognition model (E-QRM) that identifies scientifically
sound publications on the basis of content rigorousness.
We developed and compared a set of machine and deep
learning (DL) models with a higher level of precision as
evaluation criteria.

• It offers methods for contextual ranking and summarization.
We designed a cross-context interpretation model for
ranking the publications based on the context captured from
the input information, the user of the system, and the articles
that are retrieved. In addition, we propose a conceptual
model for summarization of the results based on input
information.

Background and Motivation
For evidentiary support, medical professionals mostly rely on
the publicly available searching services, such as PubMed [5],
Google, UptoDate [6], and other search engines. These search
engines are reliable, but they need to be integrated with a health
care information system (HIS) in a way to make the process of
evidence retrieval seamless and meaningful. In addition, an HIS
is required to evaluate the retrieved evidence for quality rather
than relying on a search engine’s built-in evaluation
mechanisms.

Some of today’s HISs are equipped with the knowledge base
(KB) of a clinical decision support system (CDSS), which
provides additional support to automate the evidence retrieval
from external sources in following ways: (1) it aids to automate
query construction process for evidence retrieval by offering
knowledge rules that consist of patient information with
established logical connections and (2) it assists to enrich query
for evidence with metadata such as the purpose or the query
type information to improve the quality of evidence extraction.
The query type information shows the purpose for which a
CDSS is developed, such as a treatment plan or diagnosis
recommendations.

Figure 1 shows the interaction among a health system, KB of
CDSS, and the system for extraction of external evidence
resources. The health system manages the patient records to be
used by the clinician, and the KB of a CDSS is created with the
support of expert clinicians either through directly authored
rules or the machine learning (ML)–based data-driven
approaches [7]. The evidence-based subsystem shows the
appraised evidence synthesized from the literature through the
automatic methods of acquisition and appraisal. In this study,
we proposed a comprehensive framework to combine the
abovementioned processes, particularly, the evidence acquisition
and evidence appraisal to facilitate the clinical decision making.
The proposed methodology uses the information contents from
a health system and the KB of CDSS for the query construction
to search and retrieve relevant research papers from the literature
to support the evidence-based practice (EBP). The EBP and the
CDSS have long been used in the clinical domain to enhance
clinical efficacy. The EBP and the CDSS share clinical expertise
as a source of data. The EBP uses the clinical expertise along
with the research evidence and other factors for a clinical
decision. A CDSS KB is the representation of clinical expertise
of 1 or more clinical experts. The EBP is defined as “the
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conscientious, explicit, and judicious use of current best
evidence in making decisions about the care of individual

patients” integrated with clinical expertise and patient values
to optimize outcomes and quality of life [8].

Figure 1. Clinical decision support system knowledge base linkage with evidence base synthesized from biomedical literature.

Role of User Context in Query Construction
For any evidence-based system to work efficiently, the context
of the domain plays a crucial role. The context provides the
features for query generation to seek the relevant information
from external sources. The source and format of the data are
crucial to consider automatic or semiautomatic query generation.
Cimino [9] presented the idea of Infobuttons and Infobutton
Manager, which attempt to determine the information needs
based on the user context. Infobuttons are mainly topic-specific
questions with a facility for the users to tune the query more
toward the context. CDAPubMed [10] is a browser extension
that aims to provide a tool to semiautomatically build complex
queries. It provides additional information to the contents of
the EHR to improve the biomedical literature searches. A
platform called ProvCaRe [11] has the provision for search and
query operations on provenance metadata to enable
reproducibility of research articles. There are other approaches
described in the studies by Bakal et al [12] and Sahoo et al [13]
that use semantic patterns over biomedical knowledge graphs
for treatment and causality predictions and semantic provenance
to apprehend high-quality domain-specific information using
expressive domain ontologies.

Related Work on Finding High-Quality Articles in the
Literature
A decent set of approaches is available that had improvised the
results of literature searching with respect to quality of studies.
The PubMed Clinical Queries (CQ) [14] is one of the most
prominent endeavors to retrieve scientifically sound studies
from the biomedical literature. Afterward, supervised ML
approaches were introduced mainly to improve the precision of
the results in terms of quality checking for methodological
rigorousness. Similarly, to find high-quality papers in
MEDLINE, Wilczynski et al [15] developed CQ filters, which
were later adapted by PubMed for use as CQ. The data collection

used in the CQ filters is annotated across the following 4
dimensions: the format, the human health care, the purpose, and
the scientific rigor. The experimental studies [16,17] introduced
ML (supervised learning) classification models to differentiate
between the methodologically rigorous and the nonrigorous
articles. In an article about evidence quality prediction [18], the
authors addressed the problem of automatic grading of evidence
on a chosen discrete scale. The authors experimented many
features, such as publication year, avenue, and type to evaluate
the quality of the evidence. They found that the publication type
is the most eminent feature to consider for evaluation of the
evidence quality results. A DL neural network known as the
Convolutional Neural Network approach [19] was very recently
tried to further improve accuracy over the existing approaches
of PubMed CQ and McMaster’s text word search in terms of
precision.

Limitation of the Existing Approaches
The existing approaches discussed mainly focus on the
automation of evidence processing to overcome the central
problem of time spent on searching while practicing EBM. The
inclusion of the research evidence in clinical decisions varies
with respect to domain context and objective. Conceptually, the
evidence adaption follows the same 5As cycle as mentioned in
the study by Leung [8]; however, implementation makes the
scenario different. A user in a clinical setup with a CDSS
implementation needs to approach the evidence differently than
a user who does not have a CDSS implementation. The dataset
selection, the feature engineering, and the context awareness
bring uniqueness to the approach and pose challenges at the
same time. The objective of this study was to circumvent the
issues of efficient searching in the biomedical literature to find
evidentiary articles that are qualitative and fit-to-context in the
user scenario.
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Methods

Overview
To achieve the research goal of curating and mining data from
scientific publications in biomedical literature, we designed a
coherent and comprehensive architecture of the framework,
which is depicted in Figure 2. The architecture is divided into
3 layers to accommodate the necessary functions of connecting
a health system with the scientific research. In the first layer,

an optimized query is constructed in a well-built form from the
input data streams. In the second layer, the quality is evaluated
with data-driven approaches that include a ML or DL algorithm,
which is meaningfully selected for the input set of parameters
and the data requirements. Finally, in the third layer, the
scientific research articles that have been evaluated for quality
are summarized and ranked according to the user context to
bring an article to the top, such that it is not only relevant and
qualitative but also contextually viable and applicable.

Figure 2. The conceptual diagram of the proposed biomedical literature curation framework. CDSS: clinical decision support system; EHR: electronic
health record.

Query Construction
The query construction is a widely studied and multiaspect
topic. One aspect concerns the type of query, which could be
manual, semiautomatic, or automatic. Other important aspects
include the input data, the context, and the environment of the
user. Finally, the query format and the structure could be either

just random or well built. Here, we provide a summary of
different query construction strategies and recommendations
for an efficient strategy from the input clinical information. As
shown in Figure 3, there are multiple paths to construct a final
query. As examples, we discuss a few popular strategies in Table
1 that were and are in practice or envisioned in this study as a
potential futuristic strategy.
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Figure 3. Query construction strategies. EHR: electronic health record.

Table 1. Descriptions of different query construction strategies.

NegativesPositivesDescriptionStrategy

Achieving accuracy needs extra
effort at the beginning; the design
of the intelligent methods is re-
quired to correctly place the terms
in the appropriate place of a stan-
dard or well-built structure.

An efficient method that does not in-
volve a human to write the query
terms; it is easily understandable by
the user because of the well-built for-
mat; it is comparatively straightfor-
ward to summarize the retrieved con-
tents.

In this strategy, a final question is constructed without
human intervention. The raw data are acquired
meaningfully from the patient information stored in
the patient record, and they are associated with the
rules of the clinical decision support system or curat-
ed from the sensor devices. The acquired elements
of the data are transformed autonomously to a well-
built or standard format.

The automatic
well-built question

It is less understandable by the us-
er because of the randomly placed
terms; the interpretation and the
summarization of the retrieved re-
sults will be a daunting task.

It is an efficient method because a
human is not required to write the
query terms; no effort is required to
place the query terms in the required
slots.

The input part is the same as in the first strategy, and
the ingredients of the query are automatically ac-
quired from the input sources. However, they are
placed randomly without arranging in a specific for-
mat.

The automatic ran-
dom-formatted
question

It is expensive in terms of time
because a user will still be required
to complete the query contents and
the structure.

Trustworthiness is higher than auto-
matic because of the user’s involve-
ment; an edge in ranking and summa-
rization of the retrieved results.

The acquisition of the query terms from the input
source may be semiautomatic, and human involve-
ment will be necessary to complete the missing sec-
tion. In addition, placing the terms in the required
slots of a standard structure will need human assis-
tance.

The semiautomatic
well-built question

The interpretation of the query
terms and the summarization of
results will be a problem.

The trustworthiness is high.The input acquisition is partially automated. The ar-
rangements of the query terms are random.

The semiautomatic
random-formatted
question

It is time consuming; it is hard for
naïve users to write complex
queries.

The trustworthiness and a better inter-
pretation of the query terms, the ease
in ranking, and the summarization.

In this strategy, a human is involved thoroughly to
write all the contents of a query in a specified struc-
ture.

The manual well-
built question

It is time consuming;

it is hard for naïve users; the inter-
pretations, the ranking, and the
summarization issues.

The trustworthiness is high because
all the terms are written by the hu-
mans.

All the contents of the query are written by humans
without arranging them in a specific format.

The manual ran-
dom-formatted
question

In this study, our main focus is the first strategy, which involves
constructing an automatic well-built question. We have chosen
to formulate the query in Patient/problem, Intervention,
Comparison, and Outcome (PICO) format [20] from the input
data, which included the patient structured information and the
knowledge rules. PICO has a well-structured format, which

differentiates different parts of a clinical question in more
applicable parts that are easily understandable for the clinicians
and other users. It also helps to determine the context of the
question. In addition, the structure is helpful to summarize and
rank the retrieved articles.
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Input Acquisition and Preprocessing
The contents are preprocessed based on the nature of the input.
This section summarizes the guidelines for the developers and
the implementers of the representative scenarios. These
scenarios represent automatic queries constructed from the
following 3 types of inputs: patient record, CDSS rules, and
sensory data.

Scenario 1: An Automatic Query Construction From a
Patient Record of the Electronic Health Record Data
There are 2 possibilities, which involve the data being in a
structured or an unstructured format. If the data are structured
with assigned labels, they are placed in the target P, I, C, and
O sections accordingly. However, if the data are in an
unstructured format, then an additional step of the natural
language processing (NLP) is required to extract the meaningful
terms from the unlabeled contents, to recognize their type and
context, and then finally to place the processed terms in the

target PICO format. The abstract flow of PICO construction
from EHR data is depicted in Figure 4.

The following natural language preprocessing steps are applied
in a pipeline: (1) the text is broken into tokens with a space
delimiter; (2) stopwords of English language are removed; (3)
case of the letters is changed to lower; and (4) the words are
stemmed to their root words using porter stemming.

The stemmed words are mapped to the PICO format using
salient term identification (STI) algorithm explained in the
following section. After finding out a concept in the standard
vocabulary of Systematized Nomenclature of Medicine-Clinical
Terms (SNOMED-CT) implemented through the Unified
Medical Language System (UMLS) vocabulary service
application programming interface (API), the algorithm further
finds out the semantic and entity types of the identified concepts.
Finally, the identified concepts are mapped to
PICO-corresponding slots. For example, because female belongs
to population group, it is mapped to the P slot of PICO.

Figure 4. The flow of Patient/problem, Intervention, Comparison, and Outcome query construction from the patient record of the electronic health
record data. EHR: electronic health record; PICO: Patient/problem, Intervention, Comparison, and Outcome.

Scenario 2: An Automatic Query Construction From
the Clinical Decision Support System Knowledge Base
In this scenario, the contents of the query are extracted from
the rules of a CDS KB. The rules are actuated against a
particular decision. The extraction process relies on the
representation scheme of knowledge. Of these schemes, we
elaborated on the following 2 schemes for the mapping of rules
to PICO: plain production rules (if-then) and the HL7 medical
logic modules (MLM) [21]. We designed a general model that
could be used for any of the representation schemes. According
to the proposed mapping model, different parts of a rule are
mapped to PICO as described in equation 1:

PICO=D ∩ A ∩ P (1)

In equation 1, D represents the set of elements in the data part
of a rule, A is the set of elements in the action part, and P shows
the purpose of a rule. More specifically, D maps to P of PICO,
A maps to both I and C, and P maps to O of PICO. For clarity,
Figure 5 is provided to describe the mapping from rules to PICO
using MLM and the plain production rules as an example. In
the scenarios where there is lack of information to get outcome
information from the input, some elements of PICO can be
unmapped. For example, in the scenario of production rules,
the O part of PICO remains unmapped.
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Figure 5. An example of Patient/problem, Intervention, Comparison, and Outcome mapping from the HL7 medical logic module and the production
rule. MLM: medical logic module; PICO: Patient/problem, Intervention, Comparison, and Outcome.

Scenario 3: Constructing a Query From the Multimodal
Sensory Data
This scenario is more applicable to participatory health
management, where user activity, diet, sleep, and other related
information are acquired through different sensors and devices.
The information from these sensors and devices are collected
independently through their independent clocks with an
associated time stamp. A logical clock is required to identify
the data origination at the same time [22]. After synchronization,
the raw data need to be labeled and persisted for other services
to consume. Using the labeled data may require further
processing to determine the high-level context for the
appropriate usage in the query. For instance, if a user is doing

a set of activities, such as walking, running, or lying down, in
an adjacent frame of time, it may refer to a high-level context
of exercise. In one of our preliminary work on the project of
Mining Minds [23], we have developed different models for
context recognition both at the lower and the higher levels on
the basis of data curated from different sensors. The dataflow
of the raw sensory data is briefly illustrated in Figure 6. It must
be noted that the contextual information determined from the
sensory data could either be used in an independent query or
used as a subset information of a query constructed from the
EHR data as noted in previous subsections. There could be
scenarios to combine methods of the abovementioned 3
scenarios and construct a single query depending on the
availability of the data and the user needs.
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Figure 6. A dataflow diagram of the raw sensory data acquisition and the context identification. EHR: electronic health record.

Concept Matching for Term Inclusion and Exclusion
At the time of term extraction from the EHR data, it is important
to include only pertinent and important terms. We developed
the STI algorithm to filter out the less effective terms from the
user question. The STI is a weight-based algorithm that finds
an input term in a terminology source (SNOMED-CT/UMLS)

and provides weight according to the matching level, such as
exact match, partial match, and synonym match. The steps of
the STI algorithm are described in Figure 7. According to this
algorithm, if a term finds an exact match, it gets more weight
(w=1.0) compared with the partial match and synonym match
(w=0.5). The algorithm is formally represented in algorithm 1
in Multimedia Appendix 1.

Figure 7. The salient term identification algorithm.

Standardization and Context Enrichment
It is not mandatory to use standard form of the terms; however,
it is important to infer the overall intentions of the user from
the query. In other words, the standardization helps to determine
the users’ interest in obtaining results that are related to the
diagnosis, the treatment, or the prognosis. In addition, it helps
in understanding the meaning of a particular term precisely and
helps avoid confusion. To achieve standardization of the terms
and determine the purpose of the query, a terminology source,
preferably the UMLS, could be used. We must remember that
the function of standardization is achieved at the time of

executing the STI algorithm. The purpose of the query, also
known as query type, is determined from identifying the
semantic types and entity types of the concepts used in the I
and/or C parts of the PICO. As described in Figure 8, the
concepts extracted from the PICO I and/or the C parts are used
to determine their parent concepts with the help of the
terminology services. After getting translated from the
translation table for the parental term, the inferred translated
concept (diagnosis/treatment/prognosis) is attached to the PICO
query. During implementation of the query to run on the
PubMed, the purpose term or the query type is used as a clinical
filter for an increased recall [15].
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Figure 8. The steps of query type identification algorithm. PICO: Patient/problem, Intervention, Comparison, and Outcome.

Query Optimization and Searching
A well-built structured query may be unnecessarily too lengthy
to return absolutely no results or too short to return too many
results. In this case, a query optimization technique is necessary
to balance the resultant set. If there is a query that occasionally
fails to retrieve any results, the query is optimized to exclude
the least important term from a list of terms. As a general
guideline, the P and I set of terms in PICO is the core, and they
are considered comparatively more important than C and O. On
the basis of this theory, we designed an optimization strategy,
which is illustrated in Figure 9, to exclude a term from the least
important parts one by one unless we retrieve an acceptable set

of publications. For instance, if there are 4 terms ANDed in a
query belonging to one of each PICO element and by running
that query returns 0 records, we remove the C term first and
check if the resultant set satisfies a threshold; if that is the case,
we execute the query and continue the process further;
otherwise, we remove the O term in the next cycle.

Even if the query terms consist of only P and I of PICO but are
too many to retrieve any results, we can use the weights
determined by the STI algorithm and remove the least effective
term(s). The final optimized query was executed on biomedical
literature and used the retrieved articles for further processing.
For this research, we used the PubMed service to access the
biomedical literature.

Figure 9. The query optimization process flow. PICO: Patient/problem, Intervention, Comparison, and Outcome.
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Quality Evaluation
Articles retrieved using the PubMed built-in search strategy
could possibly include quality, nonquality, or less quality articles
that need to be segregated before presentation to the user. For
this very reason, we designed quality parameters that need to
be checked so that only quality contents come forward to be
read by the users.

Guidelines for Using the Gold Standard
We learned from previous studies that the Clinical Hedges
database [24], which was developed by the Hedges Group at
McMaster University, can be used as a gold standard dataset.
Clinical Hedges was initially employed to develop and evaluate
the CQ filters [15]. It is also used for ML approaches that
identify the scientifically sound PubMed clinical studies [17].
The database consists of 50,594 MEDLINE articles published
in 170 clinical journals, of which 49,028 articles are unique.
All the articles are manually annotated by a team of specialized
experts, and they classified the articles across the following 4
dimensions: format (O=original study, R=review, GM=general
and miscellaneous articles, and CR=case report), human health
care interest (yes/no), scientific rigor (yes/no), and purpose
(diagnosis, etiology, prognosis, treatment, economic studies,
reviews, and clinical predication guides). The primary purpose
of creating the database was to evaluate whether each study was
scientifically sound or not using the criteria for the treatment
interventions, which include clinically relevant outcomes,

random allocation of study participants, and at least 80% of the
follow-up of study participants.

Selection of the Search Strategy
One of the issues for common users and researchers is to choose
an appropriate search strategy to satisfy their information needs.
None of the state-of-the art search strategies could be considered
ideal in all situations. We provide a common standpoint and
recommendations to opt for a strategy based on the users’needs
and rationale. We divide the set of approaches in 3 groups: (1)
PubMed search strategies that include mainly CQ, (2) the ML
approach, and (3) the DL approach. We also categorize the user
information needs based on recall, precision, and recentness,
which is the instant availability of a study. Table 2 provides the
performance evidence of the existing state-of-the-art approaches,
whereas Table 3 provides the recommendation of using an
approach on the basis of given rationale.

Regarding the third criteria, such as the recentness, we
elaborated the abovementioned approaches on a delay factor.
As both the PubMed CQ and the mentioned ML approaches
use a Medical Subject Headings (MeSH) filter in the search
strategies, they encounter problems classifying the most recent
articles. The mean delay in the MeSH indexing per journal was
recorded as 162 days. The DL neural network considers only
the title and the abstract features and has no dependency on the
MeSH terms and does not encounter any delays to evaluate even
the most recent studies.

Table 2. Average recall and precision of different search strategies.

ReferenceDeep learningMachine learningPubMed Clinical Queries (broad)Approach

Reported in the study by Perez-Rey et al [10] and Del
Fiol et al [19]

96.991.498.4Average recall

Reported in the study by Perez-Rey et al [10] and Del
Fiol et al [19]

34.686.522.4Average precision

Table 3. Recommendation of the search strategy in a given rationale.

RecommendationRationale

PubMed Clinical QueriesUser top priority is high coverage (recall)

Machine learning classification approachUser top priority is to get precise results (precision)

Deep learning neural network approachUser top priority is more recent studies

Feature Engineering and Corpus Preparation
Irrespective of the strategy, we need to engineer the features
and prepare a corpus to run ML or DL classifiers. We used the
Clinical Hedges dataset and acquired the PubMed identifiers,
which we posted to create a custom database on PubMed
through the Entrez Post service method of the Entrez
Programming Utilities API, and we searched the publications
using the eSearch service for the Entrez Fetch (eFetch) service
by enabling the history and the environment variables to yes.
The eFetch function was used to download the searched articles.
The downloaded records were programmatically parsed to obtain

the data for the data features, such as the title, the abstract, and
the metadata features, which include the MeSH terms and the
article type. The process of downloading and parsing the articles
is described in Figure 10.

We engineered 2 sets of features, which included the data
features and the metadata features. The data feature vector was
created by tokenizing the titles and abstracts, changing the case
to lower, eliminating the stop words, stemming the words using
the porter stemmer, and filtering the tokens by lengths. Unlike
the data features, the metadata features were created by applying
only tokenization and case transformation because there was
no need to remove stop words and stemming.
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Figure 10. The article downloading and parsing algorithm. MeSH: Medical Subject Headings; PMIDs: PubMed Identifiers.

Extended Quality Recognition Model
Previously, we worked to identify the relevant and quality
articles using the ML approach and developed a model called
quality recognition model (QRM) [25]. The QRM was a binary
classification model with the following 2 classes: rigor and
nonrigor, where rigor and nonrigor represent the quality and
nonquality articles, respectively. It was tested with 4 different
ML algorithms, including Naïve Bayes (NB), k-nearest neighbor
(kNN), decision tree (DT), and support vector machine (SVM).
For this study, we extended the QRM with inclusion of DL
model and ensemble technique to get a better performance. With
the advent of automodel feature in the data science tool
RapidMiner Studio 9.0.003 [26], it is rather more expedient to
opt for an efficient model in a range of applicable models. Using
the same dataset that we previously used for building QRM,
the RapidMiner automodel function proposed 7 algorithms,
including NB, DT, logistic regression, generalized linear model
(GLM), random forest, gradient boosted trees, and DL. We keep

consistency in the feature set selection, similar to the previous
model of QRM. The automodel function allows us to intervene
in the settings of parameters at different steps including the load
of dataset, selection of the task, preparing a target, selection of
the input features, and model types to execute for getting the
final results. We described these steps in Figure 11 by
highlighting our selection among alternatives.

We use the automodel function to select the individual learners
to build our ensemble model to acquire high accuracy as
compared with the performance of individual learners. We first
experimented with the individual models proposed by automodel
function. Later, we develop an ensemble learner over the
individual learners. In the first layer of assembling, we use
AdaBoost learner, whereas on the second layer, we use ensemble
voting (stacking model) with a sampling type of automatic,
which uses stratified sampling per default. However, if the
example set does not contain a nominal label, shuffled sampling
is used instead. The split was relative with a split ratio of 0.7.
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Figure 11. Automodel steps and parameter settings. DL: deep learning; DT: decision tree; GBT: gradient boosted trees; GLM: generalized linear model;
LR: logistic regression; MeSH: Medical Subject Headings; NB: Naïve Bayes; PMIDs: PubMed Identifiers; RF: random forest.

Ranking and Summarization
A potential problem that clinical user face is the management
of the results set to identify, appraise, and synthesize the best
available evidence to answer the clinical question in the best
possible manner. In all this process, a lot of manual effort is
required to extract the data to make a summary, and it is also
subjected to error [27]. Moreover, the context of the user may
change the default ranking of an article to bring it to the top or
take it to the bottom. Some of the existing approaches use a
grading mechanism of ranking the articles based on the strength
of the contents [18,28]. The need to develop a ranking
mechanism that is more patient-centered rather than only
evidence-centered is needed. In addition, the model needs to
consider the user’s context in addition to the articles’ strength
and quality.

To address these issues, we conferred our previous work [25]
and made possible extensions to provide guidelines for using
an appropriate model in a given clinical situation. We devised
a cross-context evaluation strategy that involves crossly
matching 2 contexts, such as user contexts and evidence
contexts. User contexts have multiple elements, such as basic
information, which shows the user educational level. The
background is the experience of the user, and the goal shows

the short-term learning or the long-term learning. The interest
represents the preferences, and the learning style is the pattern
of user learning, such as textual and visual. On the other hand,
an evidence context includes the article meta-features or
properties, such as the publication type, the publication avenue
(eg, journal and book), and the year of publication.

We devise a cross-context evaluation method that accumulates
contextual parameters of both user and evidence contexts. User
context parameters are represented as C1, C2, ..., Cn, whereas
the evidence contextual parameters, which are properties of a
publication, are represented as P1, P2, ..., Pn. These 2 sets of
contexts are aggregated first vertically and then horizontally to
reach to the final grading of a publication as H=high,
M=medium, L=low, and U=unknown. In other words, the
algorithm first finds the aggregate value of each column, such
as the highest value of all the cells using the majority vote
procedure, and the process is repeated for all the cells. The
example described in Table 4 for a user with three contexts and
a publication with two properties, the final context value is
calculated for a given publication-x by learning the highest
value from the aggregate contexts AggCtx-1 and AggCtx-2.
The value H, M, L, and U are learned from the ranking values
assigned to each of the article types described in Table 5.

Table 4. The context aggregation for article ranking.

Publication-x contextUser context

P2P1

MbHaC1

MLcC2

HHC3

AggCtx-1=MAggCtx-1=HAggregate context

aH: high.
bM: medium.
cL: low.
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Table 5. Values of publication types ranking and grading.

Grade valueRankingPublication types

Ha1Systematic reviews

H1Meta-analysis of RCTsb

H3RCTs

Md4Meta-analysis of CTsc

M5Systematic review of CTs

M6CT

M7Cohort study/case-control study/report

Le8Guidelines

L9Opinion

L10Observational study

L11Any other publication type

aH: high.
bRCTs: randomized controlled trials.
cCT: control trials.
dM: medium.
eL: low.

Finally, the evidence is formed from the set of the ranked
articles, and it is presented in the form of a summary. As
mentioned earlier, the manual summarization is a daunting task,
and researchers have devised different methodologies to perform
the automatic summarization of the articles. Bui et al [27]
developed a computer-based ML and an NLP approach to
automatically generate a summary of full-text publications by
extracting the PICO values alongside the sample size and group
size from the text. There are few other studies that proposed
algorithms to detect PICO elements in the primary studies
[29,30], which in term assisted the process of summarization.

We are convinced that the PICO-based approach assists the
extractive method of automatically generating the summaries
of articles. As a result, we followed the extraction of the PICO
values from the text of an article. Before the extraction, we
identify if the type of article is primary or secondary. The
secondary articles such as systematic reviews (SRs) are formed
from multiple primary studies, and they could be considered as
evidence. However, the primary studies required summarization

to form an evidence. We provide an abstract view of the
proposed summarization system, as shown in Figure 12, to
categorize articles as secondary and primary studies and
construct summaries for the latter. The system works as each
ranked article is taken as input and is distinguished as a primary
study or secondary study. A secondary study is only processed
to extract the meta information and is stored to the evidence
base as an evidence. A primary study is preprocessed to convert
the format from pdf to text in the first place. The text is passed
to the information extraction module to identify sections and
PICO elements in different section to generate individual
summaries for P, I, and O elements of PICO. The element C is
also an intervention, so a separate summary is not necessary;
therefore, we consider it as a part of I during summarization.
On the basis of individual summaries of Patient/problem,
Intervention, and Outcome elements, a complete summary is
constructed for the whole article. Individual articles’ summaries
are grouped based on their similarities to form a single evidence,
which is then stored to the evidence base by including the meta
information associated with each article.
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Figure 12. The framework for article summarization. PICO: Patient/problem, Intervention, Comparison, and Outcome; PIO: Patient/problem, Intervention,
and Outcome.

Results

Overview
As mentioned earlier, the focus of this study is to construct a
PICO-compliant query from EHR data where there were 2
evident options to acquire query terms: structured data and
unstructured data. One of the possible options that could be
used for structured data is the knowledge rules of a CDSS, and
any clinical scenario explained in simple English can be
considered for the unstructured data case study. In knowledge
rules, it is quite straightforward to identify the clinical concepts
and map them to the PICO elements. However, unstructured
data mapping to PICO requires quite a few steps to get the final
PICO-based query, as discussed in the query construction
section.

Case Study—Query Construction From a Clinical
Scenario
Here, we present a clinical scenario and step-by-step outcomes
of our proposed algorithms, mapping to PICO and finally a
search query construction. The first step is to find important
clinical concepts in the given clinical scenario followed by
finding their semantic type and entity type. In the scenario
shown in Figure 13, our proposed STI algorithm found out 8
concepts in the standard vocabulary of SNOMED-CT
implemented through the UMLS vocabulary service API. For
the identified concepts, we identified the semantic and entity
types of the identified concepts. In the second step, the identified
concepts are mapped to PICO-corresponding slots, such as
female belongs to population group, so it is mapped to the P
slot of PICO. Similarly, beta-blocker has the entity type of
chemical and drugs, so it went to the I (intervention) slot of
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PICO. In the same way, we mapped the rest of the concepts.
Finally, in the third step, we find the type of the query among
diagnosis, treatment, prognosis, or etiology. Looking at the
semantic/entity types of majority of the concepts in I and C, the
algorithm concluded with the query type as treatment. Using

the logic of searching query construction as described earlier,
we will get the query as follows:

q=female blood pressure and (beta-blocker or ACE
inhibitor) (2)

This query q is passed to our searching algorithm to search for
the publications using the PubMed CQs utility.

Figure 13. Results of a clinical scenario conversion to Patient/problem, Intervention, Comparison, and Outcome with query type (purpose). ACE:
angiotensin-converting-enzyme; PICO: Patient/problem, Intervention, Comparison, and Outcome; STI: salient term identification.

Quality Evaluation
The existing QRM was tested using multiple ML approaches,
which included the SVM, the DT, the kNN, and the NB. The
results were reported in our previous study [25], where the SVM
algorithm has performed better than other algorithms. The
automodel employed algorithms produced varied results for
different algorithms. As shown in Table 6, the gradient boosted
trees (GBT) algorithm outperformed other algorithms with
accuracy of about 84.98%, followed by GLM with accuracy of
about 83.80% at the individual learning stage. To minimize the
instances of wrong classification, we tested ensemble method
using AdaBoost on top 3 individual learners. We noticed that
GBT was still on the top, with an increase of about 4% accuracy
jumping from 84.98 to 88.50. The performance of GLM was

slightly increased by about 1%, whereas the DL performance
with AdaBoost was increased by about 9% accuracy from 75.48
to 84.57. In the final model, we use a second level of ensemble
over AdaBoost (GBT) and GLM and obtained about 3%
improved accuracy of 90.97%. Moreover, area under the curve
(AUC) value of the E-QRM was noted as 0.989, whereas for
AdaBoost (GBT), it was 0.950, followed by AdaBoost (DL)
with AUC value of 0.921.

It is important to note that the experiments are performed using
RapidMiner Studio version 9.3.001, which is an improved
version of the descendants. All the models, particularly the
automodel, may generate a different set of results even on the
same data because of the changes in operators for the possible
improvement from version to version.
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Table 6. Extended quality recognition model performance overview using different algorithms.

Area under the curveAccuracyPrecisionF measureAlgorithm/criteria

0.530.640.420.53Naïve Bayes

0.890.840.820.72GLMa

0.630.620.390.46Logistic regression

0.500.700.500.09Decision tree

0.780.750.590.57DLb

0.870.850.770.75GBTc

0.820.850.780.73AdaBoost (GLM)

0.920.850.790.72AdaBoost (DL)

0.950.890.850.79AdaBoost (GBT)

0.980.910.830.85Extended quality recognition model

aGLM: generalized linear model.
bDL: deep learning.
cGBT: gradient boosted trees.

Ranking and Summarization
Linking to our previous study results for contextual ranking,
we determine the ranks for the studies retrieved against the
query in equation 1. The query returned overall 5243 articles,
of which 5217 were primary studies and other 26 were SRs. In
the primary studies, the highest count of 5187 was assigned to

randomized controlled trials, and the rest were distributed among
meta-analysis (6), observational studies (5), case reports (2),
and others (17). On the basis of the ranking assigned to different
publication types in Table 5, the rank and grade values are
produced for the selected set of top 50 out of 5243 publications,
as shown in Figure 14.

Figure 14. Top 50 publication types with rank and grade values. CT: control trials; RCTs: randomized controlled trials.

Discussion

Principal Findings
The main findings of this study include the design of a
comprehensive framework encompasses methods of automatic
query construction using PICO, the quality assessment using

data-driven approaches, and the ranking of studies using
contextual aggregation matrix. Compared with the existing
QRM, our high-impact ensemble classifier E-QRM obtained
significantly improved accuracy (1723/1894, 90.97% vs
1462/1894, 77.21%). Moreover, the proposed work has the
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significance and the implication in multiple domains, and here,
we present a few of those applications.

Significance in Evidence-Based Medicine
Research evidence is one of the components of EBM. The
proposed literature curation framework is best fit to locate and
incorporate the best evidence from the biomedical literature in
PubMed to support the evidence-based medical decisions. This
work provides a comprehensive set of methods to bring
automation to different levels of searching scientific
publications, ranging from query construction, quality
recognition, and summarization and ranking. The implementers
of the EBM can extend and integrate the proposed framework
with the health system to use in their daily clinical practice.

Significance in Precision Medicine
Precision medicine is a multidisciplinary approach, which
involves genetic characteristics along with clinical and
environmental behavior for making a precise decision. There
is an opportunity to study how observational studies and clinical
trials can be used in conjunction to improve health outcomes
in real-world practice settings [31]. This work can greatly
contribute to find relevant phenotypes and genetic information
precisely from Web-based biomedical resources, including the
GenBank [32], MedGen [33], ClinVar [34], and other databases.
A set of studies have investigated and developed tools for the
evaluation of phenotype candidates using online medical
literature [35,36]. The work discussed in this study provides
flexibility to apply it to find phenotypes and genome-related
clinical trials and evaluate their strength.

Significance in Clinical Decision Support Systems
The CDSS decisions are more trustable if relevant evidence
from external sources is timely integrated. The proposed
framework could be integrated with the existing CDSS by
connecting the query part with the output of the CDSS. The
concept of health level seven clinical decision support hooks
(HL7 CDS Hooks) [37,38] was very recently extended to include
evidence information retrieved from scientific literature.
Moreover, the existing CDSSs could be extended to adapt the
scientific research evidence in real time.

Significance in Medical Education
Students and researchers require to educate themselves on the
existing work from experts. An efficient way to access the

existing research work is to implement a system that assists
them in a meaningful manner. The proposed framework is
capable of providing a unique opportunity to obtain the best
evidence in less time and with a higher level of accuracy.
Researchers need guidance on whether they have to apply a
new method of intervention and at what cost. Patients do need
literature to study and compare their conditions with other
similar patients and find out about the outcomes of the
interventions on other patients.

Limitations of the Work
The summarization research work is yet to mature; therefore,
its results are not reported in this study. We have a plan to
continue our investigation further to design automated methods
and guidelines for the construction of summarization such as
designing methods to generate a summary of different articles
for the formation of a consolidated evidence. Moreover, we are
also interested in investigating the strategies for discovering
knowledge from the evaluated quality articles.

Conclusions
There is a great demand for consultation of external clinical
evidences to be considered in a complex clinical
decision-making process, particularly when internal evidences
are insufficient. In addition, medical researchers, students, and
patients use them for education, training, and self-awareness
about their health problems, respectively. To satisfy these users’
needs and desires, we proposed a comprehensive framework
for automated curating of biomedical literature, which facilitates
the task of bringing a quality research evidence intelligently to
the users’desk to assist the users in answering clinical questions
and fulfilling their informational needs. We presented a set of
methods and guidelines to automate the process of curating
biomedical literature at 3 levels: query construction, quality
recognition, and ranking and summarization supported with
sample results. This proposed automated framework is expected
to improve the overall efficiency of clinical staff and researchers
in terms of time and effort. However, the proposed system needs
to be thoroughly tested on multiple domains before adoption.
Our future work will focus on the optimization of quality
evaluation and ranking and summarization. The final approval
of the evidence by a human is crucial to avoid interpretations
if wrong decisions are made by the system.
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