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Abstract

Background: The increasing adoption of electronic health records (EHRs) in clinical practice holds the promise of improving
care and advancing research by serving as a rich source of data, but most EHRs allow clinicians to enter data in a text format
without much structure. Natural language processing (NLP) may reduce reliance on manual abstraction of these text data by
extracting clinical features directly from unstructured clinical digital text data and converting them into structured data.

Objective: This study aimed to assess the performance of a commercially available NLP tool for extracting clinical features
from free-text consult notes.

Methods: We conducted a pilot, retrospective, cross-sectional study of the accuracy of NLP from dictated consult notes from
our tuberculosis clinic with manual chart abstraction as the reference standard. Consult notes for 130 patients were extracted and
processed using NLP. We extracted 15 clinical features from these consult notes and grouped them a priori into categories of
simple, moderate, and complex for analysis.

Results: For the primary outcome of overall accuracy, NLP performed best for features classified as simple, achieving an overall
accuracy of 96% (95% CI 94.3-97.6). Performance was slightly lower for features of moderate clinical and linguistic complexity
at 93% (95% CI 91.1-94.4), and lowest for complex features at 91% (95% CI 87.3-93.1).

Conclusions: The findings of this study support the use of NLP for extracting clinical features from dictated consult notes in
the setting of a tuberculosis clinic. Further research is needed to fully establish the validity of NLP for this and other purposes.

(JMIR Med Inform 2019;7(4):e12575) doi: 10.2196/12575
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Introduction

Background
In recent years, the use of electronic health records (EHRs) in
office-based clinical practices in the United States has more
than doubled, from approximately 40% in 2008 to nearly 90%
in 2015 [1]. This rise has been even sharper in hospitals, where
EHR adoption has increased from about 10% in 2008 to nearly
85% in 2015 [2]. The increasing adoption of EHRs in clinical
practice holds the promise of improving care and advancing
research by serving as a rich source of data. However, gleaning
useful information from EHR data can be challenging, and the
use of such data for research purposes varies considerably across
jurisdictions [3].

One challenge relates to EHRs allowing clinicians to enter data
in text format without much structure. Although this enhances
clinical usability, it often requires costly and time-consuming
manual chart abstraction processes to extract useful information
in a structured manner. These challenges have sparked an
increasing interest in the potential for natural language
processing (NLP) approaches to process unstructured clinical
digital text data, extract clinical features, and convert them into
structured data.

Although NLP approaches for processing radiological reports
are now well established [4], the practice of using NLP for
processing more general clinical documentation, especially
consult notes, is still developing. Research to date has explored
several applications of NLP to general clinical documentation,
including identification of breast cancer recurrence [5], social
isolation [6], falls risk [7], depression [8], homelessness [9],
intraductal papillary mucinous neoplasms [10], and new
clinically relevant information for organ transplant patients [11].
One common feature of much of the research to date is that
studies have tended to leverage open-source and academic tools
for NLP. Although these tools can be highly effective, most are
available as libraries for programing languages such as Python
and R, which can pose a barrier for health care organizations
that lack robust digital capacity or academic partnerships.
However, there are an increasing number of commercially
available NLP tools, such as Linguimatics I2E and Google
Cloud’s AutoML, that promise to make NLP significantly more
accessible for general users, but to date, there have been

relatively fewer studies that have evaluated the validity of these
tools for clinical feature extraction [6,7,12].

Objective
We conducted a pilot study to examine the accuracy of a
commercially available NLP tool relative to manual chart
abstraction in capturing useful information from free-text consult
notes in an outpatient tuberculosis (TB) clinic.

Methods

Study Setting
We conducted a pilot, retrospective, cross-sectional study of
feature extraction accuracy using NLP, with manual chart
abstraction as the reference standard. The study setting was St.
Michael’s Hospital, which is a 450-bed urban academic hospital
affiliated with the University of Toronto. The St. Michael’s TB
program serves as a tertiary referral center for patients with
active TB and latent TB infection, managing patients in both
inpatient and outpatient settings. The program is staffed by a
rotating roster of 8 physicians (6 respirologists and 2 infectious
disease physicians) and 1 TB nurse practitioner and has a
volume of approximately 2000 outpatient encounters annually.
This study was approved by the St. Michael’s Hospital Research
Ethics Board and conducted in accordance with its policies.

Natural Language Processing Approach
We conducted our NLP analysis using a commercial NLP engine
(Pentavere’s DARWEN), which integrates 3 primary approaches
to extract clinical features: (1) manually prepared natural
language extraction rules that describe the general syntax and
lexicon of each feature (both custom and internationally
recognized ontologies such as Medical Subject Headings and
Systematized Nomenclature of Medicine-Clinical Terms are
utilized as an initial source of synonyms for common clinical
terms), (2) machine-learned inferred rules that are designed to
complement and reduce the extraction error rate of the manually
prepared rules (the usage of machine learning in DARWEN is
directed to improve the quality of the clinical natural language
extraction rather than to predict or infer clinical features based
on other features, as is the case with many competing systems),
and (3) heuristic rules that encapsulate overarching clinical
knowledge that must be respected when considering the clinical
features holistically. This workflow is illustrated in Figure 1.
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Figure 1. Natural language processing (NLP) workflow using the DARWEN tool. PRP: pronoun; VB: verb; RB: adverb; JJ: adjective; CC: coordinating
conjunction; DT: determiner; NN: noun; IN: preposition; TB: tuberculosis; TST: Tuberculin Skin Test.

We followed the standard process for employing DARWEN,
which involves tuning, testing, and retuning against a reference
standard, together with clinician consultation to resolve any
semantic issues as well as to develop the heuristic rules. Tuning
refers to the process of refining NLP extraction rules based on
manual analysis of text and is an essential step to successfully
account for the variability in terminology and documentation
structure between clinicians. Generating rules during the tuning
process is an iterative, feature-by-feature, semisupervised
process. First, we focused on recognizing the key entities
associated with any feature, such as comorbidities. Given the
low volume of data in the training set, we started with recurrent
neural network-based named entity recognition (NER) models,
which were pretrained for recognizing drugs, diagnosis, medical
risk factors, and adverse drug reactions on Pentavere’s
proprietary clinical dataset (Pentavere’s proprietary corpus
includes over 100,000 patients, with an average of 50 clinical
notes per patient); discussed the match results with the clinician;
and supplemented the NER model with heuristics to
accommodate any discrepancies. For clinical features not
appropriate for NER models, we employed a purely heuristic
approach. For example, for a feature such as smoking status,
we developed an initial set of rules to cover 3 straightforward
cases: explicit mention of nonsmoker (eg, “She never smokes”),
explicit mention of former smoker (eg, “she is a former light
smoker”), and qualified mention of former smoker (eg, “She is
a smoker who gave up 2 years ago”). Although these captured
many cases of smoking found in the text, the tuning process
revealed many more subtle cases that require further
development of rules, such as a smoker who quit and then started
again, handling of indeterminant language (eg, “She has a 20
pack year smoking history” in which it is not clear whether the
patient still smokes or has quit), oblique mentions (eg, “She
uses marijuana”), and second-hand smoker (eg, “Her former
roommate was a smoker, but she was not.”) In this case, we
developed rules to label token sequences (spans) into each of
the different cases of smoker, former smoker, and nonsmoker.

These rules are a combination of syntactic and lexical patterns,
sometimes manually specified and sometimes induced from the
data itself.

We then turned our attention to modeling the relationships
between entities using a constituent parse tree kernel–based
induction semisupervised machine learning technique,
Pentavere’s proprietary algorithm inspired by the Dual Iterative
Pattern Relation Expansion algorithm [13]. For training data,
the algorithm uses a few starting phrases or sentences that
provide a valid relationship and a few that provide an invalid
relationship. Given some initial examples of related entities,
the algorithm finds generalizations of parse trees that define
those known relationships. These syntactic rules/patterns were
then applied to find other entities that appear to be in similar
relationships. We also leveraged features of the tool that support
several contextual states, including polarity (negation),
certainty/uncertainty, hypothesis (if… then…), historical context
(history of…), and experiencer (patient and family member).
This contextualization uses constituent and dependency parse
trees to describe different types of relationships between tokens
in text and thus determine the scope of the context, for example,
to restrict a context to only apply to entities contained in specific
sub (constituent) trees of the context and/or require a specific
dependency relationship between the entities in context. For a
case such as, “She has no apparent rash causing her pruritus,”
this approach recognizes that rash is negated but pruritus is not
negated.

Sampling Approach
To create our corpus, we randomly sampled 130 patient records
from a total pool of 351 records from our hospital’s outpatient
TB clinic without exclusion and extracted their consult notes
from their EHR. Consult notes for all outpatient encounters in
the TB clinic are dictated by the attending physician or resident,
followed by review and electronic sign-off by the attending
physician. Dictations are free format, with no standardized
template. They contain detailed clinical information about
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patients’ demographics, diagnosis, treatment course (including
medications), and progress. Given that these notes contain
personal health information, we are not able to share the corpus,
but we have included synthetic samples of both assessment and
follow-up notes in Multimedia Appendix 1, which are
representative of the corpus.

We randomly divided our sample into 3 parts to support the
tuning process described above, a tuning sample (n=30), a
first-round testing/retuning sample (n=50), and a final testing
sample (n=50). A single patient record allotted to the final

testing sample contained corrupted data, reducing the final
testing sample size to 49.

Feature Identification
The following features were selected for extraction: country of
birth, date of immigration to Canada, HIV status, known TB
exposure, previous TB, smoking status, diagnosis, method of
diagnosis, TB sensitivities, sputum culture conversion date,
drug treatments, adverse drug reactions, medical risk factors
for TB acquisition, social risk factors for TB acquisition, and
disease extent (Table 1).

Table 1. Feature categorization based on a priori assessment of clinical and linguistic complexity.

ExamplesTypeFeature complexity and feature

Simple

India; IndonesiaCountryCountry of birth

30/06/2013DateDate of immigration

Current smoker; former smokerCategoricalSmoking status

Isoniazid; rifampinText mapped to drug listDrug treatment

Moderate

Positive/negativeBinaryHIV status

Yes/noBinaryKnown TBa exposure

Yes/noBinaryPrevious TB

Culture positive; polymerase chain reaction positiveCategoricalMethod of diagnosis

Fully sensitive; isoniazid resistantCategoricalTB sensitivities

Complex

Active TB; latent TB infectionCategoricalDiagnosis

22/07/2016DateSputum conversion date

Peripheral neuropathy; rashCategoricalAdverse drug reactions

Chemotherapy; renal failureCategoricalMedical risk factors

Refugee camp resident; jail inmateCategoricalSocial risk factors

Pulmonary acid fast bacilli smear positive; disseminatedCategoricalDisease extent

aTB: tuberculosis.

For each feature where a patient could have multiple
observations, a series of dichotomous indicator features were
created. For example, for drug treatment, patients could be on
multiple medications, so dichotomous features were created for
each relevant medication.

For analysis, we pooled these features into 3 categories—simple,
moderate, and complex—based on an a priori assessment by a
clinical expert of the relative clinical and linguistic complexity
of each feature, based upon their clinical judgment (Table 1).
Complex features were typically those where NLP would have
to go well beyond simply categorizing terms based on a
reference dictionary but would instead have to successfully
process rich language with significant clinical context. For
example, adverse drug reactions are particularly challenging as
we may see the mention of a rash in the text, but this does not
determine whether there was in fact a rash or whether a rash
was the result of an adverse drug reaction. To determine whether

there was a rash, we have to be able to rule out cases with the
physician dictating “no evidence of rash,” patient complaining
of rash but not diagnosed as such by the physician, and the
physician dictating that she discussed rashes as possible side
effects of the medication. Once it has been determined that a
rash is present, we must first determine whether a rash is in fact
a possible side effect of a drug the patient had been prescribed
and then identify if the rash started when the drug was
administered, which unless explicitly dictated, requires the
solution to process the patient encounters longitudinally.

The reference standard was created by manually extracting
features from patient records using a standardized data extraction
form by a trained chart reviewer to serve as the reference
standard analysis. One of the coauthors (JB) trained both the
chart reviewer and the NLP engineer on how to perform chart
abstraction to ensure the same clinical criteria would be used
by both. This coauthor (JB) performed arbitration in cases of
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disagreement between the chart abstractor and the NLP tool’s
output. Arbitrated results were used to retune the model on the
training dataset before the final testing phase.

Statistical Analysis
The primary outcome of our study was overall accuracy, defined
as the number of correctly classified observations divided by
the total number of observations [14]. Secondary outcomes were
sensitivity (recall), specificity, positive predictive value (PPV;
precision), and negative predictive value (NPV) [15,16].
NLP-abstracted data were treated as the index analysis, with
manual chart review acting as the reference standard analysis.

Analysis was divided into 2 stages. The first stage was
conducted after a single round of tuning of the NLP algorithms
(n=50). The results of this stage were used to retune the semantic
and heuristic rules used by the NLP tool to improve accuracy.
The final analysis stage was conducted on the remaining records
(n=49).

For the primary outcome, within each feature category, we
calculated the accuracy and a 95% CI using standard methods
for continuous features and proportions [17]. For secondary
outcomes, we calculated the average and standard deviation
within each category. For example, for the simple category, we
calculated secondary outcomes for each feature within the
category, averaged them, and calculated the standard deviation.
This is a way of illustrating the average sensitivity, specificity,
PPV and NPV, and spread across all classes of a multicategorical
feature. All analyses were conducted using R (v 3.3.0).

Results

Overview
The study sample of 129 subjects included 71 females (55.0%,
71/129) with a mean age of 36.51 years and 58 males (45%)

with a mean age of 46.74 years. Consult notes from 9 clinicians
(8 physicians and 1 nurse practitioner) were included in the
sample. A total of 138 points of discrepancy between the NLP
process and the reference standard chart abstraction were
identified.

Natural Language Processing Performance
For the primary outcome (Table 2), NLP performed best for
features classified as simple, achieving an overall accuracy of
96% (95% CI 94.3-97.6). Performance was slightly lower for
features of moderate clinical and linguistic complexity at 93%
(95% CI 91.1-94.4) and lowest for complex features at 91%
(95% CI 87.3-93.1).

For secondary outcomes (Table 2), NLP achieved a sensitivity
of 94% (SD 7.7) for simple, 60% (SD 38.6) for moderate, and
74% (SD 45.7) for complex features and PPV of 96% (SD 6.4)
for simple, 70% (SD 33.7) for moderate, and 54% (SD 37.4)
for complex features. The relatively low sensitivity and PPV
for moderate and complex features is in contrast to its specificity
of 99% (SD 0.5) for simple, 94% (SD 5.0) for moderate, and
89% (SD 8.3) for complex features and NPV of 99% (SD 1.7)
for simple, 96% (SD 6.6) for moderate, and 98% (SD 2.9) for
complex features.

Unsurprisingly, we saw considerable variation in NLP’s
performance at the clinical feature level (Table 3). NLP
performed extremely well for detecting drug prescriptions,
achieving 100% for all primary and secondary outcomes for
moxifloxacin, rifampin, ethambutol, and isoniazid. In contrast,
NLP did not perform well at the feature level when measuring
disease extent, with a sensitivity of only 25% for pulmonary
acid fast bacilli (AFB) positive and 0% for extra pulmonary
cases because of a very low number of these cases in our sample
(4 pulmonary AFB-positive cases and 2 extrapulmonary cases).

Table 2. Primary and secondary outcomes for natural language processing (index analysis) compared with manual chart review (reference standard
analysis).

Secondary outcomesPrimary outcome, overall
accuracy (95% CI)

Feature complexity

Negative predictive
value (SD)

Positive predictive
value/precision (SD)

Specificity (SD)Sensitivity/recall (SD)

99.0 (1.7)96.4 (6.4)99.7 (0.5)93.8 (7.7)96.3 (94.3-97.6)Simple

95.6 (6.6)70.2 (33.7)94.2 (5.0)60.2 (38.6)92.9 (91.1-94.4)Moderate

98.4 (2.9)53.6 (37.4)89.2 (8.3)73.8 (45.7)90.6 (87.3-93.1)Complex
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Table 3. Primary and secondary outcomes for natural language processing (index analysis) compared with manual chart review (reference standard
analysis) at the clinical feature level.

Secondary outcomesaPrimary outcome, overall
accuracy (95% CI)

Feature

Negative predictive
value (SD)

Positive predictive
value/precision (SD)

Specificity (SD)Sensitivity/recall (SD)

Simple features

0.99 (0.01)0.97 (0.11)0.99 (0.01)0.88 (0.32)0.92 (0.80-0.98)Country of birth

0.99 (0.01)0.98 (0.08)0.99 (0.02)0.89 (0.29)0.90 (0.78-0.97)Year of immigration

0.97 (0.02)0.85 (0.30)0.98 (0.03)0.92 (0.08)0.94 (0.83-0.99)Smoking status

0.99 (0.01)0.99 (0.01)0.99 (0.01)0.80 (0.45)0.98 (0.89-0.99)Sputum conversion date

1.000.950.851.000.96 (0.86-0.99)Pyrazinamide

1.001.001.001.001.00 (0.93-1.00)Moxifloxacin

1.000.840.861.000.92 (0.80-0.98)Vitamin B6

1.001.001.001.001.00 (0.93-1.00)Rifampin

1.001.001.001.001.00 (0.93-1.00)Ethambutol

1.001.001.001.001.00 (0.93-1.00)Isoniazid

N/AN/A0.98N/Ab0.98 (0.89-0.99)Levofloxacin

Moderate features

0.970.890.940.940.94 (0.83-0.99)HIV status

0.900.670.820.800.82 (0.68-0.91)TBc contact

0.950.830.980.710.94 (0.83-0.99)Old TB

0.871.001.000.330.88 (0.75-0.95)Culture positive

1.001.001.001.001.00 (0.93-1.00)Polymerase chain reaction
positive

1.001.001.001.001.00 (0.93-1.00)Clinical diagnosis

0.91 (0.14)0.73 (0.25)0.97 (0.04)0.81 (0.27)0.92 (0.80-0.98)Drug sensitivity

N/AN/A0.98N/A0.98 (0.89-0.99)Corticosteroids

0.980.330.960.500.94 (0.83-0.99)Chemotherapy

0.770.500.970.080.76 (0.61-0.87)Other immunosuppressive
drugs

1.000.330.911.000.92 (0.80-0.98)Cancer

0.981.001.000.860.98 (0.89-0.99)Diabetes

0.960.000.980.000.94 (0.83-0.99)Malnutrition

0.811.001.000.100.82 (0.68-0.91)Other immunosuppressive
conditions

0.91 (0.14)0.99 (0.02)0.93 (0.12)0.66 (0.57)0.96 (0.86-0.99)Marginalized

0.97 (0.03)0.95 (0.08)0.95 (0.08)0.38 (0.48)0.90 (0.78-0.97)Health care facility

Pulmonary acid fast bacilli

0.930.500.980.250.92 (0.80-0.98)Positive

1.000.670.961.000.96 (0.86-0.99)Negative

0.910.000.960.000.88 (0.75-0.96)Extrapulmonary (other than
lymphadenitis)

N/AN/A0.94N/A0.94 (0.83-0.99)Lymphadenitis

0.96N/A1.000.000.96 (0.86-0.99)Disseminated

Complex features
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Secondary outcomesaPrimary outcome, overall
accuracy (95% CI)

Feature

Negative predictive
value (SD)

Positive predictive
value/precision (SD)

Specificity (SD)Sensitivity/recall (SD)

1.001.001.001.001.00 (0.93-1.00)Active TB disease

0.920.760.790.900.84 (0.70-0.93)Latent TB infection

1.000.250.871.000.88 (0.75-0.95)Pulmonary nontuberculous
mycobacteria

Adverse drug reaction

1.000.650.761.000.84 (0.70-0.93)Gastrointestinal

1.000.780.951.000.96 (0.86-0.99)Peripheral neuropathy

1.000.500.891.000.90 (0.78-0.97)Rash

0.960.000.980.000.94 (0.83-0.99)Other

0.980.000.920.000.90 (0.75-0.97)Ocular toxicity

aValues within parenthesis are standard deviation values.
bN/A: not applicable.
cTB: tuberculosis.

Natural Language Processing Performance Adjusted
for Adjudication
To understand whether NLP’s relatively low sensitivity and
PPV for moderate and complex features might be driven by
errors in the manual chart review, rather than errors in NLP, we
conducted a post hoc analysis in which all 138 points of
discrepancy between the reference standard and index analysis
were arbitrated by a clinical expert. The expert found the results
to be in favor of NLP in 51.4% (71/138) of cases and chart
review in 45.6% (63/138) of cases and found that both were
incorrect in 2.8% (4/138) of cases.

After adjusting for the results of adjudication, results for our
primary outcome of overall accuracy increased modestly to 98%

(95% CI 96.1-98.7) for simple, 96% (95% CI 94.8-97.3) for
moderate, and 94% (95% CI 91.3-96.1) for complex features.
The sensitivity increased to 78% (SD 25.0) for moderate and
86% (SD 35.0) for complex features, and PPV increased to 93%
(SD 14.7) for moderate and 70% (SD 34.2) for complex features
(Table 4).

At the feature level (Table 5), adjustment for adjudication
resulted in several dramatic improvements, particularly in the
area of immunosuppressive drugs and conditions. For example,
PPV for both cancer and chemotherapy was only 33% before
adjudication but increased to 100% following adjudication.
Similarly, for other immunosuppressive drugs, sensitivity was
only 8% and PPV was only 50% initially, but it increased to
67% and 100%, respectively, after adjudication.

Table 4. Primary and secondary outcomes for natural language processing compared with manual chart review, adjusted for results of adjudication.

Secondary outcomesPrimary outcome, overall
accuracy (95% CI)

Feature complexity

Negative predictive
value (SD)

Positive predictive
value/precision (SD)

Specificity (SD)Sensitivity/recall (SD)

99.2 (1.7)98.3 (4.5)99.8 (0.5)96.4 (5.4)97.8 (96.1-98.7)Simple

97.2 (3.2)92.7 (14.7)93.3 (4.7)78.2 (25.0)96.2 (94.8-97.3)Moderate

98.7 (2.9)70.5 (34.2)92.8 (8.2)86.3 (35.0)94.1 (91.3-96.1)Complex
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Table 5. Primary and secondary outcomes for natural language processing compared with manual chart review, adjusted for results of adjudication at
the clinical feature level.

Secondary outcomesaPrimary outcome, overall
accuracy (95% CI)

Feature

Negative predictive
value (SD)

Positive predictive
value/precision (SD)

Specificity (SD)Sensitivity/recall (SD)

Simple features

0.99 (0.01)0.98 (0.10)0.99 (0.01)0.91 (0.28)0.94 (0.83-0.99)Country of birth

0.99 (0.01)0.99 (0.06)0.99 (0.02)0.92 (0.23)0.92 (0.80-0.98)Year of immigration

0.97 (0.02)0.85 (0.30)0.98 (0.03)0.92 (0.08)0.94 (0.83-0.99)Smoking status

1.001.001.001.001.00 (0.93-1.00)Sputum year

1.000.950.851.000.96 (0.86-0.99)Pyrazinamide

1.001.001.001.001.00 (0.93-1.00)Moxifloxacin

1.000.840.861.000.92 (0.80-0.98)Vitamin B6

1.001.001.001.001.00 (0.93-1.00)Rifampin

1.001.001.001.001.00 (0.93-1.00)Ethambutol

1.001.001.001.001.00 (0.93-1.00)Isoniazid

1.001.001.001.001.00 (0.93-1.00)Levofloxacin

Moderate features

0.971.001.000.950.98 (0.89-0.99)HIV status

0.970.670.830.920.86 (0.73-0.94)TBb contact

0.951.001.000.750.96 (0.86-0.99)Old TB

0.871.001.000.330.88 (0.75-0.95)Culture positive

1.001.001.001.001.00 (0.93-1.00)Polymerase chain reaction
positive

1.001.001.001.001.00 (0.93-1.00)Clinical diagnosis

0.94 (0.10)0.80 (0.26)0.99 (0.01)0.98 (0.03)0.96 (0.86-0.99)Drug sensitivity

1.001.001.001.001.00 (0.93, 1.00)Corticosteroids

0.981.001.000.750.98 (0.89-0.99)Chemotherapy

0.981.001.000.670.98 (0.89-0.99)Other immunosuppressive
drugs

1.001.001.001.001.00 (0.93-1.00)Cancer

0.981.001.000.860.98 (0.89-0.99)Diabetes

0.960.000.980.000.94 (0.83-0.99)Malnutrition

0.981.001.000.50.98 (0.89-0.99)Other immunosuppressive
conditions

0.99 (0.01)0.99 (0.01)0.95 (0.10)0.75 (0.50)0.98 (0.89-0.99)Marginalized

0.97 (0.03)0.95 (0.06)0.86 (0.29)0.50 (0.50)0.92 (0.80-0.97)Health care facility

Pulmonary acid fast bacillus

0.930.500.980.250.92 (0.80-0.98)Positive

1.000.670.951.000.96 (0.86-0.99)Negative

0.951.001.000.500.96 (0.86-0.99)Extrapulmonary (other than
lymphadenitis)

1.001.001.001.001.00 (0.93-1.00)Lymphadenitis

N/AN/A1.00N/Ac1.00 (0.93-1.00)Disseminated

Complex features
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Secondary outcomesaPrimary outcome, overall
accuracy (95% CI)

Feature

Negative predictive
value (SD)

Positive predictive
value/precision (SD)

Specificity (SD)Sensitivity/recall (SD)

1.001.001.001.001.00 (0.93-1.00)Active TB disease

0.920.760.790.900.84 (0.70-0.93)Latent TB infection

1.001.001.001.001.00 (0.93-1.00)Pulmonary nontuberculous
mycobacteria

Adverse drug reaction

1.000.780.841.000.90 (0.78-0.97)Gastrointestinal

1.001.001.001.001.00 (0.93-1.00)Peripheral neuropathy

1.000.500.891.000.90 (0.78-0.97)Rash

1.000.500.981.000.97 (0.89-0.99)Other

0.980.000.920.000.90 (0.75-0.97)Ocular toxicity

aValues within parenthesis are standard deviation values.
bTB: tuberculosis.
cN/A: not applicable.

Discussion

Principal Findings
The findings of this study suggest that a commercially available
NLP tool can perform very well when compared with the
reference standard of manual chart review in extracting useful
clinical information from digital text notes in our TB clinic with
limited training. This was especially true in the case of
straightforward findings, such as prescribed medications,
smoking status, country of birth, year of immigration, and
sputum conversion date. Unsurprisingly, accuracy decreased
slightly as clinical features became more complex, but it
remained over 90% for complex features.

One notable finding is that although NLP performed extremely
well with respect to specificity and NPV for moderate and
complex findings, sensitivity and PPV were considerably lower.
These results are in keeping with other studies using free-format
clinical notes for complex feature extraction, such as the study
by Perlis et al, who reported a sensitivity of 42% and PPV of
78% for the detection of depression [8]. However, these findings
are in contrast to the high sensitivity and PPV reported in studies
looking at radiology reports, such as the study by Al-Haddad
et al, who demonstrated a sensitivity of 97% and PPV of 95%
in the detection of intraductal papillary mucinous neoplasms
[10]. This discrepancy may be either because of differences in
complexity of features or because of differences inherent
between radiology reports, which are relatively structured, often
with minimal variability from practitioner to practitioner, versus
free-format clinical notes, which have less structure and greater
variability across practitioners.

In terms of ease of use of a commercially available tool,
deploying Pentavere’s DARWEN in our environment was a
straightforward installation of their application on a desktop
computer. The iterative tuning and relationship modeling for
all clinical features took our NLP engineer roughly 4 weeks to
complete. The tuning required roughly 6 hours of clinician time

to provide clinical context for the NLP engineer, confirm clinical
validity of heuristic rules, and perform arbitration of
discrepancies between chart review and NLP.

Strengths and Limitations
Our study is novel in several ways. First, to our knowledge, this
is only the third study to explore the validity of NLP for the
identification of TB patients and the first to examine dictated
consult notes versus radiological reports and structured
laboratory results for this purpose [18,19]. Second, research on
NLP applications in medicine tend to focus on only a single
clinical condition such as the presence of a tumor [10], a
diagnosis such as depression [8], or a social condition such as
homelessness [9]. In contrast, our study is substantially broader
compared with other more commonly published studies, looking
at 15 distinct medical and social features. Finally, our study is
one of the few to evaluate the performance of a commercially
available NLP tool [6,7,12].

Our study has several limitations. First, review of the
feature-level analysis reveals that some dichotomous features
had very low incidence, making sensitivity and PPV very
sensitive to error. Second, our choice to randomly sample for
our initial training dataset (n=30) resulted in an undersampling
of cases of ocular toxicity because of adverse drug reaction. As
a result, the NLP tool was never trained on this feature and
subsequently performed poorly for this feature during the final
testing set, potentially underestimating the effectiveness of a
properly trained tool. This suggests that a real-world application
of this technology may require a more purposive sampling
strategy than our random sampling approach. Third, our study
employed only a single chart abstractor and a single adjudicator.
Finally, this study was conducted at a single center, in a focused
clinical area, and with a relatively small final test sample (n=49),
which may limit the generalizability of our findings. However,
the goal of this pilot study was to establish the feasibility of
using NLP to extract clinical features from dictated consult
notes and to inform the approach to larger future studies.
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Conclusions
NLP technology has been advancing quickly in recent years,
and the potential clinical applications are numerous. The
findings of this study support the application of extracting
clinical features from dictated consult notes in the setting of a
TB clinic. Further research is needed to fully establish the

validity of NLP for this and other purposes. However, its
application to free-format consult notes may be of particular
benefit, as it offers a course whereby clinicians can document
in their preferred method of narrative free text, with data still
available for applications such as research and program quality
control initiatives, for example, without the cost and effort of
manual chart review.
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