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Abstract

Background: Data standardization is essential in electronic health records (EHRs) for both clinical practice and retrospective
research. However, it is still not easy to standardize EHR data because of nonidentical duplicates, typographical errors, or
inconsistencies. To overcome this drawback, standardization efforts have been undertaken for collecting data in a standardized
format as well as for curating the stored data in EHRs. To perform clinical big data research, the stored data in EHR should be
standardized, starting from laboratory results, given their importance. However, most of the previous efforts have been based on
labor-intensive manual methods.

Objective: We aimed to develop an automatic standardization method for eliminating the noises of categorical laboratory data,
grouping, and mapping of cleaned data using standard terminology.

Methods: We developed a method called standardization algorithm for laboratory test–categorical result (SALT-C) that can
process categorical laboratory data, such as pos +, 250 4+ (urinalysis results), and reddish (urinalysis color results). SALT-C
consists of five steps. First, it applies data cleaning rules to categorical laboratory data. Second, it categorizes the cleaned data
into 5 predefined groups (urine color, urine dipstick, blood type, presence-finding, and pathogenesis tests). Third, all data in each
group are vectorized. Fourth, similarity is calculated between the vectors of data and those of each value in the predefined value
sets. Finally, the value closest to the data is assigned.

Results: The performance of SALT-C was validated using 59,213,696 data points (167,938 unique values) generated over 23
years from a tertiary hospital. Apart from the data whose original meaning could not be interpreted correctly (eg, ** and _^),
SALT-C mapped unique raw data to the correct reference value for each group with accuracy of 97.6% (123/126; urine color
tests), 97.5% (198/203; (urine dipstick tests), 95% (53/56; blood type tests), 99.68% (162,291/162,805; presence-finding tests),
and 99.61% (4643/4661; pathogenesis tests).

Conclusions: The proposed SALT-C successfully standardized the categorical laboratory test results with high reliability.
SALT-C can be beneficial for clinical big data research by reducing laborious manual standardization efforts.
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Introduction

Background
As the volume of digitized medical data generated from
real-world clinical settings explosively increases owing to the
wide adoption of electronic health records (EHRs), there are
mounting expectations that such data offer an opportunity to
find high-quality medical evidence and improve health-related
decision making and patient outcomes [1-6]. EHR data collected
during clinical care can support knowledge discovery that allows
critical insights into clinical effectiveness, medical product
safety surveillance in real-world settings, clinical quality, and
patient safety interventions [1,7-12]. In recent years, interest is
growing in conducting multi-institutional studies for earning
strength in analysis using EHR data, such as the Observational
Health Data Sciences and Informatics [13], National
Patient-Centered Clinical Research Network [14], and Electronic
Medical Records and Genomics network [15], by standardizing
EHR data from multiple institutions [16-21].

Indeed, significant promising values are expected from using
EHR. However, a substantial number of studies have mentioned
that clinical data in EHR may not be of sufficient quality for
research [22-27]. Compared with well-organized research
cohorts or repositories, EHR systems are typically designed for
hospital operations and patient care [28]. For example, a system
may use local terminology that allows unmanaged synonyms
and abbreviations. Thus, data of the same concept can be stored
under different notations across different systems. Therefore,
if these duplicate notations are not merged into a single concept,
it can distort the results of a study. In addition, if local data are
not mapped to standard terminologies, such as the systematized
nomenclature of medicine (SNOMED) and logical observation
identifiers names and codes (LOINC), performing multicenter
research would require extensive labor.

Several EHR data standardization guidelines and tools for
laboratory test name have been published [29-32], but there
have been relatively few studies on data cleaning methodology
for categorical laboratory data [33,34]. The label of laboratory
results tends to be managed well for insurance claims, whereas
laboratory results data, especially categorical results, are not
well harmonized even in a single institution. Categorical

laboratory results are usually written as free texts; different
notations are used by departments or doctors, leading to
significant data noise. Thus, harmonizing data becomes more
challenging because it requires not only intensive labor but also
clinical knowledge.

Objectives
To resolve this drawback, there is a growing demand for data
processing guidance and mapping tools for categorical
laboratory data. In this study, we proposed a new automatic
standardization algorithm for categorical laboratory results data,
called standardization algorithm for laboratory test—categorical
results (SALT-C). This algorithm was designed to help data
curators by minimizing human intervention.

Methods

Overview
The original laboratory data used in this study are extracted
from the clinical data warehouse (CDW) of Samsung Medical
Center in Korea. The CDW contains deidentified clinical data
of over 3,700,000 patients, including inpatient, outpatient, and
emergency room patients, since 1994. The target dataset consists
of 59,574,124 categorical laboratory results from 817 laboratory
tests. This study focused on categorical data generated by
machines; observation data, such as from health examination
and allergy tests, were excluded even if sorted in categorical
values.

Defining the Categorical Laboratory Results Value
Sets and Mapping Terminology
Before developing SALT-C, 5 value sets were predefined as a
reference. The value sets were defined as follows. First, we
analyzed the distribution of laboratory tests with their results.
Second, from the most frequent laboratory tests, we defined the
value set of each laboratory test by consulting physicians and
referring to SNOMED value sets. Finally, we identified 5
common value sets by combing the value sets with similar
values (Table 1). The value sets of the 5 categories were mapped
into SNOMED identifiers, as SNOMED is the most popular
international standard for clinical terminology. The mapping
results are shown in Multimedia Appendix 1.

Table 1. Five common value sets.

Value setCategory

Clear, cloudy, orange, purple, brown, green, blue, red, black, yellow, dark yellow, pink, turbid, milky
white, amber, straw, colorless, bloody

Urine color tests

Negative, normal, trace, +, ++, +++, ++++Urine dipstick tests

Rh+, Rh−, weak D, partial D, variant D, A, B, AB, O, cis-ABBlood type tests

Positive, negative, weakly positivePresence-finding tests

Reactive, nonreactive, weakly reactivePathogenesis tests
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Developing the Automatic Standardizing Algorithm
The overall procedure of SALT-C is described in Figure 1.
Using the 5 common value sets developed in the previous step,
we designed SALT-C to assign each laboratory test into one of
the 5 value set groups (laboratory test categorizer), then assign

the actual value to one of the standardized categorical items in
the corresponding value set (laboratory data categorizer).
Multimedia Appendix 2 demonstrates the entire process in detail.
The following subsections will describe each method. SALT-C
was written in Python. The source code of SALT-C can be
downloaded using the GitHub link [35].

Figure 1. Process of the proposed standardization algorithm for laboratory tests—categorical results (SALT-C). neg: negative; pos: positive.
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Data Extraction and Preprocessing
First, SALT-C extracts categorical laboratory data from a
database or a comma-separated values format. Second, it
preprocesses the extracted data with several methods: (1)
applying the general data cleaning rules (ie, uppercase to
lowercase and removing spaces from both sides), (2) correcting
the abbreviation of - to rh – and + to rh + in Rh blood type
laboratory data to distinguish it from the other - data of other
laboratory tests, (3) formatting the urinalysis data. For example,
results of urinalysis 4+ need to be converted into ++++, which
has SNOMED concept identifier 260350009.

Extraction of the Main Values From Each Laboratory
Test
SALT-C creates a distribution table for each laboratory test to
extract the representative values. The distribution table is
implemented in the following order: classify the data for each
laboratory test, calculate the frequency of the data, and organize
them in descending order. After the creation of the distribution
table, the main values of each test are extracted. Only the data
with a cumulative frequency of 99.5% or more are extracted as
main values.

In performing the experiments by changing the cumulative
frequency, 99.5% seemed the most reasonable threshold,
empirically. If there are less than 5 values in a laboratory test,
then all the values are extracted as main values because the
categorizer may not work properly if too few values are
extracted as main values.

Laboratory Test Categorizer
Once the main values are extracted in the previous step, they
are used to categorize the laboratory tests into 5 groups
according to a rule-based categorizer, as in Figure 1. If one or
more main values of a laboratory test are included in one of the
predefined value sets, as in Table 1, the laboratory test is
categorized into the corresponding category. The laboratory test
categorizer proceeds in a specific order of test categories (urine
color, urine dipstick, blood type, presence finding, and
pathogenesis) until the laboratory test is assigned to a single
category; most laboratory tests have + and - data as their main
values and can be misclassified if they are not ordered.

We included the following when designing the laboratory test
categorizer, to prevent laboratory tests from being assigned to
incorrect categories: (1) correction of - and + data to rh− and
rh+ when they related to blood type tests, (2) classification of
tests that have ++, +++, and ++++ as main values in advance
so that + data would not affect the subsequent classification,
and (3) classification of blood type–related tests as a subsequent
step; the remaining tests are classified into the presence-finding
or pathogenesis category.

Character-Level Vectorization
In SALT-C, we choose the character-level vectorization to
represent laboratory data. By vectorizing, only a limited number
of alphabets of laboratory data are used, instead of laboratory
test names. The scheme consists of alphabets (a-z) and special
characters (-, _, and +). All data are represented as vectors with
the number of characters corresponding to the scheme features.
This process is described in Figure 2, with examples of the
feature representation of urine dipstick tests category data.

Figure 2. Character level vectorization. neg: negative; norm: normal; pos: positive.

Data Cleaning Using Similarity Measure
After all of the words are vectorized, a similarity score is
calculated between a laboratory data point and each of the values
in the standardized value set, and then the most similar value
is selected. As a method of measuring similarity, we used and

compared cosine similarity measure, Euclidean distance, and a
hybrid method. The hybrid method was used to select the most
similar value calculated by Euclidean distance when there are
2 or more same cosine similarity values.
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Manual Validation
We performed manual validation by adjudicating a total of
167,936 laboratory unique values that SALT-C predicted as
labels. We examined the accuracy of the predicted labels
calculated by the similarity measure. Three medical providers
were recruited to manually verify data. Two of them examined
the total data set and another person was involved to determine
the final adjudication in the case of a discrepancy. The mean of
the similarity scores for correct, incorrect, and unclassified data
were identified.

Results

Dataset Descriptive Statistics

Distribution of Laboratory Tests
A total of 817 categorical laboratory tests and 59,574,124 test
results were selected from the source database. The most
frequent laboratory test was urinalysis (43,559,493, 73.12%),
followed by hepatitis B blood (5,219,770, 8.76%), ABO/Rh
blood type (3,261,992, 5.85%), hepatitis C blood (1,653,741,
2.77%), rapid plasma reagin (1,044,173, 1.75%), venereal
disease research laboratory (551,980, 0.93%), Treponema
pallidum latex agglutination (527,454, 0.89%), HIV (464,507,
0.73%), and hepatitis B blood test (1,653,741, 2.77%). Other
tests had a rate of less than 0.5%. Additional results are
described in Multimedia Appendix 3.

Distribution of Laboratory Data
Frequency distribution tables for laboratory data were created
for the 817 laboratory tests. Representative distribution tables
for each of the 5 categories are described in Figures 3-7 as
histogram charts.

In the color test of urinalysis (Figure 3), there were 4,296,997
data points, of which 132 values were unique before
preprocessing. The most common value was Straw, accounting
for 69.43%, followed by Yellow (16.97%), and Amber (11.88%).
Other data comprised less than 1%. Straw, Yellow, Amber, and
Brown were extracted as main values according to the criterion
that only data with a cumulative frequency of 99.5% or less are
extracted as main values. The main values had various synonyms

or typos and abbreviations. For example, the number of different
notations that should be corrected as Straw was 151, for
example, Starw, ]traw, Strow, Strwa, traw, ]Straw, and steaw.

As for the blood detection test in urinalysis (Figure 4), there
were 4,296,700 data points, of which 235 values were unique
before preprocessing. Various synonyms of the main values
were identified, including typos and abbreviations. For example,
trace had 29 such notation variations: 10 tr, 25 tr, tr -, 5 tr, tr,
10 trace, and 10 trt. The most common value was neg -,
accounting for 52.32%, followed by 10 tr (13.73%), 25 +
(11.73%), 250 ++++ (6.89%), 50 ++ (6.60%), and 150 +++
(4.16%). Other data comprised less than 1%. Items neg -, 10
tr,25 +,250 ++++, and 50 ++ were extracted as main values.

In ABO blood type laboratory tests (Figure 5), there were
1,630,995 data points, of which 53 values were unique before
preprocessing. The most common value was A, accounting for
34.17%, followed by O (27.42%), B (27.08%), and AB (11.15%).
Other data consisting of blood group variant (ie, A1, A2, A3, Ax,
Am, Ael, and Aend) comprised less than 1%. A, O, B, and AB were
extracted as main values.

As the representative case of the presence-finding tests category,
the antihepatitis B surface antibody laboratory test (Figure 6)
had 1,190,631 data points, of which 56,134 were unique values
before preprocessing. The most common value was NEG (2.00),
accounting for 11.66%, followed by POS (>1000) (11.09%),
NEGATIVE (10.14%), and NEG (0.01) (1.81%). Other data
comprised less than 1%. NEG (2.00), POS (>1000), NEGATIVE,
and NEG (0.01) were extracted as main values. Laboratory tests
belonging to this category usually had data composed of
numbers and letters; thus, the number of unique values was far
higher compared with other categories.

As the representative case of the pathogenesis tests category,
the venereal disease research laboratory test had 551,980 data
points, of which 130 were unique values before preprocessing
(Figure 7). The most common value was NON-REACT,
accounting for 67.64%, followed by NON-REACTIVE (31.05%).
Other data comprised less than 1%. NON-REACT,
NON-REACTIVE, W-REACT, REACTIVE, and
WEAKLY-REACTIVE were extracted as main values.
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Figure 3. Distribution of laboratory tests data. Example laboratory test in the urine color tests category.

Figure 4. Distribution of laboratory tests data. Example laboratory test in the urine dipstick tests category.
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Figure 5. Distribution of laboratory tests data. Example laboratory test in the blood type tests category.

Figure 6. Distribution of laboratory tests data. Example laboratory test in the presence finding tests category.
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Figure 7. Distribution of laboratory tests data. Example laboratory test in the pathogenesis tests category.

Categorization Results and 5 Common Value Sets
Overall, 5 categories and common value sets were created, and
480 laboratory tests were categorized into their corresponding
group by the categorizer (Table 2). A total of 337 laboratory

tests could not be classified. However, most of these
uncategorized tests are not commonly used as these codes have
been extinguished or temporarily issued for system testing. In
addition, they only account for 0.61% of the raw data.

Table 2. Laboratory test categorization.

Classified laboratory testsCategory

Representative laboratory testsNumber

Urinalysis: color, turbidity2Urine color tests

Urinalysis: glucose, protein, ketones, hemoglobin, urobilinogen, bilirubin, leukocyte esterase14Urine dipstick tests

Rh type, ABO group3Blood type tests

Hepatitis C virus antibody, Anti-HIV antibody, hepatitis B surface antigen, hepatitis B surface antibody,
hepatitis B e-antigen, barbiturate screen, opiate screen, toxoplasma antibody, rubella antibody

453Presence-finding tests

Rapid plasma reagin, venereal disease research laboratory (VDRL), Treponema pallidum latex aggluti-
nation, VDRL (cerebrospinal fluid), Treponema pallidum

8Pathogenesis tests

As shown in Table 2, 2 laboratory tests were categorized into
the urine color tests category: one was the test for urine color
and the other was the test for urine turbidity. The urine dipstick
tests category included 2 sets of urinalysis tests, each consisting
of 7 tests (glucose, protein, ketones, hemoglobin, urobilinogen,
bilirubin, and leukocyte esterase) for checking the level of
presence in urine. The blood type tests consisted of 2 tests
related to blood type and 1 Rh type test. Most of the tests that
have positive and negative data were categorized into the
presence-finding tests. The pathogenesis tests category included
8 laboratory tests that were mostly related to sexually transmitted
disease screening.

Manual Validation of Similarity Measure Results
We examined 3 similarity measures, namely, cosine similarity,
Euclidean distance, and hybrid method. For the mapping results
of values, the hybrid method showed a 97.82% accuracy
compared with cosine similarity (93.20%) and Euclidean
distance (97.64%). For the mapping results of data, the hybrid
method, with 99.99% accuracy, was also the most accurate
compared with cosine similarity (93.78%) and Euclidean
distance (99.96%), as shown in Table 3. Therefore, when using
SALT-C with the hybrid method as a similarity measure, nearly
all of the raw data were mapped to the target value. As for the
unique laboratory values, the algorithm predicted labels with
the following accuracy values: 97.62% (urine color tests), 97.54
(urine dipstick tests), 94.64% (blood type tests), 99.68%
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(presence-finding tests), and 99.61% (pathogenesis tests).
Approximately 0.002% of the raw data that did not contain

enough information for terminology mapping or were severely
distorted were excluded from the analysis interpretation.

Table 3. Manual validation in unlabeled data.

Hybrid methodEuclidean distanceCosine similarityCategory

DataValueDataValueDataValue

Urine color, n (%)

8,592,841 (>99.99)123 (97.6)8,592,835 (0.49)122 (96.8)8,592,841 (>99.99)123 (97.6)Correct

140 (<0.01)3 (2.4)146 (<0.01)4 (3.2)140 (<0.01)3 (2.4)Incorrect

Urine dipstick, n (%)

30,594,572 (>99.99)198 (97.5)30,594,572 (>99.99)198 (97.5)28,747,699 (93.96)162 (79.8)Correct

24 (<0.01)5 (2.5)24 (<0.01)5 (2.5)1,846,897 (6.04)41 (20.2)Incorrect

Blood type, n (%)

3,261,994 (>99.99)53 (95)3,261,994 (>99.99)53 (95)3,261,963 (>99.99)50 (89)Correct

13 (<0.01)3 (5)13 (<0.01)3 (5)44 (<0.01)6 (11)Incorrect

Presence finding, n (%)

14,788,631 (99.97)162,291 (99.68)14,788,663 (99.97)162,296 (99.69)14,788,631 (99.97)162,291 (99.68)Correct

4021 (0.03)514 (0.32)3989 (0.03)509 (0.31)4021 (0.03)514 (0.32)Incorrect

Pathogenesis, n (%)

1,944,729 (99.98)4643 (99.61)1,941,960 (99.84)4638 (99.51)1,944,729 (99.98)4643 (99.61)Correct

283 (0.01)18 (0.39)3052 (0.16)23 (0.49)283 (0.01)18 (0.39)Incorrect

Discussion

Principal Findings
The primary goal for this study was to find the way to efficiently
map raw data to international standard terms. The first thing we
did was to find standard value sets or code lists related to
categorical laboratory test results. There are some value sets
publicly available at SNOMED, LOINC, and Value Set
Authority Center, but these were scattered, requiring an
integrated dictionary to identify the spectrum of categorical
laboratory data. Without an integrated reference dictionary, it
is hard for researchers to convert their data into standard codes
systemically, given that these data contain many synonyms,
typos, and abbreviations. Such a situation has impeded easy
organization and aggregation into standard terminology, as
medical providers’ help is needed.

In this study, we identified 5 common value sets for categorical
laboratory results by analyzing the distribution of laboratory
tests with their results, by consulting with medical doctors, and
by referring to laboratory tests’ SNOMED child codes. We
found that 99.39% of the categorical test values fell into these
value sets. As most of the categorical laboratory results were
urinalysis data and data related to positive, negative, reactive,
and nonreactive findings, and given that many researchers
struggle with urinalysis data processing, we designed the value
sets to handle as much urinalysis data as possible. The value
sets developed in this study can be used for EHR
interoperability, such as using Fast Health Interoperable
Resources and Clinical Document Architecture. We continue
to expand the values of value sets by applying SALT-C to

several EHR databases internationally; furthermore, we are
registering categorical laboratory value sets at Value Set
Authority Center.

The laboratory data categorizer (Figure 1) measures the distance
metrics between the standard item (eg, negative) and the
laboratory test categorical values using a vector space model.
We used the following method to increase computational
efficiency and accuracy: (1) we only used the alphabets included
in laboratory data, instead of alphabetical lists, as features and
(2) we excluded duplicated characters in the standard term as
much as possible. For example, negative and positive data were
converted to neg – and posi to reduce similarity. We also
attempted other string-matching methods, such as K-means
clustering and Levenshtein distance; however, these 2 methods
performed poorly. We demonstrated that the combination of
cosine similarity and Euclidean distance method could give the
best accuracy for laboratory test data, exceeding the performance
of other measures. This hybrid model was complementary: the
cosine similarity method selects the standard term with the most
similar vector direction, and if the most similar vector direction
is more than one, then the model adopts the closest value using
the Euclidean distance method. For example, +++ 6 data have
the same cosine similarity scores for +, ++, +++, and ++++,
respectively, but Euclidean distance indicates +++ is the closest
value. Usually, the cosine similarity is more accurate than
Euclidean distance because it is less sensitive to the length or
character order of terms; in some cases, the cosine similarity
can be more accurate when combined with the Euclidean
distance method. If there is a predefined code list table, it is
more accurate to find the closest standard term by measuring
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the distance between the standard values and the data to be
corrected; otherwise, the K-means method can be an alternative.

Limitation
Our study has a number of limitations to be considered. First,
we validated SALT-C through one institution; thus, it may not
be generalizable to other institutions’data. However, our manual
validation of 167,936 data points proved the high performance
of SALT-C. When it comes to applying this algorithm to other
institutions, the framework suggested in this study can be used
to process categorical laboratory data, and the accuracy of the
algorithm can be increased by adding more values to the value
sets. Second, we only targeted the diagnostic test results from
devices, whereas data from observational health examinations,
such as past history, family history, and manual allergy test
results, were excluded. In the case of processing allergy test
results, it is much more efficient to treat it as a regular
expression method, so we did not include it in the algorithm.
We believe that observational health examination data should
be managed using a different table (ie, excluded from the
laboratory test result table); the terms and structure of reporting
these data are not well standardized, and as such, we were unable
to include them in this study. Third, meaningless data or data
that do not correspond to any values in the value sets were
assigned standard values randomly. In this case, we suggest 2
solutions: (1) if the similarity scores measured by cosine
similarity or Euclidean distance between the actual data and
each of the standard values in the value set are the same, then
these data need manual mapping; (2) as these data do not take
up much of the total dataset, the rate of manual mapping will
decrease by selecting the dataset corresponding to 95% of the
cumulative frequency from the beginning. Fourth, we grouped
blood group A variants such as A1, A2, A3, Ax, Am, Ael, and Aend

into A, blood group B variants such as B1, B2, B3, Bx, Bm, Bel,
and Bend into B, and cis-AB into AB. However, it is more
accurate to categorize blood group variants into subgroup

[36,37]. We recommend modifying SALT-C algorithm depends
on purpose of research regarding blood type.

Future work
For the short-to-medium term, we plan to validate SALT-C
algorithm with multiple institutions and add more values sets
that covers more laboratory tests. In addition, as a series of
SALT algorithm, we aim to develop standardization algorithm
for laboratory test—allergy (SALT-A) that handles allergy data
and standardization algorithm for laboratory test—blood culture
(SALT-BC) that deals with semistructuralized blood culture
results.

Conclusions
We developed SALT-C, an algorithm that supports mapping of
categorical laboratory data to the SNOMED-clinical terms (CT),
and applied it to a large, long-period EHR system database.
Previous studies on laboratory data processing have focused on
the automatic mapping of laboratory test names or the
standardization of numeric laboratory data [30-32,38]; however,
we focused on categorical values of laboratory tests. Although
SNOMED CT or LOINC standardize categorical laboratory test
results, there is no widely accepted process of assigning standard
codes to unstructured data fields.

There is an increasing need to aggregate and standardize EHR
data to aid discovery of high-quality medical evidence and
improve health-related decision making and patient outcomes.
However, guidelines and automated methods for systemically
converting disparate categorical laboratory data to standard
terminology have been left to future work. The value sets and
automated method suggested in this study may improve data
interoperability and could be used for implementing standardized
clinical data warehouse while reducing the manual effort of
converting data. We plan to validate SALT-C through applying
it at multisite institutions as well as expanding the value sets.
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