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Abstract

Background: With the increase in the world’s aging population, there is a growing need to prevent and predict dementia among
the general population. The availability of national time-series health examination data in South Korea provides an opportunity
to use deep learning algorithm, an artificial intelligence technology, to expedite the analysis of mass and sequential data.

Objective: This study aimed to compare the discriminative accuracy between a time-series deep learning algorithm and
conventional statistical methods to predict all-cause dementia and Alzheimer dementia using periodic health examination data.

Methods: Diagnostic codes in medical claims data from a South Korean national health examination cohort were used to identify
individuals who developed dementia or Alzheimer dementia over a 10-year period. As a result, 479,845 and 465,081 individuals,
who were aged 40 to 79 years and without all-cause dementia and Alzheimer dementia, respectively, were identified at baseline.
The performance of the following 3 models was compared with predictions of which individuals would develop either type of
dementia: Cox proportional hazards model using only baseline data (HR-B), Cox proportional hazards model using repeated
measurements (HR-R), and deep learning model using repeated measurements (DL-R).

Results: The discrimination indices (95% CI) for the HR-B, HR-R, and DL-R models to predict all-cause dementia were 0.84
(0.83-0.85), 0.87 (0.86-0.88), and 0.90 (0.90-0.90), respectively, and those to predict Alzheimer dementia were 0.87 (0.86-0.88),
0.90 (0.88-0.91), and 0.91 (0.91-0.91), respectively. The DL-R model showed the best performance, followed by the HR-R model,
in predicting both types of dementia. The DL-R model was superior to the HR-R model in all validation groups tested.

Conclusions: A deep learning algorithm using time-series data can be an accurate and cost-effective method to predict dementia.
A combination of deep learning and proportional hazards models might help to enhance prevention strategies for dementia.

(JMIR Med Inform 2019;7(3):e13139) doi: 10.2196/13139

JMIR Med Inform 2019 | vol. 7 | iss. 3 | e13139 | p. 1http://medinform.jmir.org/2019/3/e13139/
(page number not for citation purposes)

Kim et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

mailto:leeeun@yuhs.ac
http://dx.doi.org/10.2196/13139
http://www.w3.org/Style/XSL
http://www.renderx.com/


KEYWORDS

dementia; deep learning; proportional hazards models

Introduction

Background
The prevention of dementia is a public health challenge in
countries with aging populations [1]. Systematic reviews and
meta-analyses have shown that lifestyle and health conditions
affect the incidence of dementia, including Alzheimer dementia
[2-7]. In South Korea, a country with one of the fastest-growing
elderly populations [8], the National Health Insurance Service
(NHIS) runs periodic general health examination programs [9].
The large time-series health examination dataset established by
the NHIS includes lifestyle information and the results of
periodic routine medical examinations of a nationwide sample
of the Korean population.

Medical time-series data are often analyzed using conventional
statistical methods such as Cox proportional hazards regression
models. In the field of computer science, machine learning can
(semi)automatically classify mass data and thus has been applied
to diagnose diseases and predict outcomes using large medical
datasets [10-12]. Deep learning, a subfield of machine learning,
has recently enabled powerful new analyses of time-series data
[13,14]. Among the deep learning algorithms, the recurrent
neural network (RNN) is considered the most suitable method
for analyzing time-series data [15,16]. The RNN in its basic
form has a vanishing gradient problem in the long-term learning
process, however. The long short-term memory (LSTM)
technique was developed to overcome that problem [17].

Objective
The application of deep learning to predict disease using data
from routine health examinations may lead to improvements in
preventive medicine and early treatment. Until now, applications
of deep learning algorithms to predict dementia have focused
on neuroimaging data [18-20]. To our knowledge, there is no
published research on the application of deep learning to analyze
time-series health examination data. This study aimed to
compare the accuracy of Cox proportional hazards regression
models with that of LSTM in predicting all-cause dementia and
Alzheimer dementia using the NHIS time-series health
examination dataset.

Methods

Explanation of the Data
The NHIS provides health insurance to the entire population of
South Korea and stores medical and prescription records for
billing purposes. To serve academic interests, the NHIS also
develops research databases, including the NHIS-Health
Screening Cohort (NHIS-HEALS). The method of data
construction for the NHIS-HEALS is the same as that for
another cohort, the NHIS-National Sample Cohort [21,22]. The
NHIS-HEALS dataset contains information on more than
500,000 randomly sampled individuals nationwide who attended
NHIS periodic general health examinations, representing 10%
of the entire Korean population who underwent a baseline

medical examination between 2002 and 2003 and routine
follow-up examinations every 2 years until 2013. The
NHIS-HEALS cohort can be considered to reflect the Korean
adult population (aged 40-79 years) because every Korean older
than 40 years is recommended to have a routine health
examination biennially. The baseline for the NHIS-HEALS
dataset is defined as the years 2002 to 2003 [23].

The NHIS-HEALS dataset incorporates several databases. We
used the health examination database, the health care utilization
database, and the eligibility database [23]. The health
examination database contains physical measurements such as
height, weight, and blood pressure; data from blood tests
including fasting glucose, lipid profile, liver panel, and
hemoglobin; and the results of urinalysis and self-reported
questionnaires about lifestyle and family and personal medical
histories. The health care utilization database includes medical
claims data on inpatient and outpatient health care services
including diagnoses, diagnostic tests, therapeutic procedures,
length of hospital stay, and prescribed medications and dosages.
The eligibility database has information on demographic factors,
economic status, insurance eligibility, and cause of death.

As the NHIS-HEALS dataset is representative of the entire
Korean population and contains a huge amount of time-series
data, including health examination results, insurance eligibility,
and health care utilization, it can be used to assess the accuracy
of different predictive models of disease incidence. We used
the NHIS-HEALS dataset to compare the effectiveness of an
LSTM deep learning algorithm with that of conventional
statistical methods to predict all-cause dementia and Alzheimer
dementia. This study was approved by the institutional review
board of Yonsei University, Severance Hospital, Seoul, South
Korea (IRB no 4-2016-0383).

Study Population and Sample Selection
We used the diagnostic codes in the health care utilization
database as outcome variables and risk factors extracted from
the health examination database as independent variables. Even
if an individual had only 2 health examination records in the
health examination database, we determined whether or not that
individual had been diagnosed with dementia by searching the
information in the health care utilization database up until the
last date for which records were stored in the NHIS-HEALS
(December 31, 2013).

The primary outcomes in our analyses were instances of
all-cause dementia (F00.X, F01.X, F02.X, F03.X, and G30.X)
and Alzheimer dementia (F00.X and G30.X), which we
identified using medical diagnostic codes according to the
International Classification of Diseases, 10th edition. Only the
individuals with the diagnostic codes to have developed
dementia were considered. Individuals who died or were lost
to follow-up without a diagnosis of dementia were considered
to not have suffered a dementia event. The time to event was
defined as the time between the date of the first health
examination and that of the first diagnosis of dementia or the
most recent follow-up.
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Figure 1 shows the sample selection process in 2 steps (with
all-cause dementia and Alzheimer dementia separately labeled
as A and B). The first step describes the selection of candidate
individuals from the NHIS-HEALS cohort whose data could
be used for predictive modeling. The second step describes the
process of dividing the data into development and validation
datasets for machine learning. The development datasets were
used to fit the parameters of classifiers (ie, criteria that helped
to discriminate individuals who developed dementia during the
study period from those who did not develop dementia) in each
model. The validation datasets were used to assess the
generalization error of the final models.

To create the development and validation datasets for all-cause
dementia and Alzheimer dementia, we first identified 514,795
individuals with records of a health examination in the baseline
year (2002-2003). To analyze all-cause dementia, we excluded
individuals with records of all-cause dementia or death at
baseline and those with no further health examinations after the
baseline year. Of the remaining 479,845 individuals, 27,280
developed all-cause dementia during the study period, resulting
in an event rate of 5.69% (Figure 1). We applied the same
procedure to analyze Alzheimer dementia among 465,081
individuals and found an event rate of 2.69% (Figure 1).

The deep learning method has the advantage that it can identify
patterns in each outcome (eg, yes or no; or event or nonevent).
Deep learning is considered to have high predictive accuracy
in classification studies; however, an extremely imbalanced
dataset can pose a challenge to the detection of patterns in
outcome variables. The fundamental cause of that problem is
that smaller amount of data provides less concrete evidence for
specific patterns than larger amounts of data. Thus, we attempted
to deal with this limitation by generating 1:1 allocation through
undersampling, which has been used in previous studies [24,25].

To build a precise and predictive deep learning model, we used
undersampling to adjust the imbalance between the number of
dementia cases and the number of nondementia cases in the
development datasets, resulting in a more precise and predictive
deep learning model. The numbers of cases in the validation
datasets still reflected the actual event rates in the NHIS-HEALS
cohort.

To finish the construction of the development and validation
datasets for all-cause dementia, we divided the 27,280
individuals who developed all-cause dementia into 2 datasets
with a size ratio of 8:2, corresponding to the development and
validation datasets. The development dataset of 43,648
individuals consisted of 21,824 with dementia (80.00% of
27,280 individuals with dementia) and 21,824 without dementia
as a 1:1 ratio to solve the imbalance problem in classification.
The validation dataset included 5456 individuals who developed
all-cause dementia (20.00% of 27,280 who developed all-cause
dementia) along with 90,513 randomly selected individuals who
did not develop all-cause dementia, for a total of 95,969
individuals. In the development dataset, there were 946 deaths
(4.30%) among the 21,824 individuals who did not develop
all-cause dementia. In the validation dataset, there were 3905
deaths (4.30%) among the 90,513 individuals who did not
develop all-cause dementia. Thus, the event rates of all-cause
dementia in the development and validation datasets were
50.00% and 5.69%, respectively.

We constructed the development and validation datasets for
Alzheimer dementia by the same process. The event rates of
Alzheimer dementia in the development and validation datasets
were 50.00% (n=20,026) and 2.69% (n=93,009), respectively.
Secondary analyses by age group are presented in Multimedia
Appendix 1.

Figure 1. Study design and sample selection. (A) All-cause dementia; (B) Alzheimer dementia.
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Measures
We used the following health examination variables from the
NHIS-HEALS dataset in our deep learning and Cox proportional
hazards models: age, sex, body mass index (BMI), systolic
blood pressure (SBP), diastolic blood pressure (DBP), fasting
blood glucose, total cholesterol, current smoking status, exercise
status, and past medical history (ie, cardiovascular disease,
diabetes, and hypertension from a self-reported questionnaire
and psychiatric disorders [F04-F09, F20-F29, F30-F39, F70-F79,
and F80-F89] and neurological disorders [G00-G09, G10-G14,
G20-G26, G31-G39, and G40-G47] from diagnostic codes).
All those variables were previously reported as risk factors for
dementia [1-7] and were chosen for inclusion in our models by
expert geriatric psychiatrists (WJK, SKA, KN, and EL) after
review and discussion. Data were missing for approximately
4% of the included individuals. We used the multiple imputation
(MI) method to deal with missing data; each missing data point
was managed by the fully conditional specification (FCS)
regression and FCS discriminant function proposed by the SAS
MI procedure (SAS Inc) [26,27].

Statistical and Deep Learning Predictive Models
We created 3 models to predict dementia based on Cox
proportional hazards regression and deep learning. First, we
used Cox proportional hazards regression to develop 2 predictive
models [28]: a model with baseline data only (HR-B) and a
model with repeated measurements (HR-R). The HR-B model
used risk factor data obtained from the first screening
examination. The HR-R model used the mean, minimum,
maximum, and standard deviation (SD) values of continuous
variables and the mean and SD values of categorical variables
recorded in multiple health examinations over the study period.
As in a previous study of cumulative information using the Cox
algorithms [28], we intended to show how much the change in
risk factors affects the occurrence of dementia. The hazard ratio
of each risk factor can be estimated according to the changes
of each information based on the value of minimum, maximum,
or SD. For example, if the coefficient value of SD of BMI was
large, a larger change of BMI in the observation period meant
that it affected the occurrence of dementia. Values for
continuous variables were calculated at the individual level. We
assigned values of 0 or 1 to categorical variables such as
smoking status, exercise status, and past medical history. The
mean value was coded as 0 when it was less than 0.5, and 1 if
otherwise in the HR-R model. As the categorical variables were
collected from self-reported questionnaires, we considered that
some data points may be missing because of possible mistakes
in self-report.

Similar to a previous study that applied Cox algorithms to
cumulative information [28], we intended to determine the
extent to which changes in the risk factors affect the occurrence
of dementia. The hazard ratio of each risk factor in the HR-R
model can be estimated according to the minimum, maximum,
or SD of the values of the risk factors. For example, if the
coefficient of the SD of BMI is large, then a large change of
BMI in the observation period would be determined to have
affected the occurrence of dementia. The Cox proportional
hazards regression model can be written as follows:

h(t)=h 0 (t)exp(b 1 X 1 + b 2 X 2 + b 3 X 3 +...+ b p X

p )

where h(t) is the expected hazard at time t, and h0(t) is the
baseline hazard, representing the hazard when all of the
predictors X1, X2,...Xp are equal to zero. The predicted hazard
h(t) is the product of the baseline hazard h0(t) and the
exponential function of the linear combination of the predictors.
Thus, the predictors have a multiplicative or proportional effect
on the predicted hazard.

Flexible models, such as neural networks, have the potential to
discover unanticipated features that are missed by conventional
statistical models. We developed a deep learning model based
on RNN-LSTM to overcome problems in the original RNN
algorithm. Although the RNN is a simple and powerful model,
it is difficult to train appropriately because of the vanishing
gradient problem [29]. Unlike the feedforward neural network,
where the input and output are in only 1 direction, the RNN is
a neural network with a recursive connectivity structure that
reflects the output of the previous input to the next input. This
characteristic is an advantage of the RNN, which learns the time
continuity and dependent relationships of time-series data such
as voice, text, and signal. However, a simple architecture in
which input is fed back to the output has the problem that normal
learning is difficult because of the rapidly diminishing or
increasing influence of the previous input. That is, it is
impossible for the model to learn correlations between distant
events when long-term components decrease exponentially to
zero. In other words, the basic cyclic structure of the RNN
causes the model to lose accumulated information as the length
of the continuous input increases in the learning process (eg,
multiple time steps such as repeated health examinations), which
is a problem for parameter estimation. To address this vanishing
problem, LSTM is designed to extend the structure of the
neurons into memory blocks so that the memory cell within
each node can properly adjust the effect of previous inputs
during the learning process [13,14,30,31]. The iconography of
each type of neural network is shown in Multimedia Appendix
2.

We used the LSTM algorithm suggested by Hochreiter and
Schmidhuber [17] to solve the long-term dependency problem
and increase the learning ability of our deep learning model. As
our data consisted of multiple time steps, the RNN-LSTM
algorithm allowed us to avoid learning deficits because of the
vanishing gradient problem [13,14,30,31]. In the RNN-LSTM
model, the importance of each variable was trained during the
deep learning process; features with missing values were
included, and specific feature selection was not executed. We
applied a single hidden layer consisting of 64 LSTM cells. As
a regularization technique, we applied a 0.5 dropout probability
[32]. We used Xavier initialization to initialize all the weights
[33]. To optimize the parameters of the algorithm, we used root
mean square propagation [34]. We applied a learning rate of
0.001 and a momentum of 0.9. We applied an early stopping
technique to avoid overfitting the learning data with model
performance [35]. The DL-R model used all the variables
included in the HR-R model. As the RNN-LSTM model is
specialized for the analysis of time-series data, we developed

JMIR Med Inform 2019 | vol. 7 | iss. 3 | e13139 | p. 4http://medinform.jmir.org/2019/3/e13139/
(page number not for citation purposes)

Kim et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


its algorithm using raw NHIS-HEALS data from medical
examinations instead of descriptive statistics. Additional details
of the RNN-LSTM model, including its construction and
algorithm development, are shown in Multimedia Appendix 3.
The 3 different models (HR-B, HR-R, and DL-R) used in this
study are depicted in Figure 2. Details of the variables used in
each model are described in Multimedia Appendix 4.

We compared the performance among the 3 predictive models.
For the Cox hazards regression models (HR-B and HR-R), we
presented the performance results using C-statistics. For the
deep learning RNN-LSTM model (DL-R), we presented the
performance results using the area under the receiver operating
characteristic curve (AUC), which corresponds to the C-statistic
in hazards regression analysis [36].

We calculated the integrated discrimination improvement and
net reclassification improvement (NRI) to determine whether
the DL-R model had an advantage in discrimination and
reclassification over the HR-R model. To calculate the NRI, we
divided the samples into 2 groups based on the risk for all-cause
dementia or Alzheimer dementia, with the cutoff between the
2 groups set at 50% risk (ie, ≥50% and <50%).

As age is an important risk factor for dementia, we performed
secondary analyses with the study population stratified by age
(40-59 years and 60-79 years) to improve the predictive
performance of the models. In South Korea, people aged 60

years or older are considered to be at high risk for developing
dementia and are included in a national dementia screening and
management program. We wanted to compare the performances
of the predictive models for individuals younger and older than
that age. We used the same procedures and methods to analyze
the main groups and stratified groups.

In addition, to better understand the results of the deep learning
model, we ranked the influence of the risk factors using
layerwise relevance propagation (LRP), which is one of the
explainable artificial intelligence techniques [37] used in
artificial neural networks. [38,39]. The LRP values for each
sample were summed and sorted in descending order. The
ranking of the risk factors was expressed in Figure 3.

We used an Intel Core i7-4790 3.60 GHz processor, 16 GB
memory, and an Nvidia GTX TITAN X 1 GHz graphics
processor to develop and run the models. For the development
of the DL-R model, we used Python 3.5 (programming
language) and TensorFlow 1.3 (framework). TensorFlow is an
open-source machine learning framework with source code and
algorithms that have been shown to be stable by a broad range
of feedback from users. We conducted all statistical analyses
using SAS version 9.4 (SAS Inc) and R (www.R-project.org)
software. For the data selection and imputation, we used the MI
procedure in SAS (SAS Inc). For modeling, we used the R
packages sas7bdat, survival, and MASS.

Figure 2. Conceptual diagram showing longitudinal data collection. DL-R: deep learning model with repeated measurements; HR-B: hazards regression
model with baseline data only; HR-R: hazards regression model with repeated measurements; max: maximum; min: minimum.

Figure 3. Expression of the ranking of risk factors.

Results

Table 1 shows the baseline characteristics of the development
datasets and the means and SDs of the repeated measurements
in the development datasets for the HR-R model. The
characteristics of the validation datasets, including the event
rates of dementia, are shown in Table 2. The hazard ratios used
to build the HR-B and HR-R models are shown in Figure 4.
The HR-B models for both all-cause dementia and Alzheimer
dementia identified the following risk factors: age, female sex,
SBP, fasting glucose, cardiovascular disease, diabetes,
psychiatric disorder, and neurological disorder (see Multimedia
Appendix 5). The risk factors identified by the HR-R models

for both all-cause dementia and Alzheimer dementia were age,
female sex, no exercise, cardiovascular disease, diabetes,
psychiatric disorder, and neurological disorder. In addition, the
SDs of BMI, SBP, DBP, fasting glucose, and total cholesterol
were significant predictors of both all-cause dementia and
Alzheimer dementia. The details of secondary analyses are
presented in Multimedia Appendix 6. Multimedia Appendix 7
shows the ranking of the risk factors in the DL-R model. For
all-cause dementia among individuals aged 40 to 79 years, the
risk factors were ranked in the following order, from the
strongest effect to the weakest effect: sex, age, exercise,
smoking, and cardiovascular disease. Among individuals aged
60 to 79 years who developed Alzheimer dementia, sex was the
highest-ranked risk factor, and age had the lowest rank.

JMIR Med Inform 2019 | vol. 7 | iss. 3 | e13139 | p. 5http://medinform.jmir.org/2019/3/e13139/
(page number not for citation purposes)

Kim et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 1. Characteristics of the development datasets from the National Health Insurance Service-Health Screening Cohort (40-79 years of age).

Alzheimer dementia (n=20,026)All-cause dementia (n=43,648)Variable

Repeated measurementBaselineRepeated measurementBaseline

—9.20 (2.21)—a9.11 (2.27)Duration of follow-up (years), mean (SD)

—4.76 (2.33)—4.72 (2.34)Number of periodic health examinations (n), mean (SD)

—58.34 (10.70)—57.97 (10.61)Age (years), mean (SD)

—10,465 (52.26)—22,374 (51.26)Sex (female), n (%)

23.86 (2.92)23.95 (3.09)23.90 (2.89)23.98 (3.06)Body mass index (kg/m2), mean (SD)

128.45 (13.20)129.17 (18.74)128.64 (13.34)129.45 (18.85)Systolic blood pressure (mm Hg), mean (SD)

78.83 (7.75)79.85 (11.76)79.04 (7.85)80.16 (11.81)Diastolic blood pressure (mm Hg), mean (SD)

102.03 (25.96)100.54 (38.82)102.17 (26.46)100.56 (38.08)Fasting plasma glucose (mg/dL), mean (SD)

199.64 (30.75)201.64 (38.67)199.82 (30.70)201.79 (39.14)Total cholesterol (mg/dL), mean (SD)

3667 (18.31)4088 (20.41)8302 (19.02)9192 (21.06)Smoking, n (%)

11,233 (56.09)7522 (37.56)24,530 (56.20)16,492 (37.78)No exercise, n (%)

10,516 (52.51)2273 (11.35)23,463 (53.76)5061 (11.60)Cardiovascular disease, n (%)

3317 (16.56)1271 (6.35)7092 (16.25)2708 (6.20)Diabetes, n (%)

7919 (39.54)2442 (12.19)17,517 (40.13)5447 (12.48)Hypertension, n (%)

7941 (39.65)1064 (5.31)17,088 (39.15)2308 (5.29)Psychiatric disorder, n (%)

12,854 (64.19)2720 (13.58)28,105 (64.39)5920 (13.56)Neurological disorder, n (%)

aNot applicable.

Table 2. Characteristics of the validation datasets from the National Health Insurance Service-Health Screening Cohort (40-79 years of age).

Alzheimer dementia (n=93,009)All-cause dementia (n=95,969)Variable

Repeated measurementBaselineRepeated measurementBaseline

—10.48 (1.31)—a10.39 (1.44)Duration of follow-up (years), mean (SD)

—5.71 (2.56)—5.66 (2.56)Number of periodic health examinations, mean (SD)

—52.22 (9.17)—52.53 (9.35)Age (years), mean (SD)

—42,178 (45.35)—43,786 (45.63)Sex (female), n (%)

24.02 (2.80)24.04 (2.96)24.02 (2.80)24.04 (2.96)Body mass index (kg/m2), mean (SD)

126.19 (12.38)126.68 (18.00)126.34 (12.45)126.80 (18.06)Systolic blood pressure (mm Hg), mean (SD)

78.44 (7.58)79.50 (11.66)78.49 (7.60)79.51 (11.67)Diastolic blood pressure (mm Hg), mean (SD)

99.96 (22.07)97.65 (33.06)100.02 (22.11)97.76 (33.23)Fasting plasma glucose (mg/dL), mean (SD)

199.25 (29.32)200.35 (38.34)199.26 (29.48)200.43 (38.45)Total cholesterol (mg/dL), mean (SD)

19,966 (21.47)22,593 (24.29)20,438 (21.30)23,104 (24.07)Smoking, n (%)

61,415 (66.03)40,125 (43.14)62,805 (65.44)41,179 (42.91)No exercise, n (%)

38,004 (40.86)6,188 (6.65)39,848 (41.52)6,629 (6.91)Cardiovascular disease, n (%)

12,537 (13.48)3472 (3.73)13,116 (13.67)3744 (3.90)Diabetes, n (%)

32,720 (35.18)7120 (7.66)34,033 (35.46)7609 (7.93)Hypertension, n (%)

27,321 (29.37)2992 (3.22)28,723 (29.93)3209 (3.34)Psychiatric disorder, n (%)

50,572 (54.37)8283 (8.91)52,773 (54.99)8755 (9.12)Neurological disorder, n (%)

2503 (2.69)2503 (2.69)5456 (5.69)5456 (5.69)Event rate, n (%)

aNot applicable.
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Figure 4. Summary of hazard ratios and 95% confidence intervals in the hazards regression models (40-79 years of age). BMI: body mass index; DBP:
diastolic blood pressure; FG: fasting plasma glucose; SBP: systolic blood pressure; TC: total cholesterol.

The performance of the models is shown in Table 3. The
discrimination indices (with 95% CIs) for the HR-B, HR-R,
and DL-R models to predict all-cause dementia among
individuals aged 40 to 79 years in the validation datasets were
0.84 (0.83-0.85), 0.87 (0.86-0.88), and 0.90 (0.90-0.90),
respectively, indicating that the DL-R model performed the
best, and the HR-R model performed better than the HR-B
model. The discrimination indices for the HR-B, HR-R, and
DL-R models to predict Alzheimer dementia among individuals
aged 40 to 79 years in the validation datasets were 0.87
(0.86-0.88), 0.90 (0.88-0.91), and 0.91 (0.91-0.91), respectively,
again indicating that the DL-R model performed the best, and
the HR-R model performed better than the HR-B model. All

the models performed better for Alzheimer dementia than for
all-cause dementia. The results of secondary analyses by age
group were similar to those of the main analyses; the predictive
performance for Alzheimer dementia was better than that for
all-cause dementia (see Multimedia Appendix 8).

A comparison of the performance between the HR-R and DL-R
models is shown in Table 4. The DL-R model demonstrated
better AUCs than the HR-R model for both all-cause dementia
(difference 0.034, 95% CI 0.029-0.039; P<.001) and Alzheimer
dementia (difference 0.024, 95% CI 0.018-0.031; P<.001; see
Multimedia Appendix 9). Calibration plots for the DL-R and
HR-R models are shown in Figure 5. Calibration plots for each
model by age group are shown in Multimedia Appendix 10.

Table 3. Comparison of the models’ performance to predict all-cause dementia and Alzheimer dementia in individuals aged 40 to 79 years.

Alzheimer dementiaa,bAll-cause dementiaa,bPerformance variable

DL-RHR-RHR-BDL-ReHR-RdHR-Bc

0.91 (0.91-0.91)0.90 (0.88-0.91)0.87 (0.86-0.88)0.90 (0.90-0.90)0.87 (0.86-0.88)0.84 (0.83-0.85)Discrimination (perfor-
mance)

87.62 (86.32-
88.91)

80.54 (78.99-
82.09)

82.90 (81.43-
84.38)

83.50 (82.52-
84.49)

80.17 (79.11-
81.23)

80.41 (79.35-
81.46)

Sensitivity (%)

78.66 (78.40-
78.93)

81.25 (80.99-81.5)75.86 (75.58-
76.13)

79.88 (79.61-
80.14)

77.88 (77.61-
78.15)

73.23 (72.94-
73.52)

Specificity (%)

78.91 (78.64-
79.17)

81.23 (80.98-
81.48)

76.04 (75.77-
76.32)

80.08 (79.83-
80.33)

78.01 (77.75-
78.27)

73.64 (73.36-
73.92)

Accuracy (%)

10.20 (9.79-10.60)10.62 (10.18-
11.06)

8.67 (8.32-9.03)20.01 (19.49-
20.53)

17.93 (17.45-
18.41)

15.33 (14.91-
15.75)

Positive predictive
value (%)

99.57 (99.52-
99.61)

99.34 (99.28-
99.40)

99.38 (99.32-
99.44)

98.77 (98.69-
98.85)

98.49 (98.40-
98.58)

98.41 (98.32-
98.51)

Negative predictive
value (%)

aValues in parentheses indicate 95% CIs.
bDiscrimination performance of the HR-B model and the HR-R model is based on C-statistics and that of the DL-R model is based on the area under
the receiver operating characteristic curve.
cHR-B: hazard regression model with baseline data.
dHR-R: hazard regression model with repeated measurements.
eDL-R: deep learning model with repeated measurements.
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Table 4. Comparison of the hazard regression model with repeated measurements and the deep learning model with repeated measurements using
validation datasets from the National Health Insurance Service-Health Screening Cohort (40-79 years of age).

Alzheimer dementiaAll-cause dementiaPerformance index

DL-Ra versus HR-RDL-Ra,b versus HR-Rc

Discrimination

0.024 (0.018-0.031)e0.034 (0.029-0.039)eDifference between AUCsd

0.4230.334Absolute IDIf

5.3513.200Relative IDI

Reclassification

2163 (86.42)4163 (76.30)Patients move to higher, n (%)

0 (0.00)0 (0.00)Patients move to lower, n (%)

19,231 (21.25)17,664 (19.52)Controls move to higher, n (%)

0 (0.00)0 (0.00)Controls move to lower, n (%)

65.17h56.79hNRIg (%)

aNRIs were calculated to determine the improvement in the performance of each model to identify individuals whose risk of dementia was more than
50%.
bDL-R: deep learning model with repeated measurements.
cHR-R: hazard regression model with repeated measurements.
dAUC: area under the receiver operating characteristic curve.
eDifference between AUCs was significant with P<.001.
fIDI: integrated discrimination improvement.
gNRI: net reclassification improvement.
hNRI was significant with P<.001.

Figure 5. Calibration plots for each model (40-79 years of age). DL-R: deep learning model with repeated measurements; HR-B: hazards regression
model with baseline data only; HR-R: hazards regression model with repeated measurements.
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Discussion

Principal Findings
We investigated the accuracy of conventional hazards regression
models and a deep learning RNN-LSTM model to predict
all-cause dementia and Alzheimer dementia using a nationwide
periodic health examination dataset. The deep learning algorithm
showed better performance than the conventional hazards
regression models. Previous studies have proposed methods to
predict dementia using deep learning method together with
multimodal imaging data, which can only be obtained through
high-cost assessments such as neuroimaging (ie, magnetic
resonance imaging [MRI] and positron emission tomography).
To our knowledge, this is the first study of deep learning for
the prediction of dementia using nationwide time-series health
examination data.

We expected that the results of the RNN-LSTM model would
reflect a complex relationship among the various risk factors.
The RNN-LSTM models used a deep learning algorithm to
achieve higher predictive accuracy than Cox regression models
that used the same time-series data. The clinical implications
of deep learning can be seen in a wide range of applications. In
fact, some deep learning algorithms can distinguish normal
dementia from Alzheimer dementia for diagnostic purposes or
can predict the occurrence of Alzheimer dementia years in the
future [18-20]. This study did not consider biomarkers of
dementia, including neuroimaging results, and particularly
biomarkers of Alzheimer dementia. It is costly to evaluate
biomarkers of dementia and therefore not economical for
everyone to undergo such expensive tests to predict dementia
that has not yet occurred. By contrast, our deep learning model
only requires data from routine health examinations, which can
be obtained at a fraction of the cost of biomarker data. Our deep
learning model can therefore be used for widespread screening
to identify high-risk individuals who need further, more
expensive tests such as genotyping, amyloid scanning, structural
MRI, or neurocognitive testing. Used in such a way, our deep
learning model based on risk factors from regular health
examinations might improve the prediction of dementia among
the undiagnosed population. Individuals who are identified as
high risk by our predictive model can also receive medical
counseling about preventive medicine to help prevent disease.
Further studies are required to estimate the costs, benefits, and
effectiveness of the use of our model to identify individuals at
risk for dementia.

Our deep learning model showed good performance in screening
out low-risk individuals. Although we did not provide statistical
evidence that our model performed better for a younger
population (aged 40-59 years) than for an older population (aged
60-79 years), the ability to accurately predict dementia in a
younger population would be advantageous because it would
help provide targeted prevention services to individuals at a
younger age. In that sense, aggressive health management
measures starting in midlife are crucial for preventing dementia.

A drawback of the deep learning model is that it cannot provide
concrete recommendations to control specific risk factors.
Although we ranked the risk factors in the DL-R model

separately, the model does not explain how much particular risk
factors affect the hazard ratio because of the nature of the hidden
layer, which is considered a black box in neural network models
[40]. By contrast, the HR-R model can show the magnitude of
the risk for each factor, allowing specific guidelines to be given
to reduce the effects of the most important risk factors. The
individual risk levels identified by the HR-R model are
important because control of specific risk factors might be
necessary for certain undiagnosed individuals. Deep learning
algorithms can be combined with conventional statistical
methods such as the HR-R model to establish a special program
to identify (1) individuals in the general population who are at
risk for dementia and (2) lifestyle factors that should be modified
to prevent dementia based on individual risk levels. It is difficult
to predict and actively prevent dementia because of the
multifactorial etiology of the disease. In countries where national
health examinations are conducted, the use of our deep learning
model might help to predict dementia and establish appropriate
health policies. In the United Kingdom, the incidence of
dementia is actually lower than previously predicted [41],
suggesting that epidemiological investigations alone cannot
accurately predict or respond to dementia.

To prevent dementia at the individual level, early identification
and intervention in high-risk individuals are needed. Growing
evidence indicates that individuals who maintain a healthy
lifestyle and remain in good health, especially in midlife, can
substantially reduce their risk of developing dementia [1-7].
Our findings that dementia can be predicted using simple clinical
and lifestyle data suggest that dementia prevention strategies
should focus on midlife health.

We also found that the SDs of some risk factors (ie, BMI, blood
pressure, fasting glucose, and total cholesterol) were predictive
of all-cause dementia and Alzheimer dementia; that is, the
intraindividual variability of some risk factors influences the
occurrence of dementia, which is consistent with the results of
a previous study [42]. For instance, an individual with
fluctuating body weight has a higher risk of developing dementia
than an individual with stable body weight. Further research is
needed to determine the relationship between dementia and
variability in body weight or blood pressure.

Limitations
Our study has some limitations. First, because we analyzed an
established cohort that was not regularly tested for cognitive
function, we could not include measurements of cognitive
function in our predictive models. Nevertheless, according to
a guideline of the South Korea National Health Insurance
Review and Assessment Service, a cognitive enhancer may be
prescribed to a patient with a Mini-Mental State Examination
score of 26 or less out of 30 points, which corresponds to a
diagnostic code for dementia. In addition, our models had higher
predictive accuracy than the models used in some previous
cohort studies that included measures of cognitive function
[43-46]. Second, although we differentiated Alzheimer dementia
from all-cause dementia on the basis of diagnostic codes,
potential inaccuracies in diagnostic coding can occur in any
study that uses medical claims data. Considering that our study
was for predictive purposes, our results could identify significant
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cases that may require further specific and costly clinical
evaluation such as genotyping, structural MRI, amyloid
scanning, or neuropsychological testing. Although our model
might currently be used to make policy decisions for dementia
prevention, it might also be used for bedside applications in the
future. It is not clear whether one-time health examination data
are better than repeated measurements data for the prediction
of dementia; therefore, future studies should compare the
performance of dementia prediction models using each of those
types of data. A third limitation of our study is that we could
not measure the real onset of dementia. As the development of
dementia (especially Alzheimer dementia) is insidious, the time
of the first diagnosis by a clinician is usually delayed. A
diagnosis of dementia in our study means that cognitive function
was impaired enough to be diagnosed in a clinic. Thus, our
result and definition of the time to event should be interpreted
carefully. Finally, because the duration of follow-up was only
10 years, the deep learning algorithm might not have been

sufficiently trained to accurately predict dementia in
middle-aged individuals in the real world. When it becomes
possible to do so, we will repeat our study using a follow-up of
20 to 30 years. Despite its limitations, our study had the
advantage of using a large and relatively unbiased database,
which is valuable in a public health context.

Conclusions
A deep learning algorithm trained on nationwide periodic health
examination data to predict dementia might be superior to
specific biomarkers in terms of costs and benefits. Deep learning
methods combined with conventional Cox hazards regression
may provide useful information for the prediction and
management of dementia. There is currently no curative
treatment for all-cause dementia or Alzheimer dementia, but
their early prediction in the general population can improve
public health by facilitating prevention and early treatment. The
data-driven, inductive approach of our models will contribute
to efforts to tackle the global burden of dementia.
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