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Abstract

Background: Artificial intelligence (AI) has been extensively used in a range of medical fields to promote therapeutic
development. The development of diverse AI techniques has also contributed to early detections, disease diagnoses, and referral
management. However, concerns about the value of advanced AI in disease diagnosis have been raised by health care professionals,
medical service providers, and health policy decision makers.

Objective: This review aimed to systematically examine the literature, in particular, focusing on the performance comparison
between advanced AI and human clinicians to provide an up-to-date summary regarding the extent of the application of AI to
disease diagnoses. By doing so, this review discussed the relationship between the current advanced AI development and clinicians
with respect to disease diagnosis and thus therapeutic development in the long run.

Methods: We systematically searched articles published between January 2000 and March 2019 following the Preferred
Reporting Items for Systematic reviews and Meta-Analysis in the following databases: Scopus, PubMed, CINAHL, Web of
Science, and the Cochrane Library. According to the preset inclusion and exclusion criteria, only articles comparing the medical
performance between advanced AI and human experts were considered.

Results: A total of 9 articles were identified. A convolutional neural network was the commonly applied advanced AI technology.
Owing to the variation in medical fields, there is a distinction between individual studies in terms of classification, labeling,
training process, dataset size, and algorithm validation of AI. Performance indices reported in articles included diagnostic accuracy,
weighted errors, false-positive rate, sensitivity, specificity, and the area under the receiver operating characteristic curve. The
results showed that the performance of AI was at par with that of clinicians and exceeded that of clinicians with less experience.

Conclusions: Current AI development has a diagnostic performance that is comparable with medical experts, especially in
image recognition-related fields. Further studies can be extended to other types of medical imaging such as magnetic resonance
imaging and other medical practices unrelated to images. With the continued development of AI-assisted technologies, the clinical
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implications underpinned by clinicians’ experience and guided by patient-centered health care principle should be constantly
considered in future AI-related and other technology-based medical research.

(JMIR Med Inform 2019;7(3):e10010) doi: 10.2196/10010
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Introduction

Background
An aging patient population and a shortage of medical
professionals have led to a worldwide focus on improving the
efficiency of clinical services via information technology.
Artificial intelligence (AI) is a field of algorithm-based
applications that can simulate humans’ mental processes and
intellectual activity and enable machines to solve problems with
knowledge. In the information age, AI is widely used in the
medical field and can promote therapeutic development. AI
may optimize the care trajectory of patients with chronic disease,
suggest precision therapies for complex illnesses, and reduce
medical errors [1].

There are currently 2 common types of AI. The first type is
expert systems. An expert system is a computer system that
generates predictions under supervision and can outperform
human experts in decision making. It consists of 2
interdependent subsystems: a knowledge base and an inference
engine. Although the knowledge base contains accumulated
experience, the inference engine (a reasoning system) can access
the current state of the knowledge base and supplement it with
new knowledge. Expert systems can create more explicit critical
information for the system, make maintenance easy, and increase
the speed of prototyping [2]. However, expert systems are
limited regarding knowledge acquisition and performance.
Computer-assisted techniques have been introduced in medical
practice for decades but have recently yielded minimal
improvements. The second type is machine learning. This is
the core of AI and is a fundamental approach to making
computers intelligent. Machine learning requires vast amounts
of data for training. This systematically improves their
performance during the process. One of the focuses underlying
machine learning is parameter screening. Too many parameters
can lead to inaccurate entries and calculations; therefore,
reducing the number of parameters can improve the efficiency
of AI, but it may also lower its accuracy. However, 1 of the
critical objectives of AI is to outperform humans via self-study
in challenging fields without any previous knowledge.

AI has been extensively used in a range of medical fields.
Clinical diagnoses of acute and chronic diseases, such as acute
appendicitis [3] and Alzheimer disease [4], have been assisted
via AI technologies (eg, support vector machines, classification
trees, and artificial neural networks). Integrative AI consisting
of multiple algorithms rather than a single algorithm
substantially improves its abilities to detect malignant cells,
yielding higher diagnostic accuracy [5].

The development of diverse AI techniques also contributes to
the prediction of breast cancer recurrence [6]. In-home AI
systems may potentially oversee patients with insulin
abnormalities and swallowing problems [7] rather than doctors.
Treatment optimization is achievable by AI [8] for patients with
common, but complex diseases characterized as being ascribed
to multiple factors (eg, genetic environmental or behavioral)
such as cardiovascular diseases are more likely to benefit from
more precise treatments on account of the AI algorithms based
on big data [8]. On the other hand, AI-assisted hospital
management systems could also help minimize
logistics-associated monetary and temporal costs on a larger
scale [9].

Objectives
To our knowledge, there is no published review comparing the
diagnostic performance between AI and clinicians. Thus, we
aimed to systematically review the literature and provide an
up-to-date summary indicating the extent of application of AI
to disease diagnoses compared with clinicians. We hope this
review would help foster health care professionals’ awareness
and comprehension of AI-related clinical practices.

Methods

Search Strategy, Selection Criteria, and Study Selection
This search strategy was developed upon consultation with a
professional librarian. The literature search was conducted in
Scopus (the largest abstract and citation database spanning
multiple disciplines), PubMed, CINAHL, Web of Science, and
Cochrane Library using the combination of searching terms
(see Multimedia Appendix 1). The search was limited to articles
published between January 2000 and March 2019 following the
Preferred Reporting Items for Systematic reviews and
Meta-Analysis. Additional potentially eligible articles were
manually searched via screening of the reference list of included
articles as well as our personal archives.

We included articles if they (1) focused on advanced AI (defined
as an AI encompassing a training or learning process to
automate expert-comparable sophisticated tasks), (2) enclosed
at least an application to particular disease diagnoses, (3)
compared the performance between AI and human experts on
specific clinical tasks, and (4) were written in English. Articles
were excluded if they (1) only described simpler AIs that do
not involve any training or learning process; (2) did not compare
performance of AI with that of medical experts; and (3) were
conference abstracts, book chapters, reviews, or other forms
without detailed empirical data.

JMIR Med Inform 2019 | vol. 7 | iss. 3 | e10010 | p. 2http://medinform.jmir.org/2019/3/e10010/
(page number not for citation purposes)

Shen et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://dx.doi.org/10.2196/10010
http://www.w3.org/Style/XSL
http://www.renderx.com/


On the basis of the above inclusion and exclusion criteria, 2
reviewers (JS and BJ) independently screened article titles and
abstracts and identified eligible articles. The full text of eligible
articles was retrieved via the institutional access. Any
discrepancy occurred during this process was resolved by
discussion with 2 senior authors (WKM and CJPZ). The process
of systematic search and the identification of reviewed articles
are depicted in Figure 1.

Data Extraction, Data Synthesis, and Quality
Assessment
Characteristics of included studies were extracted independently
by 2 reviewers (JS and BJ) after verification by 2 senior authors
(WKM and CJPZ). The characteristics comprised (1) first author
and publication year, (2) AI technology, (3) classification and

labeling, (4) data sources (including the sample size of total
sets, training sets, validation, and/or tuning sets and test sets),
(5) training process, (6) internal validation methods, (7) human
clinician reference, and (8) performance assessment.

Study quality was assessed using the Cochrane’s risk-of-bias
tool [10]. This tool provides a domain-based approach to help
reviewers judge the reporting of various types of risk by
scrutinizing information from reviewed articles, and in turn, the
judgment can be made based on these pieces of supporting
information against specific types of risk of interest. The types
of risk assessed in this review include (1) blinding of participants
and personnel (performance bias), (2) blinding of outcome
assessment (detection bias), (3) incomplete outcome data
(attrition bias), and (4) selective reporting (reporting bias).

Figure 1. Flow diagram of study inclusion and exclusion process.

Results

Systematic Search
Following the systematic search process, 41,769 citations were
retrieved from the database and 22,900 articles were excluded
based on their titles and abstracts, resulting in 850 articles to
be reviewed in detail. In addition, 842 articles were further
excluded based on their full text. One article was identified from
the manual searches. Finally, 9 studies were included for review
(Figure 1).

Characteristics of Included Studies
Table 1 summarizes the characteristics of these 9 studies. These
9 included studies were published between 2017 and 2019 and
conducted across countries, including China, Germany, South
Korea, the United Kingdom, and the United States. Regarding
their studied medical conditions, 3 studies could be categorized
under ophthalmology, including diabetic retinopathy [11],
macular degeneration [11], and congenital cataracts [12],
whereas another 3 studies focused on onychomycosis [13] and

skin lesions/cancers [14,15]. The other studies related to
radiology were focused on thoracic [16,17] and neurological
[18] conditions.

A convolutional neural network (CNN) was the commonly
applied advanced AI technology in all reviewed studies, with
the exception of 1 study: González-Castro et al adopted support
vector machine classifiers in their study [18].

Owing to the difference in study objectives, methodology, and
medical fields, classification type between individual studies
differed correspondingly. For instance, studies related to
ophthalmological images [11,12] had differences in image
sources (eg, ocular images [12] or optical coherence tomography
[OCT]–derived images [11]) and, thus, the classification differed
correspondingly (Table 1). Another study that was also based
on OCT-derived images [19] focused on the referral suggestion
made between clinical experts and AI, and the classification of
multiple suggestion decisions was used. With regard to
onychomycosis images, 4 and 6 classes were both used for
training, and binary classification was subsequently used in
testing by Han et al [13].
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Table 1. Characteristics of included studies.

Human clinicians
(external validation)

Internal validationTraining processData source; sample
size of total dataset,
training sets, valida-
tion and/or tuning
sets and test-set

Classification/label-
ing

Artificial intelli-
gence technology

Authors (year)

One hundred and
forty-five dermatolo-

Not reportedA ResNet50 CNN
model (residual

International Skin
Imaging Collabora-

All melanomas were
verified by

A convolutional
neural network;

Brinker
(2019) [14]

gists from 12 Ger-learning) used fortion (ISIC) imagehistopathologicalCNN (trained with
man university hospi-the classification ofarchive; Total:evaluation of biop-enhanced techniques
tals (using 100 im-
ages)

melanomas and
atypical nevi.

13,737; Training:
12,378 (1888
melanomas and

sies; the nevi were
declared as benign
via expert consensus

on dermoscopic im-
ages)

10,490 atypical
nevi); Validation:
1359 (230
melanomas and
1129 atypical nevi);
Test: 100 dermoscop-
ic images

Device type 1: 8
clinical experts (4

Manually segment-
ed and graded by 3

1) Deep segmenta-
tion network, trained

Clinical OCT scans
from Topcon 3D

Referral suggestion:
urgent/semi-ur-

A segmentation
CNN model using a

De Fauw
(2018) [19]

consultant ophthal-trained ophthalmol-with manually seg-OCT, Topcon,gent/routine/observa-3-dimensional U-
Net architecture mologists/retinal

specialists and 4 op-
ogists, reviewed
and edited by a se-

mented OCT scans;
2) Resulting tissue

Japan; Device type
1: Training: segmen-

tion only (golden
standard labels were

tometrists trained innior ophthalmolo-
gist

segmentation map;
3) Deep classifica-
tion network, trained

tation network: 877
(segmentation); gold
standard referral de-

retrospectively ob-
tained by examining
the patient clinical

OCT interpretation
and retinal disease);

with tissue mapscision: 14,884 (clas-records to determine Device type 2: Five
with confirmed diag-sification); Valida-the final diagnosis consultant ophthal-
noses and optimaltion: 224 (segmenta-and optimal referral mologists (4 of them
referral decisions; 4)tion); 993 (classifica-pathway in the light were participants in
Predicted diagnosistion); Test: 997; De-of the subsequently the device type 1
probabilities and re-
ferral suggestions.

vice type 2: Train-
ing: segmentation
network: Additional

obtained informa-
tion)

and the other was
new participant)

152 with 877 scans
from device type 1
(segmentation); gold
standard referral de-
cision: 0 with 14,884
from device type 1
(referral decision);
Validation: 112
(classification);
Test: 116

Twenty-one board-
certified dermatolo-

Two dermatolo-
gists (at both 3-

1) Classification of
skin lesions using a

Eighteen different
clinician-curated,

Biopsy-proven clini-
cal images with 2

Deep CNNs (a
GoogleNet Inception

Esteva (2017)
[15]

gists on epidermalclass and 9-classsingle CNN; 2)open-access onlinecritical binary classi-v3 CNN architecture
and melanocytic le-
sion classification

disease partitions)
using 9-fold cross-
validation

Trained end-to-end
from images direct-
ly, using only pixels
and disease labels as
inputs

repositories and
clinical data from
Stanford University
Medical Center; To-
tal: 129,405; Train-
ing and validation:

fication, labeled by
dermatologists

pretrained on the
ImageNet dataset)

127,463 (9-fold
cross validation);
Test: 1942
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Human clinicians
(external validation)

Internal validationTraining processData source; sample
size of total dataset,
training sets, valida-
tion and/or tuning
sets and test-set

Classification/label-
ing

Artificial intelli-
gence technology

Authors (year)

1) Forty-two derma-
tologists (16 profes-
sors, 13 clinicians
with more than 10
years of experience
in the department of
Dermatology, and 8
residents) and 57 in-
dividuals from the
general populations
(11 general practi-
tioners, 13 medical
students, 15 nurses
in the dermatology
department, and 18
nonmedical persons)
in the combined
B1+C dataset; 2)
The best 5 dermatol-
ogists among them
in the combined
B2+D dataset.

Two classes (ony-
chomycosis or not)

1) Extracted clinical
photographs automat-
ically cropped by the
R-CNN; 2) One der-
matologist cropped
all of the images
from the A2, R-
CNN model trained
using information
about the crop loca-
tion; 3) fine image
selector trained to
exclude unfocused
photographs;
(4)Three dermatolo-
gists tagged clinical
diagnosis to the nail
images generated by
the R-CNN, with
reference to the exist-
ing diagnosis tagged
in the original im-
age; (5) ensemble
model as the output
of both the ResNet-
152 and VGG-19
systems computed
with the feedforward
neural networks

Four hospitals (Asan
Medical Center, Inje
University, Hallym
University, and
Seoul National Uni-
versity); Total:
57,983; Training:
53,308 consist of
datasets A1 (49,567)
and A2 (3741); Test:
1358 consist of
datasets B1 (100),
B2 (194), C (125),
and D (939)

Four classes (ony-
chomycosis, nail
dystrophy, onycholy-
sis, and melanony-
chia) and 6 classes
(onychomycosis,
nail dystrophy, ony-
cholysis, melanony-
chia, normal, and
others), manually
categorized by der-
matologists

A region-based con-
volutional deep neu-
ral network (R-
CNN)

Han (2018)
[13]

Six experts with sig-
nificant clinical expe-
rience in an academ-
ic ophthalmology
center

1000 images ran-
domly selected
from the images
used for training
(limited model)

After 100 epochs (it-
erations through the
entire dataset), the
training was stopped
because of the ab-
sence of further im-
provement in both
accuracy and cross-
entropy loss

Optical coherence
tomography (OCT)
images selected
from retrospective
cohorts of adult pa-
tients from the Shi-
ley Eye Institute of
the University of
California San
Diego, the Califor-
nia Retinal Research
Foundation, Medical
Center Ophthalmolo-
gy Associates, the
Shanghai First Peo-
ple’s Hospital, and
Beijing Tongren Eye
Center between July
1, 2013 and March
1, 2017. Total:
207,130; Training:
108,312 (passed ini-
tial image quality re-
view); Validation:
1000 (randomly se-
lected from the same
patients); Test: 1000
(independent sample
from other patients)

Four categories (3
labels): choroidal
neovascularization
or diabetic macular
edema (labeled as
urgent referrals),
drusen (routine refer-
rals), normal (obser-
vation); Binary clas-
sification also imple-
mented (normal vs
choroidal neovascu-
larization/diabetic
macular ede-
ma/drusen)

Deep CNN (also
used transfer learn-
ing)

Kermany
(2018) [11]
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Human clinicians
(external validation)

Internal validationTraining processData source; sample
size of total dataset,
training sets, valida-
tion and/or tuning
sets and test-set

Classification/label-
ing

Artificial intelli-
gence technology

Authors (year)

Three ophthalmolo-
gists with varying
expertise (expert,
competent, and
novice)

K-fold cross-valida-
tion (K=5)

The championship
model from the Ima-
geNet Large Scale
Visual Recognition
Challenge 2014,
containing 5 convolu-
tional or down-sam-
ple layers in addition
to 3 fully connected
layers

Childhood Cataract
Program of the Chi-
nese Ministry of
Health (CCPMOH);
Total: 1239; Train-
ing: 886; Validation:
5-fold cross valida-
tion for in silico test;
57 for multi-ospaital
clinical trial; 53 for
Web sited–based
study; 303 for fur-
ther validation; Test:
50

Binary classification
by an expert panel in
terms of opacity area
(extensive vs limit-
ed), opacity density
(dense vs nondense),
and opacity location
(central vs peripher-
al)

Deep CNNLong (2017)
[12]

18 physicians (in-
cluding 3 nonradiol-
ogy physicians, 6 ra-
diology residents, 5
board-certified radi-
ologists, and 4 sub-
specialty trained
thoracic radiolo-
gists)

Radiograph classifi-
cation and nodule
detection perfor-
mances of DLAD
were validated by
using 1 internal
and 4 external
datasets in terms of
the area under
ROC (AUROC)
and figure of merit
(FOM) form jack-
knife alternative
free-response ROC
(JAFROC)

DLAD was trained
in a semisupervised
manner by using all
of the image-level
labels and partially
annotated by 13
board-certified radi-
ologists, with 25
layers and 8 residual
connections

Normal and nodule
chest radiographs
from three Korean
hospitals (Seoul Na-
tional University
Hospital; Boramae
Hospital; and Nation-
al Cancer Center)
and 1 US hospital
(University of Cali-
fornia San Francisco
Medical Center).
Total: 43,292;
Training: 42,092
(33,467 normal and
8625 nodule chest
radiographs); Tun-
ing: 600 (300 nor-
mal and 300 nodule
chest radiographs);
Internal validation:
600 (300 normal and
300 nodule chest ra-
diographs); External
validation/test: 693

Binary classifica-
tion: normal or nod-
ule chest radio-
graphs (image-level
labeling); Nodule
chest radiographs
were obtained from
patients with malig-
nant pulmonary nod-
ules proven at
pathologic analysis
and normal chest ra-
diographs on the ba-
sis of their radiology
reports. All chest ra-
diographs were care-
fully reviewed by
thoracic radiologists.

Deep learning–based
automatic detection
algorithm (DLAD)

Nam (2018)
[16]

Nine radiologists (6
board-certified radi-
ologists and 3 senior
radiology residents
from 3 institutions)

Comprehensive
comparison of the
CheXNeXt algo-
rithm to practicing
radiologists across
7 performance
metrics (ie, no ex-
ternal validation)

1) Multiple networks
were trained on the
training set to pre-
dict the probability
that each of the 14
pathologies is
present in the image;
2) A subset of those
networks, each cho-
sen based on the av-
erage error on the
tuning set, constitut-
ed an ensemble that
produced predictions
by computing the
mean over the predic-
tions of each individ-
ual network

ChestX-ray14
dataset; Total:
112,120; Training:
98,637; Tuning:
6351; Validation:
420

Binary values (ab-
sence/presence) in
14 pathologies: at-
electasis, car-
diomegaly, consoli-
dation, edema, effu-
sion, emphysema, fi-
brosis, hernia; Infil-
tration, mass; nod-
ule, pleural thicken-
ing, pneumonia, and
pneumothorax, ob-
tained using automat-
ic extraction meth-
ods on radiology re-
ports

Deep CNN with a
121-layer DenseNet
architecture
(CheXNeXt)

Rajpurkar
(2018) [17]
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Human clinicians
(external validation)

Internal validationTraining processData source; sample
size of total dataset,
training sets, valida-
tion and/or tuning
sets and test-set

Classification/label-
ing

Artificial intelli-
gence technology

Authors (year)

Two observers (an
experienced neurora-
diologist and a
trained image ana-
lyst)

A stratified 5-fold
cross-validation re-
peating ten times

Several combina-
tions of the regular-
ization parameter C
and gamma, were
used and assessed
with all descriptors
to find the optimal
configuration using
the implementation
provided by the lib-
SVM library

Data from 264 pa-
tients in Royal Hal-
lamshire Hospital;
Total: 264 (random-
ly partitioned into 5
equal-sized subsets);
Training: 4 of the 5
subsets (~211); Test:
one of the five sub-
sets (~53)

Binary classifier of
the burden of en-
larged perivascular
spaces (PVS) as low
or high

Support vector ma-
chine (SVM) classifi-
er

González-Cas-
tro (2017) [18]

Similarly, the training processes employed in individual studies
were not identical to each other because of their field-specific
nature and classification-peculiar algorithms. For instance,
predictions in 1 ophthalmological study [11] were informed by
a model using transfer learning on a Web-based platform on
the basis of training on graded OCT images. The other
ophthalmological study [12] focusing on congenital cataracts
employed a 3-stage training procedure (ie, identification,
evaluation, and strategist networks) to establish a collaborative
disease management system beyond only disease identification.
Owing to this, data sources for training were field specific. The
training procedures in the other studies are detailed in Table 1.

Furthermore, 2 studies [11,16] employed both internal and
external validation methods via training and/or validating the
effectiveness of their AI algorithms using images from their
own datasets and external datasets. Kermany et al investigated
the effectiveness of their AI systems in the prediction of a
diagnosis in their own ophthalmological images as well as the
generalizability to chest x-ray images [11]. In contrast, Nam et
al validated their work using datasets from not only their own
hospital but also other different local or overseas hospitals [16].
The remaining studies did not report both internal or external
validation or differentiate either.

Variation in dataset size was also observed. Specifically, the
quantity of training sets, validation (and tuning) sets, and test
sets ranged from 211 to approximately 113,300, from 53 to
approximately 14,163, and from 50 to 1942, respectively.

Performance Indices and Comparison Between
Artificial Intelligence and Clinicians
All studies compared the diagnostic performance between AI
and licensed doctors (see Table 2). Performance indices used
for comparison included diagnostic accuracy, weighted errors,
sensitivity, specificity (and/or the area under the receiver
operating characteristic curve [AUC]), and false-positive rate.
A total of 4 articles [11,12,15,17] adopted the accuracy (ie, the
proportion of true results [both positives and negatives] among
the total number of cases examined) to compare diagnostic
performance between AI and humans. Long et al observed a
high accuracy in AI (90%-100%) compared with a panel of
specialty doctors’ predefined diagnostic decision and
transcended the average levels of clinicians in most clinical

situations except for treatment suggestion. Esteva et al also
found that AI achieved comparable accuracy with or
outperformed their human rivals (AI vs dermatologists: 72.1%
(SD 0.9%) vs 65.8% using 3-class disease partition and 55.4%
(SD 1.7%) vs 54.2% using 9-class disease partition [15]). The
same was also observed in the study by Rajpurkar et al [17],
indicating an agreement in results between AI and radiologists.
Similarly, Kermany et al showed that their AI achieved high
accuracy (96.6%) while acknowledging that their 6 experienced
ophthalmologists still performed well [11]. They also reported
weighted errors in which medical doctors maintained better
accuracy (4.8% vs 6.6%). De Fauw et al [19] reported
unweighted errors by using 2 devices, and the results showed
their AI’s performance commensurate with retina specialists
and generalizable to another OCT device type.

Overall, 7 studies [11,13-18] compared the sensitivity,
specificity, and/or AUC between AI and medical experts.
Overall, the performance of the algorithm was on par with that
in human experts and significantly superior to those experts
with less experience [11,13,16,18] (Table 2).

False-positive rates between AI and clinicians were compared
in 2 studies [12,16]. The number of false discoveries occurring
in AI was approximate to that by expert and competent
ophthalmologists with respect to image evaluation (AI vs expert
or competent: 9 vs 5 or 11) and treatment suggestion (AI vs
expert or competent: 5 vs 1 or 3) but was lower than that of
novice ophthalmologists with 5 versus 12 and 8, regarding image
evaluation and treatment suggestion, respectively [12]. The
other study also found the false-positive rate of their deep
learning algorithm in nodule detection being close to the average
level of thoracic radiologists (0.3 vs 0.25) [16].

Other performance indices were compared in single studies.
Apart from false positives, Long et al also compared the number
of missed detections between their AI and ophthalmologists,
and their AI outperformed (ie, fewer missed detections) all
ophthalmologists with varying expertise (expert, competent,
and novice). The time to interpret the tested images between
AI and human radiologists was reported by Rajpurkar et al [16]
The authors also compared AI and radiologists with respect to
positive and negative predictive values, Cohen kappa, and F1
metrics (Table 2).
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Table 2. Comparison between artificial intelligence and human clinicians.

Performance index (AIa vs human clinicians)Authors
(year)

Other indicesFalse positivesError/weighted
error

SpecificitySensitivityAUCbAccuracy

N/AN/AN/ASpecificity (at
sensitivi-

Sensitivity (at speci-
ficity=73.3%):86.1%

Details provid-
ed in the article

N/AcBrinker
(2019) [14]

ty=89.4%):; versus ;86.7%
mean=68.2%(among 3 resident

dermatologists) (range: 47.5%-
86.25%) versus
mean=64.4%
(all 145 derma-
tologists, range:
22.5%-92.5%);
Specificity (at
sensitivi-
ty=92.8%):
mean=61.1%
versus
mean=57.7 %
(among 16 at-
tending derma-
tologists)

N/AN/ADevice type 1:
Error rate: 5.5%

N/AN/ANo comparisonN/ADe Fauw
(2018) [19]

versus 2 best
retina special-
ists: 6.7% and
6.8% (per-
formed compa-
rably with 2
best and signifi-
cantly outper-
formed the oth-
er 6 experts);
Device type 2:
Error rate: 3.4%
versus 2.4%
(average) (De-
tails provided in
the article)

N/AN/AN/AAI outper-
formed the aver-

AI outperformed the
average of dermatol-

AUC of AI was
reported but no

(Internal validation
with 2 dermatolo-

Esteva
(2017) [15]

age of dermatol-ogists; (Details pro-
vided in the article)

comparison
with human
clinicians (De-

gists);Three-class dis-
ease partition: 72.1%
(SD 0.9%) versus

ogists (Details
provided in the
article)tails provided in

the article)
65.56% and 66.0%;
Nine-class disease
partition: 55.4%
(SD1.7) versus 53.3%
and 55.0%

N/AN/AN/AN/AN/AAUC (model 1):
0.9265 versus

N/AGonzález-
Castro
(2017) [18] 0.9813 and

0.9074; AUC
(model 2):
0.9041 versus
0.8395 and
0.8622; AUC
(model 3):
0.9152 versus
0.9411 and
0.8934
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Performance index (AIa vs human clinicians)Authors
(year)

Other indicesFalse positivesError/weighted
error

SpecificitySensitivityAUCbAccuracy

N/AN/AN/AYouden index (sensi-
tivity + specificity -
1): B1+C dataset:
>67.62% (trained
with A1 dataset) and
>63.03% (trained
with A2 dataset) vs
48.39% (99% CI
29.16% (SD
67.62%); 95% CI
33.76% (SD
63.03%); B2+D
dataset: Only one
dermatologist per-
formed better than
the ensemble model
trained with the A1
dataset, and only
once in three experi-
ments

N/AN/AHan (2018)
[13]

N/AN/A6.6% versus
4.8% (mean;
range: 0.4%-
10.5%)

97.4% versus
95.4% (mean;
range: 82%-
99.8%)

97.8% versus 99.3%
(mean; range:
98.2%-100%)

N/A96.6% versus 95.9%
(mean; range: 92.1%-
99.7%)

Kermany
(2018) [11]

Missed detec-
tions: Evalua-
tion network
(opacity area,
density and loca-
tion): 4 versus
11 (expert), 8
(competent), 20
(novice) Strate-
gist network
(treatment sug-
gestion): 0 ver-
sus 3 (expert), 1
(competent), 1
(novice)

Number of false
positive in 50
cases; Evalua-
tion network
(opacity area,
density and loca-
tion): 9 versus 5
(expert), 11
(competent), 12
(novice); Strate-
gist network
(treatment sug-
gestion): 5 ver-
sus 1 (expert), 3
(competent), 8
(novice)

N/AN/AN/AN/AAccuracy (distinguish-
ing patients and
healthy individuals):
100% versus 98%
(expert), 98% (Compe-
tent), 96% (novice)
[mean=97.33%]; Accu-
racy (opacity areas):
90% versus 90% (ex-
pert), 84% (compe-
tent), 78% (novice)
[mean=84%]Accuracy
(densities): 90% ver-
sus 90% (expert),
90% (competent),
86% (novice)
[mean=88.7%]; Accu-
racy (location): 96%
versus 88% (expert),
88% (competent),
86% (novice)
[mean=82.7%]; Accu-
racy (treatment sugges-
tion): 90% versus
92% (expert), 92%
(competent), 82%
(novice)
[mean=88.7%]

Long
(2017) [12]
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Performance index (AIa vs human clinicians)Authors
(year)

Other indicesFalse positivesError/weighted
error

SpecificitySensitivityAUCbAccuracy

N/A0.3 versus
mean=0.25

N/ANo report of
physicians’per-
formance

80.7% versus
mean=70.4%

AUROC (in ra-
diograph classi-
fication): 0.91
versus
mean=0.885
(DLAD higher
than 16 physi-
cians and signif-
icantly higher
than 11);
JAFROC FOM
(in nodule detec-
tion): 0.885 ver-
sus mean=0.794
(DLAD higher
than all physi-
cians and signif-
icantly higher in
15)

N/ANam
(2018) [16]

Time to inter-
pret the 420 im-
ages: 1.5 min
versus 240 min
(range 180-300
min); Positive
and negative
predictive val-
ues; Cohen’s
kappa F1 met-
ric(Details pro-
vided in the Ap-
pendices of the
article)

N/AN/ACheXNEXt ver-
sus board-cert-
fied radiologists
only; Specifici-
ty (masses):
0.911 (95% CI
0.880-0.939)
versus 0.933
(95% CI 0.922-
0.944); Speci-
ficity (nodules):
0.900 (95% CI
0.867-0.931)
versus 0.937
(95% CI 0.927-
0.947) Specifici-
ty (consolida-
tion): 0.927
(95% CI 0.897-
0.954) versus
0.935 (95% CI
0.924-0.946)
Specificity (effu-
sion); 0.921
(95% CI 0.889-
0.951) versus
0.883 (95% CI
0.868-0.898);
(detailed com-
parison on other
10 pathologies
are available in
the original arti-
cle)

CheXNEXt versus
board-certfied radiol-
ogists only; Sensitiv-
ity (masses): 0.754
(95% CI 0.644-
0.860) versus 0.495
(95% CI 0.443-
0.546); Sensitivity
(nodules): 0.690
(95% CI 0.581-
0.797) vs 0.573
(95% CI 0.525-
0.619); Sensitivity
(consolidation):
0.594 (95% CI
0.500-0.688) versus
0.456 (95% CI
0.418-0.495); Sensi-
tivity (effusion);
0.674 (95% CI
0.592-0.754) versus
0.761 (95% CI
0.731-0.790); (de-
tailed comparison on
other 10 pathologies
are available in the
original article)

AUC (car-
diomegaly):
0.831 versus
0.888 (P<.05);
AUC (emphyse-
ma): 0.704 ver-
sus 0.911
(P<.05); AUC
(hernia): 0.851
versus 0.985;
(P<.05); AUC
(atelectasis):
0.862 versus
0.808 (P<.05);
No significant
difference for
other 10
pathologies

Mean proportion cor-
rect value for all
pathologies: 0.828
(SD=0.12) versus
0.675 (SD=0.15;
board-certified radiol-
ogists) and 0.654
(SD=0.16; residents)

Rajpurkar
(2018) [16]

aAI: artificial intelligence.
bAUC: area under the receiver operating characteristic curve.
cNot applicable.

Quality Assessment of Included Studies
The methodological quality of included studies (see Figures 2
and 3) was assessed using the Cochrane’s risk-of-bias tool [10].
This tool was designed to assist the assessment on the risk of

bias in reviewed articles based on their reporting in terms of
specified domains. The evaluation is grounded on whether
individual articles provided supporting details, and the summary
is presented as high, low, or unclear bias in graphs. Overall,
most of reviewed studies had a low risk of bias with respect to
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the specified domains (Figures 2 and 3). A total of 3 studies
were classified as unclear risk in particular domains.
Specifically, there was no report on whether blinding of
participants and personnel (related to performance bias) was
observed in the study by De Fauw et al [19]. The study by
González-Castro et al [18] was classified as unclear risk in terms

of selective reporting (reporting bias) because of failing to report
all prespecified performance indices. Attrition bias rising from
incomplete outcome data (ie, physicians’performance) was not
assessable based on the reporting by Nam et al [16] (see
Multimedia Appendix 2 for details).

Figure 2. Distribution of bias in the included studies.

Figure 3. Risk of bias in the included studies.

Discussion

Principal Findings
Our systematic review identified 9 articles on advanced AI
applications for disease diagnosis. These spanned multiple
medical subjects, including retinal diseases, skin cancers,
pulmonary nodules, and brain tumors. Although several articles

covered similar medical topics, distinct AI algorithms and
training processes were employed across articles. The validation
methods of AI algorithm effectiveness also varied between
articles. According to our inclusion criteria, only articles
encompassing comparisons of diagnostic performance between
advanced AI and clinical experts were reviewed.
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The literature has shown that AI has comparable performance
with medical experts. Major advanced AI approaches such as
deep learning and CNNs yield significant discriminative
performance upon provision of sufficient training datasets. In
addition to relatively high sensitivity and specificity in
object-identifying tasks [11,15], the advantages of AI have also
been visible in the instantaneity of reporting and consistency
of producing results [17]. Although neural network approaches
generally require substantial data for training, recent research
suggested that it may be feasible to apply AI to rare diseases
[11,12] and, in particular circumstances, to databases where a
large number of examples are not available. The combination
with other technologies such as a cloud-based data-sharing
platform would extend AI’s likely use beyond clinical settings
or spatial limits [20].

Most AI achievements can be observed in image recognition
[21]. Object-identification tasks were the main applications in
medical diagnoses across the reviewed articles.
Computer-assisted technologies facilitate the rapid detection of
clinical symptoms of interest (eg, benign and malignant) based
on image features (eg, tone and rim) resulting in consistent
outputs. AI-based classification of physical characteristics via
vast numbers of examples is reinforced during training, and this
ability is consolidated and gradually levels the discriminative
academic performance in appearance-based diagnoses such as
skin diseases [15,21]. Such AI-assisted imaging-related clinical
tasks can reduce the cognitive burden on human experts [17]
and thus increase the efficiency of health care delivery.

AI performs at par with human experts in terms of image
analysis. Image analysis involves a number of
object-identification tasks whose outputs rely exclusively on
the detection and interpretation of concrete features such as
shapes and colors. The nonfatigue characteristic of advanced
artificial networking enables constant training and learning until
achieving satisfactory accuracy [17]. This shows marked success
in disease diagnoses related to image evaluation. This unique
advantage of AI, which humans are biologically unlikely to
possess, contributed to its performance exceeding that of clinical
professionals, as seen in the reviewed articles.

The literature shows that almost every achievement of AI is
established based on diagnosis outcomes. However, any
assessment of diagnostic outcomes needs to yield meaningful
implications. The diagnostic criteria are developed based on
long-standing and recursive processes inclusive of real-world
practice appraised by clinicians, as summarized in Table 1.
Although the recently promising self-learning abilities of AI
may lead to additional prospects [22], the viability of such
diagnostic processes is inevitably determined by human experts
through cumulative clinical experience [23,24]. In other words,
clinical experts are the go-to persons informing AI of what the
desired predictions are. AI is still incapable of interpreting what
it has obtained from data and of providing telling results.
Therefore, the final success of AI is conditionally restricted by
medical professionals who are the real evaluators of their
diagnostic performance. This signifies its artificial nature in a
human-dominated medical environment.

Given such a relationship between AI and human users, the
applicability of advanced AI and clinical significance cannot
be isolated. The development of AI technology itself may
provide an encouraging outlook on medicine applications, but
an evaluation conducted by medical specialists plays a
fundamental role in AI’s continued blooming. In medical
applications, AI cannot exist without human engagement
because the final diagnoses need to have real-world implications.
Patient-oriented medicines specify the essence of patient data
in the AI establishment and learning process. Each successful
AI, regardless of whether it is database driven or self-learning,
needs to eventually improve patients’ health. The tireless
learning abilities of AI can complement cognitive fatigue in
humans [17] and can substantially improve clinical efficiency.
Its outstanding performance, comparable with that of experts,
saves huge amounts of time in clinical practice, which, in turn,
alleviates the tension in the long-established process of the
transition from novice clinician to expert.

Despite being a propitious moment for AI, there are issues to
be addressed in the coming stages. It remains unclear whether
AI can transform the current clinician-dominant assessment in
clinical procedures. It is not surprising that a hybrid system
contributed by both AI and physicians would produce more
effective diagnostic practices, as evidenced by 1 of the reviewed
articles [17]. This could, in turn, bring about improved health
care. Data interpretation still appears to be a significant
challenge to AI. Future research may focus more on this topic.

Comparison With Previous Work
Before this review, several reviews on general AI application
have been available in the specific fields such as neurosurgery,
digital dermoscopy, and interpretation of intrapartum fetal heart
rate [25-27]. However, most of these reviews did not limit their
scope to advanced AI or deep learning, which is deemed to be
an emerging interest to health care professionals in terms of
disease diagnoses. Our review particularly compared the
diagnostic performance of advanced AI with that of clinician
experts, providing an updated summary on latest development
of AI applications to disease diagnoses. Our findings suggest
that AI’s diagnostic performance is at par with clinical experts,
and the streamlined efficiency of AI transcends human doctors.
Acknowledging the practical value of AI added to current
practice, the underpinning of human clinical experience and
patient-centered principle should remain in the future AI
application to disease diagnoses.

Limitations
Our review systematically searched articles published in selected
major databases. According to our preset inclusion and exclusion
criteria, we did not specifically review the conference abstracts
that may contain the most developed AI that can inform
diagnostic practice. Only English articles were included in this
review, and thus relevant studies published in other languages
may have been missed.

Conclusions
In summary, current AI developments have achieved comparable
performance with medical experts in specific fields. Their
predictive performance and streamlined efficiency pertaining
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to disease diagnoses—particularly in medical imaging
tasks—have transcended that of clinicians because of their
tireless and stable characteristics. Further studies can be focused
on other medical imaging such as magnetic resonance imaging
and other image-unrelated medical practices [28,29]. With the

continued development of AI-assisted technologies, the clinical
implications underpinned by clinicians’ experience and guided
by patient-centered health care principles should be considered
in future AI-related and technology-based medical research.
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