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Abstract

Background: Biomedical research often requires large cohorts and necessitates the sharing of biomedical data with researchers
around the world, which raises many privacy, ethical, and legal concerns. In the face of these concerns, privacy experts are trying
to explore approaches to analyzing the distributed data while protecting its privacy. Many of these approaches are based on secure
multiparty computations (SMCs). SMC is an attractive approach allowing multiple parties to collectively carry out calculations
on their datasets without having to reveal their own raw data; however, it incurs heavy computation time and requires extensive
communication between the involved parties.

Objective: This study aimed to develop usable and efficient SMC applications that meet the needs of the potential end-users
and to raise general awareness about SMC as a tool that supports data sharing.

Methods: We have introduced distributed statistical computing (DSC) into the design of secure multiparty protocols, which
allows us to conduct computations on each of the parties’ sites independently and then combine these computations to form 1
estimator for the collective dataset, thus limiting communication to the final step and reducing complexity. The effectiveness of
our privacy-preserving model is demonstrated through a linear regression application.

Results: Our secure linear regression algorithm was tested for accuracy and performance using real and synthetic datasets. The
results showed no loss of accuracy (over nonsecure regression) and very good performance (20 min for 100 million records).

Conclusions: We used DSC to securely calculate a linear regression model over multiple datasets. Our experiments showed
very good performance (in terms of the number of records it can handle). We plan to extend our method to other estimators such
as logistic regression.

(JMIR Med Inform 2019;7(2):e12702) doi: 10.2196/12702
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Introduction

Background and Significance
Human genome research promises to transform health care
through personalized medicine. It enables the determination of
an individual’s unique molecular characteristics, which can be
used to diagnose diseases, select individualized treatments (with

a higher success rate), and reduce possible adverse reactions
[1]. However, before this becomes a reality, more research is
needed to understand the complex relationship between genome
and health. Such research often requires large cohorts and
necessitates the sharing of biomedical data with researchers
around the world, which raises many privacy, ethical, and legal
concerns.
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Traditionally, researchers would strip the data from the
identifying information—such as names and identity cards—and
apply some privacy-protection techniques—such as
generalization or noise addition—before sharing them with each
other. However, recent studies have shown that it is possible to
deduce the identity of research participants from clinical data
that were considered anonymized. DNA sequencing aggravates
this problem as the genome is unique to every individual and
can be used to predict future ailments for individuals and their
blood relatives (such as Alzheimer's or schizophrenia). Such
information has the potential to deny jobs and to isolate subjects
socially [2]. In the face of these growing concerns, privacy
experts are trying to explore alternative approaches to privacy
protection. Many of the new strategies are based on
cryptography, particularly secure multiparty computations
(SMCs). SMC is an attractive approach that allows a set of
multiple parties, S1,...,Sm, each holding a private fraction of the
data to be analyzed, to collectively carry out a computation f
on the overall dataset, without any party having to reveal their
own private raw data. Thus, the goal is to compute f efficiently
and privately such that no party learns anything aside from the
final output of f. Note that the output is computed from the
private inputs of the different parties, and as such, it may leak
some sensitive information about their input. In fact, SMCs
focus on the security of the distributed computation method and
do not specify which kind of computations can be performed
when privacy is of interest. In other words, it does not specify
whether the output of a given computation will leak sensitive
information or not, it just guarantees that the computation
method itself preserves the privacy of the distributed raw data.
Techniques from differential privacy have been used (in
combination with SMCs) to prevent leakage of sensitive
information from the final output. The discussion of these
mechanisms is beyond the scope of the study; for more
information, readers are referred to the studies by Beimel et al,
Nordholt et al, and Papadimitriou et al [3-5].

Despite the mathematical proofs that have been established,
demonstrating the ability of the SMC protocols to protect data,
they are still not widely used. This may be because knowledge
about their capabilities is still relatively small, they tend to have
complex solutions that are not accessible without domain
knowledge, they require coordinating analyses among the
different sites, or they are not efficient in every setting. In fact,
one of the main problems with SMC protocols is efficiency.
Communication between the different parties is the main factor
driving the inefficiency of SMC protocols [6-8]. In almost all
existing research in SMC, one of the main goals is to minimize
the total number of messages communicated between the

different parties and, thus, minimize the performance gap
between secure and regular protocols [9]. One of the approaches
taken is to relax security and privacy requirements (such as
allowing some information leakage) [10].

Our goal with this line of research is to develop usable and
efficient SMC applications that meet the needs of the potential
end-users and to raise general awareness about SMC as a tool
that supports data sharing. Thus, we proposed a divergence from
current research efforts. Instead of lowering the security
requirements, we proposed to introduce distributed statistical
computing (DSC) into the design of secure protocols. Through
DSC, we will study the possibility of conducting computations
on each of the parties’ sites independently and then combine
these (local) computations to form 1 (accurate) estimator for
the collective dataset, thus limiting communication to the final
step and significantly reducing complexity.

Contributions
The main contribution of this study is introducing a model for
privacy-preserving distributed data mining in which local models
are produced separately and SMC is used to aggregate the results
privately. The study applies these novel ideas to linear regression
and introduces the first secure linear regression model that does
model selection and parameter estimation efficiently (all
previous secure multiparty algorithms perform parameter
estimation only). The paper then presents experiments on real
and synthetic datasets to demonstrate the accuracy and efficiency
of the algorithm.

The paper is organized as follows: the next section defines our
problem formally and introduces the theory behind DSC; the
following section demonstrates the effectiveness of our
privacy-preserving model through a linear regression
application; and finally, the paper is concluded with a discussion
of the results and limitations and a proposal for future research
directions.

Methods

Problem Definition
A researcher wants to estimate a population parameter θ by
running a computation f over the private inputs of several remote
databases, d1,...,dm while keeping these inputs private (Figure
1); (where f (d1,...,dm) is a mechanism for the estimation of θ).
The goal is to achieve a good approximation θ* of θ using as
little communication as possible and without any party learning
anything about other parties’ input aside from the final output
θ* (Figure 1).
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Figure 1. Traditional secure computation approach. Double-sided arrows indicate required communication channels. All communication should be
secure and no party (including the third party) should learn anything about other parties' input aside from the final estimation of θ. θ: population parameter
to be estimated; di: private dataset owned by site i (where i {1,...,m}); f: a mechanism for the estimation of θ; θ*: the output of f; m: number of sites.

Interinstitutional data sharing is generally motivated by multiple
scenarios such as (1) increasing results’ accuracy and lowering
bias, (2) performing benchmarking studies, or (3) attaining the
cohort required for a study. In what follows, we illustrate each
with a scenario:

1. m hospitals want to collectively study factors that affect the
survival rate for breast cancer patients. Running the
regression problem on the m datasets will provide better
properties by increasing sample size and will reduce data
bias (such as environmental and location bias). Sharing data
in the open may not be easy as medical data are governed
by privacy legislations.

2. Hospitals in a given geographical area are interested in
calculating the average rate of hospital-acquired bacterial
infection (across all the hospitals in the said area) for the
purpose of self-evaluation. In this case, the hospitals have
an additional incentive against data sharing as it may
implicate them negatively.

3. Monogenic diseases are very rare genetic disorders
associated with single gene variations observed in few
subjects per 1000 to 10,000 individuals. Some are
well-characterized such as cystic fibrosis (frequency of
disease 1:2000), sickle cell anemia, phenylketonuria
(frequency of disease 1:8000), and some primary
immunodeficiency diseases [11]. The study of these rare
disorders requires the sharing of data across multiple
sources or institutions to enable the collection of more cases
for analysis and thus increase the statistical power of the
study.

Many protocols have been developed for the above problem in
the area of SMC. The most efficient protocols are based on
secret sharing [12], oblivious transfer [13], garbled circuits [14],
or homomorphic encryption [15]. In addition, there are several
hybrid constructions that combine these various models [10].
These protocols have robust mathematical proofs that
demonstrate their ability to protect privacy under different
assumptions of parties’ honesty [10]. However, they mostly
involve heavy communication (extensive message passing)
between the different concerned parties [9]. To minimize the
communication load and decrease the performance gap between

secure and regular protocols, researchers tried to relax security
and privacy requirements such as relaxing the number and power
of dishonest parties or allowing some form of information
leakage [10], others use noise addition to intermediate and final
results to preserve privacy [16]. In this study, we proposed a
change in the methodology by introducing distributed statistical
learning into the design of secure computations.

Statistical Learning With Big Data

Overview
A common approach in statistical learning with big data is to
split the data (along observations) into multiple subsets. Each
subset conducts the required computation completely
independently. The final result is then obtained by combining
these local computations. Thus, communication (and sharing
of information) is reduced to the final step only. This will
significantly reduce the complexity and provide simpler
algorithms. The problem is illustrated in Figure 2 and explained
below.

A researcher is interested in estimating a population parameter
θ from a sample database D with N records and p attributes.
Traditionally, θ is estimated from the whole dataset D as: θ*=f
(D) (referred to as the centralized estimator), where f is a
mechanism for the estimation of θ. In this split and merge
statistical learning approach, the database D is split equally
among m sites as d1,...,dm. The number of records in the resulting
databases is denoted by n=N/m. Each site i performs the
estimation of θ on its local dataset as: θi=f (di), then the final

estimate is obtained by combining the local estimates: θ#=g
(θ1,...,θm).

The N observations are assumed to be independent and
identically distributed. They are evenly and randomly allocated
along the m different sites.

McDonald et al, who advocated for this split and merge method
in [17], claim that, given the stated assumptions, it provides a
good balance between accuracy and efficiency. As for merging
strategies, few were considered in the literature, the most
common ones being averaging [18] and median [19].
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Figure 2. The split and merge approach. The one-sided arrows indicate message passing. All communication should be secure and no party (including
the optional third party) should learn anything about other parties' input aside from the final estimation of θ. θ: population parameter to be estimated;
di: private dataset owned by site i (where i {1,...,m}); f: a mechanism for the estimation of θ; θi: the output of f applied to di; g: a mechanism for combining

local estimates; θ#: the output of g; m: number of sites.

Relevant Theory
The split and merge strategy is simple to execute and is
communication-efficient. Splitting is always done along
observations (rather than attributes), and each site performs the
estimation on its local dataset. Averaging of the m sites estimates
is the simplest and most popular strategy. In what follows, we
review the available literature while trying to answer the
following questions:

• What is the error of the averaged estimator versus the
centralized one?

• What affects the optimality of the averaged estimator?
• How many sites to include in a given study? And how many

samples to include from these sites?

The accuracy of averaging depends on the relationship between
the number of observations (N), the number of sites (m), and
the number of parameters (p). As a general insight, averaging
provides estimates that are as accurate as the centralized solution
when there are many observations per parameter on each local
machine [20]. In fact, in [21], the authors proved that when the
number of records per site is large, (large n=N/m), the mean

square error (MSE) of the average estimator (ie, E||θ#-θ ||2) is

the same as the MSE of the centralized one (ie, E||θ*-θ ||2). In
[18], Rosenblatt and Nadler proved that the averaged estimator
and the centralized one are first order-equivalent, they proved

that the leading error term of (θ#-θ) and (θ*-θ) converge to the
same limit at the same rate; however, some accuracy loss is
exhibited in higher-order terms for nonlinear models (the
second-order term is m [number of sites] times larger than the
first-order one). The interpretation as given in [18] is that
first-order terms generally capture variance, which is reduced
by averaging, whereas the second-order term captures bias which
is not reduced by averaging. Thus, the old problem of balancing
variance and bias comes to light in nonlinear models (where
the second-order term can be nonnegligible). Approaches toward
this problem can be found in [20-22]. Going further, Rosenblatt
and Nadler presented an extensive analysis of the error of the
averaging estimator by considering different practical situations
[18]:

• For situations where p is fixed and n is large, they proved

that the averaged estimator, θ#, is asymptotically equivalent
to the centralized one, θ*.

• For small and medium n, parallelization incurs a
non-negligible error for nonlinear models.

• For situations where N is fixed, they showed that averaging
performs well for small values of m and p.

The authors presented the exact expression of the estimator
errors in all situations and confirmed the results through a series
of experiments.

In [20], the authors proved that (for low-dimensional data) it is
enough to have a smaller number of sites than local observations

(m≤n or, equivalently, m≤N1/2) to guarantee an MSE that decays
at a considerably better rate than the centralized approach. They
also showed that when N is fixed, the MSE of the averaged
estimator increases polynomially with the number of sites m,
thus echoing previous theoretical results.

Battey et al specified in [23] an exact formulation of the
requirements on m, N, and p, for linear models. They proved

that when p<log N and m≤Np/ (log N)2, then the loss incurred
by the averaging method is negligible compared with the
statistical error incurred by the central one.

As a general insight into the questions raised above and to
summarize the above results, we say that when the number of
samples per site n is large, bigger than the number of features
and bigger than the number of sites (n>p and n > m) then the
averaged machine-wise estimates are as accurate as the
centralized estimates. However, when the number of samples
per site, n, is small and the model is highly nonlinear, the error
can be non-negligible. The nice results do not extend to
high-dimensional data. When few observations are available
per parameter per site (n<p), in these cases the accuracy loss
increases linearly with the number of sites m. Some researchers,
such as [24], resorted to schemes other than averaging to obtain
well-behaved estimators in specific cases, whereas others
showed moderate accuracy loss for averaging in specific cases
[18,25,26].

Assumptions and Considerations
The assumptions across the DSC literature are that (1) the N=mn
observations are independent and identically distributed
according to a distribution P and that (2) they are evenly and
randomly allocated along the m different sites.

An equivalent assumption to (1), that applies to our SMC
scenarios, is that of m independent sites having observations
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that are independent and identically distributed according to the
same distribution P.

The (second) assumption of evenness can be easily circumvented
by pre-setting the number of samples to consider from each site.
However, that is not needed, as the theoretical results presented
in the previous section would still apply provided that every
site satisfies the required assumptions (ie, the assumptions are
true for each ni, the number of observations for site i).

However, the first assumption is not always realistic and can
be overly restrictive for some applications. For instance, if the
data are already owned and collected by the different sites, then
it may exhibit systematic differences across these sites. For
example, if 2 hospitals are considering an analysis involving
their cancer patients and if 1 of the hospitals is located in a
heavily polluted area whereas the other is not, then the
distribution of the local population from which the sites’ data
are sampled could have significant differences. Pooling the data
and redistributing them randomly along the different sites may
not be realistic or feasible as the data may be big or private [19].

Going back to the question of the number of sites to include in
a study when p is fixed, the authors in [18] distinguished
between 2 scenarios N fixed or n fixed. Fixed N captures the
case of limited data availability or limited computational power
whereas fixed n captures the case of storage restriction or data
availability per site. For the SMC problem, where data are
already owned by the different sites, fixed n represents the case
of a given number of institutions (sites) wanting to run an
analysis on their collective data (with n being the minimal
number of samples across sites). Fixed N represents the case of
a researcher with a requirement on cohort size and is assumed
to be able to include as many sites as required to attain the cohort
(with each site having at least N/m records). The authors in [18]
presented an analysis of (1) the minimal number of sites to attain
a desired accuracy in the fixed n scenario and (2) the maximal
number of sites to attain a desired accuracy in the fixed N
scenario. The objective is to guarantee an MSE that is lower
than a preset value as follows: min {m; MSE(m)≤  with fixed
p and n } and max {m; MSE(m)≤  with fixed p and N }. For

example, in the fixed N scenario with p=103 if N=106, m should
be ≤899 to guarantee an MSE under 0.1 [18].

We distinguish between these 2 strategies when analyzing the
performance of our algorithm.

Multiestimators
In many applications, certain inferences require 2 or more
estimations. For example, inference for regression typically
requires 2 components—feature selection and parameter
estimation. When conducting feature selection, the median
probability model has been recommended [27]; it consists of
all the features that are selected by the majority of the subsets.
According to [27], the median model produces the best
approximation under some simplifying assumptions, in that it
has the highest probability of being equal to the optimal model.
Averaging is not recommended as it can lead to a bigger number
of nonzero coefficients and, thus, to an inflation in the number
of selected features as opposed to median. The median selection
model is also less influenced by the heavy presence of outliers

when compared with the central selection model, as the effect
of the outliers will be waned down over multiple subsets (only
a fraction of the subsets will contain a sizable fraction of the
outliers) [28].

In [28], the authors present a distributed linear regression
algorithm that combines median model for feature selection and
simple averaging for parameter estimation. The authors proved
that for low-dimensional data, when the features are independent
and the number of sites is well chosen (number of sites m chosen
so that m<n) or when features are correlated and following
elliptical distributions (noting that real-world data commonly
follow elliptical distributions), the distributed model provides
accurate estimates. In fact, they showed that their algorithm can
achieve better accuracy in terms of feature selection than the
centralized one, which results in a better MSE in general. The
authors performed extensive experiments (with p<N) that echoed
their theoretical results. However, their choice of number of
sites versus sample size always satisfied Zhang et al’s condition

[20], (m≤N1/2).

In the next section, we demonstrate the effectiveness of the
privacy-preserving model through a linear regression
application. We restrict our application to models with the best
theoretical results, that is, linear models with more records than
features in every site and with high number of records relative
to the number of sites (n>p and n>m).

Results

Application: Secure Linear Regression
We introduce the classical setting of a linear regression problem.

Let X={xi,j } be an N×p matrix of features and Y=(y1,...,yN)T a
corresponding N ×1 response vector, where N is the number of
samples and p is the number of features. Linear regression
consists of modeling the relationship between the set of features
(also known as independent variables) and the response variable.
It assumes that the relationship between the response variable
and the independent variables is linear. Fitting a linear regression
model consists of feature selection and parameter estimation
[29]. Feature selection is the process of constructing a model
that includes all relevant predicting variables. In other words,
it is the process of determining the subset of features that best
predicts the outcome variable, Y, whereas the parameter
estimation consists of finding the linear model parameters β
where Y=Xβ+  [29].

Despite the simplicity of linear regression, it is widely used in
various biomedical applications [30]. Although physical and
biological processes are inherently nonlinear, linear
approximations have been successfully used for centuries to
explain phenomena in physics and biology [30] as they present
a number of advantages compared with more complex models.
Parameters of linear models are usually easy to estimate, the
linear models are easy to interpret (coefficient signs and values
are indicative for the contribution of the different variables),
and many tools have been developed to evaluate the statistical
significance of linear models. Linear models are also well-suited
for high-dimensional data and are used for association studies
such as Genome Wide Association Studies.
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Previous Work in Secure Linear Regression
As linear regression is one of the most commonly used statistical
tools in data analysis, there are many attempts in the literature
at obtaining secure linear regression protocols over distributed
databases. Many of these protocols do not offer adequate privacy
guarantees [31,32] as they share intermediate results or rely on
a trusted third party to handle these intermediate results [33].
In [34], El Emam et al provide some scenarios where privacy
can be breached by sharing intermediate aggregate results (refer
to [35] for a decomposition of available secure regressions based
on privacy and accuracy). The first linear regression algorithm
with cryptographic security was developed by Hall et al [15];
it makes heavy usage of SMCs, particularly secure matrix
multiplication protocol. The study reported 2 days for solving
a linear regression problem of 51k rows and 22 features [15].
In [36], a solution based on homomorphic encryption and
garbled circuits is presented. The solution uses 2 noncolluding
semihonest third parties. The problem with the approach is that
usage of garbled circuits imposed many rounds of interactions
and is thus heavy on communication. In a more recent

experiment [33], the authors report 8.75 hours for 108 records
with 20 features and 270 MB of communication. In 2015, Cock
et al, presented a method to calculate the parameters of the linear

regression by computing β=(XTX)-1XTY [37]. The algorithm
computes β by running Beaver’s matrix multiplication protocol
many times [38]. Beaver’s protocol computes securely, with
the help of a trusted initializer, the product of matrices shared
by different parties in a way that the result remains shared by
the different parties. The theoretical complexity of the algorithm

is O (Np2); however, the protocol is heavy on communication.
In fact, the matrix multiplication protocol requires each party

to send 2 matrices to every other party (of size, p2), such
protocol is repeated, O (k), where k is the maximal number of
bits required to represent the largest integer. However, their
algorithm performs better than all previous secure linear
regression algorithms [37]. Experiments done by the authors
themselves indicated a capacity to handle over 4 million records
with 16 features in a range of 3 hours (to provide some
perspective, our algorithm requires less than 3 min for the same
dataset and same settings and for both feature selection and
parameter estimation).

It is very important to note that all cited secure regression
algorithms do not perform feature selection. In other words,
they use the supplied features set to predict the model [35]. As
our algorithm does both, we opted to compare our algorithm
with the central version (where data are on the clear).

Our Algorithm
The goal of distributed statistical learning algorithms is to scale
up computations by distributing the data over multiple machines.
The underlying assumption is that all data are owned by the
same organization. Thus, sharing of intermediate and local
results between the different machines is allowed.

In our setting, the dataset (X, Y) is owned by m≥ 2 data holders
(or sites) S1,...,Sm and the different sites are interested in
cooperatively performing linear regression on the union of their
datasets; however, they are not willing or able to share their

data. Only the final result of the computation should be revealed
to all parties. In line with the DSC theory, we assume that all
the samples in all sites are independent and identically
distributed (randomly drawn from the same [population]
distribution). Moreover, if nmin is the smallest number of local
observations across the different sites, (to guarantee the nice
DSC results) we require that the number of features and number
of sites are both smaller than nmin, that is, we require that nmin≫p
and nmin≫m.

Formally, the data (X,Y) are divided horizontally into m subsets

{(X1,Y1);...;(Xm, Ym)}, with Xi=(X1
i,...,Xi

p) the ni ×p feature matrix

for subset i (where Xi
j is an ni×1 matrix) and Yi=(y1

i,...,yi
ni)

T the

corresponding ni×1 response vector. The algorithm then
executes the following 2 steps:

1. Each site calculates its local feature selection vector
privately, and the local vectors are aggregated securely
using a secure median algorithm (in other words, the parties
jointly perform the median on their data and obtain the
result), without any party revealing any information about
their selected features (aside from what can be deduced
from the final median output).

2. Next, each site uses the shared selected features to calculate
the model parameters locally. These local parameters are
then securely averaged using a secure average protocol.
Our algorithm is presented in Multimedia Appendix 1. In
the algorithm, the secure sum and secure median protocols
are based on Paillier homomorphic encryption; however,
other secure protocols can be used instead.

Experiments
We evaluated our secure multiparty linear regression algorithm
(SMA) by implementing it and analyzing the results using real
and synthetic datasets. The real datasets are used to test the
accuracy of the algorithm whereas the synthetic datasets are
used to analyze its performance. To analyze the accuracy of the
algorithm, we needed real datasets that originated from multiple
different sources (different data owners). The sources’ IDs had
to be included to inform the actual data division along the
different sites. For the synthetic experiment, data were generated
and randomly allocated along the different sites, as the purpose
was solely to evaluate the efficiency of the algorithm for various
numbers of records and features. We used Python3 as our
programming language, which we augmented with the
Scikit-learn, numpy, pandas, gmpy2, and phe libraries for
functionality such as socket programming, homomorphic
encryption, and for dealing with negative and real floating-point
arithmetic. We built our system on top of 10 Linux machines
with Intel Core i5-4570 CPU, 3.20GHz processor, and 8GB
RAM, 4 cores each. To increase the number of possible sites
to 20, we installed 2 Linux virtual machines on each machine
with 4 GB memory each (note that the Paillier encryption library
handles real-number values with arbitrarily high precision).

To test our SMA, we compared its performance with the central
algorithm (CA). The CA performs linear regression on 1
machine using the same approach as the SMA (ie, it uses lasso
for feature selection and linear least squares method for
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parameter calculation [39]). We opted not to test the accuracy
or the efficiency of our SMA algorithm against existing secure
linear regression algorithms as none of the existing algorithms
perform model selection.

Real Datasets
To test the accuracy of our algorithm, we collected real datasets
that include information about the original collection site. Then,
we treated each site as an independent data owner. We
succeeded in finding 4 real datasets: 3 public datasets contained
within the University of California Irvine repository (student
performance in Portuguese, student performance in Math, and
automobile fuel consumption data) and 1 from Cerner clinical

database (the Diabetes dataset, where the number of sites
included was varied between 3, 6, and 12, and the weight
variable was excluded in some experiments because of excessive
missing values). The datasets are presented in detail in
Multimedia Appendix 2.

In the experiments on real datasets, we randomly divided the
datasets into 0.7 training set and 0.3 testing set. A regression
model was trained based on the training set and used to predict
the outcome variable in the testing set. The average of the square
prediction error was used to evaluate the model (MSE). The
experiments were repeated 50 times each. Table 1 summarizes
the results; as evident from the results, our method does not
incur significant loss in accuracy.

Table 1. Performance results for the 4 datasets used.

MSE ratioeR 2MSEdN (values of n)cp bm aMean (SD)Dataset

SMACASMAgCAf

0.9840.6750.683.4173.364649 (423, 226)30211.91 (3.23)Student performance in Portugueseh

0.9780.620.6277.7197.554395 (349, 46)30210.41 (4.58)Student performance in Mathh

0.770.7110.77817.56313.56392 (245, 68, 79)6323.45 (7.80)AutoMPGi

1.0250.1080.098.598.801267 (129, 72, 66)3934.848 (3.11)Diabetes (with weight)j

0.9620.1570.197.7337.443456 (68, 130, 57, 73,
55, 73)

3964.41 (3.02)Diabetes (with weight)j

0.990.3030.3095.6125.5588567 (2478, 3936,
2153)

3834.39 (3.01)Diabetes (without weight)j

0.9840.3350.3455.7985.70813626 (2478, 3936,
1480, 2153, 2108,
1471)

3864.42 (3.00)Diabetes (without weight)j

0.9710.3360.3455.875.70521205 (2478, 3936,
1480, 2153, 2108,
1471, 1160, 1323,
1524, 1425, 1024,
1122)

38124.39 (2.97)Diabetes (without weight)j

am: number of sites.
bp: number of features.
cN (values of n): total number of records and their division along different sites.
dMSE: mean square error.
eMSE ratio=MSE CA/MSE SMA.
fCA: central algorithm.
gSMA: secure multiparty linear regression algorithm.
hOutcome variable: grade out of 20.
iOutcome variable: fuel consumption (miles per gallon).
jOutcome variable: length of stay (days).

Synthetic Dataset
Using synthetic data, we performed a scalability analysis to
evaluate the time performance of the proposed solution as the
data size and the number of parties increase. The synthetic
datasets were generated in Python using
sklearn.datasets.make_regression. The number of records was

varied between 105 and 108, the number of features between 2
and 50, and the number of sites between 2 and 20. The records
were always divided equally between the sites. We distinguished

between 2 testing strategies: n fixed (Figures 3-5) and N fixed
(Figure 6). The algorithm was compared with the CA (where
data are shared in the clear) as there exists no other secure linear
regression algorithm that performs model selection.

For the fixed n strategy (with, p≪n), Figures 3 and 4 show the
time performance of CA versus SMA as a function of the sample
size N. Note that m=N/n is also growing (m ∈ [2,20] in Figure
3, and m ∈ [2,10] in Figure 4). As seen from the figures, for
large n and p, SMA is scalable, and the security overhead does
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not affect its performance significantly. Figure 5 shows the time
performance of SMA (with n=10 million) as a function of (1)
N (left side) and (2) p (right side). Note that N varies between
20 million and 100 million and that the time performance for
N=100 million and p=50 features is under 20 min.

For the fixed N strategy (with p≪N) Figure 6 shows the time
performance of SMA as a function of the number of sites (with

p=50). Note that the time taken by the CA is constant whereas
for the SMA, as the number of sites increases, the time taken
by the algorithm decreases. It is important to note that when the
number of records per site becomes very small, the
communication cost increases, driving the overall computation
time with it.

Figure 3. Time performance for central algorithm versus secure multiparty linear regression algorithm (SMA) with 100,000 records per site and varying
feature set. As the number of sites increases, the number of records also increases. For small datasets, the time taken by SMA is more than that taken
by the central algorithm (CA). This is due to the encrypted communication required by the algorithm. As the number of records and features increases,
the time taken by the CA increases rapidly (at 1,500,000 records and 100 features). n: number of records per site; p: number of features.

JMIR Med Inform 2019 | vol. 7 | iss. 2 | e12702 | p. 8http://medinform.jmir.org/2019/2/e12702/
(page number not for citation purposes)

Dankar et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 4. Time performance for central algorithm versus secure multiparty linear regression algorithm (SMA) with 1,000,000 records per site and
varying feature set. The time taken by the central algorithm (CA) is greater than that taken by the SMA. For 10 million records, the SMA algorithm
takes almost 30 seconds, whereas the CA takes around 18 minutes. n: number of records per site; p: number of features.

Figure 5. Time performance for secure multiparty linear regression algorithm (SMA) with 10 million records per site and varying feature set. The
panel on the left shows the time as a function of the number of features, while the panel on the right shows the time as a function of the number of sites.
Note that for N=100 million and p=50 features, SMA required 20 minutes for execution. m: number of sites; n: number of records per site; p: number
of features.
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Figure 6. Time performance for central algorithm versus secure multiparty linear regression algorithm (SMA) with total number of records (N)=10
million, and features (p)=50. For SMA, the records are divided among a varying number of sites (2 to 20). The time taken by the central algorithm (CA)
is constant. For SMA, time decreases with the increase in the number of sites, until it reaches m=20 (or n=50,000). At that point, the communication
cost increases and the computation time starts to go up.

Discussion

This study introduced a model for privacy-preserving distributed
data mining in which local models are produced separately and
SMC is used to aggregate the results privately. Theoretical
results from statistical theory were used to design the first secure
multiparty linear regression model that does model selection
and parameter estimation.

In general, theoretical results from statistical computing say
that the averaged local estimates are as accurate as the
centralized estimates when n>p and m<n. In line with the
theoretical results, we conducted computations on the distributed
sites independently and then combined the results securely to
form 1 estimator for the collective dataset. Experiments were
conducted with n ≫ p and m < n and they showed the accuracy
(using 4 real datasets) and efficiency (using synthetic data) of
the algorithm.

The experiments on synthetic data showed very good time
performance. When n is fixed, as N increases, the time taken
by the CA increases at a much faster rate than SMA. For big N

(108), the algorithm does model selection, and parameter
estimation in under 20 min (the algorithm of [36] does only
parameter estimation in the range of 8 hours).

Much of the existing theoretical work in DSC assumes a uniform
and random distribution of samples across the different sites or
that the m independent sites have n observations each that are
independent and identically distributed according to the same
distribution P.

This assumption certainly facilitates the mathematical analysis
but may not be realistic for some applications. In the SMC
applications, data are collected and owned by the different sites
and may thus have systematic differences across these different
sites, in which case, the assumption could be overly restrictive.
Redistributing the samples randomly across the different sites
is not an option due to data privacy issues. However, it is worth
noting that our experiments on real data (although limited due
to lack of access to real data) showed high accuracy compared
with the central case. In the future, we intend to relax these
assumptions and study their theoretical effect on the accuracy
of the results.

Another limitation is the assumption of horizontal distribution
among the different sites which should be generalized to vertical
divisions (or both).

Moreover, the study demonstrated the theoretical results using
a linear model. We plan to extend our results to other estimators
such as ridge regression and logistic regression.
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