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Abstract

Background: Silent brain infarction (SBI) is defined as the presence of 1 or more brain lesions, presumed to be because of
vascular occlusion, found by neuroimaging (magnetic resonance imaging or computed tomography) in patients without clinical
manifestations of stroke. It is more common than stroke and can be detected in 20% of healthy elderly people. Early detection
of SBI may mitigate the risk of stroke by offering preventative treatment plans. Natural language processing (NLP) techniques
offer an opportunity to systematically identify SBI cases from electronic health records (EHRs) by extracting, normalizing, and
classifying SBI-related incidental findings interpreted by radiologists from neuroimaging reports.

Objective: This study aimed to develop NLP systems to determine individuals with incidentally discovered SBIs from
neuroimaging reports at 2 sites: Mayo Clinic and Tufts Medical Center.

Methods: Both rule-based and machine learning approaches were adopted in developing the NLP system. The rule-based system
was implemented using the open source NLP pipeline MedTagger, developed by Mayo Clinic. Features for rule-based systems,
including significant words and patterns related to SBI, were generated using pointwise mutual information. The machine learning
models adopted convolutional neural network (CNN), random forest, support vector machine, and logistic regression. The
performance of the NLP algorithm was compared with a manually created gold standard. The gold standard dataset includes 1000
radiology reports randomly retrieved from the 2 study sites (Mayo and Tufts) corresponding to patients with no prior or current
diagnosis of stroke or dementia. 400 out of the 1000 reports were randomly sampled and double read to determine interannotator
agreements. The gold standard dataset was equally split to 3 subsets for training, developing, and testing.

Results: Among the 400 reports selected to determine interannotator agreement, 5 reports were removed due to invalid scan
types. The interannotator agreements across Mayo and Tufts neuroimaging reports were 0.87 and 0.91, respectively. The rule-based
system yielded the best performance of predicting SBI with an accuracy, sensitivity, specificity, positive predictive value (PPV),
and negative predictive value (NPV) of 0.991, 0.925, 1.000, 1.000, and 0.990, respectively. The CNN achieved the best score on
predicting white matter disease (WMD) with an accuracy, sensitivity, specificity, PPV, and NPV of 0.994, 0.994, 0.994, 0.994,
and 0.994, respectively.

Conclusions: We adopted a standardized data abstraction and modeling process to developed NLP techniques (rule-based and
machine learning) to detect incidental SBIs and WMDs from annotated neuroimaging reports. Validation statistics suggested a
high feasibility of detecting SBIs and WMDs from EHRs using NLP.
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Introduction

Background
Silent brain infarction (SBI) is defined as the presence of 1 or
more brain lesions, presumed to be because of vascular
occlusion, found by neuroimaging (magnetic resonance imaging,
MRI or computed tomography, CT) in patients without clinical
manifestations of stroke. SBIs are more common than stroke
and can be detected on MRI in 20% of healthy elderly [1-3].
Studies have shown that SBIs are associated with increased risk
of subsequent stroke, cognitive decline, and deficiency in
physical function [1,2]. Despite the high prevalence and serious
consequences, there is no consensus on the management of SBI
as routinely discovering SBIs is challenged by the absence of
corresponding diagnosis codes and the lack of the knowledge
about the characteristics of the affected population, treatment
patterns, or the effectiveness of therapy [1]. Even though there
is strong evidence shows that antiplatelet and statin therapies
are effective in preventing recurrent stroke in patients with prior
stroke, the degree to which these results might apply to patients
with SBI is unclear. Although SBI is understood by some
clinicians to be pathophysiologically identical to stroke (and
thus similarly treated), others view SBI as an incidental
neuroimaging finding of unclear significance. The American
Heart Association/American Stroke Association has identified
SBI as a major priority for new studies on stroke prevention
because the population affected by SBI falls between primary
and secondary stroke prevention [4].

In addition to SBI, white matter disease (WMD) or leukoaraiosis
is another common finding in neuroimaging of elderly. Similar
to SBI, WMD is usually detected incidentally on brain scans
and is commonly believed to be a form of microvascular
ischemic brain damage resulting from typical cardiovascular
risk factors [5]. WMD is associated with subcortical infarcts
due to small vessel disease and is predictive of functional
disability, recurrent stroke, and dementia [6-8]. SBI and WMD
are related, but it is unclear whether they result from the same,
independent, or synergistic processes [9,10]. As with SBI, there
are no proven preventive treatments or guidelines regarding the
initiation of risk factor–modifying therapies when WMD is
discovered.

Objectives
Identifying patients with SBI is challenged by the absence of
corresponding diagnosis codes. One reason is that SBI-related
incidental findings are not included in a patient’s problem list
or other structured fields of electronic health records (EHRs);
instead, the findings are captured in neuroimaging reports. A
neuroimaging report is a type of EHR data that contains the
interpretation and finding from neuroimage such as CT and
MRI in unstructured text. Incidental SBIs can be detected by
the review of neuroradiology reports obtained in clinical
practice, typically performed manually by radiologists or
neurologists. However, manually extracting information from
patient narratives is time-consuming, costly, and lacks

robustness and standardization [11-14]. Natural language
processing (NLP) has been leveraged to perform chart review
for other medical conditions by automatically extracting
important clinical concepts from unstructured text. Researchers
have used NLP systems to identify clinical syndromes and
biomedical concepts from clinical notes, radiology reports, and
surgery operative notes [15]. An increasing amount of
NLP-enabled clinical research has been reported, ranging from
identifying patient safety occurrences [16] to facilitating
pharmacogenomic studies [17]. Our study focuses on developing
NLP algorithms to routinely detect incidental SBIs and WMDs.

Methods

Study Setting
This study was approved by the Mayo Clinic and Tufts Medical
Center (TMC) institutional review boards. This work is part of
the Effectiveness of Stroke PREvention in Silent StrOke project,
which is to use NLP techniques to identify individuals with
incidentally discovered SBIs from radiology reports, at 2 sites:
Mayo Clinic and TMC.

Gold Standard
The detailed process of generating the gold standard is described
in Multimedia Appendix 1. The gold standard annotation
guideline was developed by 2 subject matter experts: a vascular
neurologist (LYL) and a neuroradiologist (PHL), and the
annotation task was performed by 2 third-year residents (KAK,
MSC) from Mayo and 2 first-year residents (AOR, KN) from
TMC. Each report was annotated with 1 of the 3 labels for SBI
(positive SBI, indeterminate SBI, or negative SBI) and one of
the 3 labels for WMD (positive WMD, indeterminate WMD,
or negative WMD).

The gold standard dataset includes 1000 radiology reports
randomly retrieved from the 2 study sites (500 from Mayo Clinic
and 500 from TMC) corresponding to patients with no prior or
current diagnosis of stroke or dementia. To calculate
interannotator agreement (IAA), 400 out of the 1000 reports
were randomly sampled and double read. The gold standard
dataset was equally split to 3 subsets for training (334),
developing (333), and testing (333).

Experimental Methods
We compared 2 NLP approaches. One was to define the task
an information extraction (IE) task, where a rule-based IE
system can be developed to extract SBI or WMD findings. The
other was to define the task as a sentence classification task,
where sentences can be classified to contain SBI or WMD
findings.

Rule-Based Information Extraction
We adopted the open source NLP pipeline, MedTagger, as the
infrastructure for the rule-based system implementation.
MedTagger is a resource-driven, open source unstructured
information management architecture–based IE framework [18].
The system separates task-specific NLP knowledge engineering
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from the generic NLP process, which enables words and phrases
containing clinical information to be directly coded by subject
matter experts. The tool has been utilized in the eMERGE
consortium to develop NLP-based phenotyping algorithms [19].
Figure 1 shows the process workflow. The generic NLP process
includes sentence tokenization, text segmentation, and context
detection. The task-specific NLP process includes the detection
of concept mentions in the text using regular expressions and
normalized to specific concepts. The summarization component
applies heuristic rules for assigning the labels to the document.

For example, the sentence “probable right old frontal lobe
subcortical infarct as described above,” is processed as an SBI
concept with the corresponding contextual information with

status as “probable,” temporality as “present,” and experiencer
as “patient.”

The domain-specific NLP knowledge engineering was
developed following 3 steps: (1) Prototype algorithm
development, (2) Formative algorithm development using the
training data, and (3) Final algorithm evaluation. We leveraged
pointwise mutual information [20] to identify significant words
and patterns associated with each condition for prototyping the
algorithm (Multimedia Appendix 2). The algorithm was applied
to the training data. False classified reports were manually
reviewed by 2 domain experts (LYL, PHL). Keywords were
manually curated through an iteratively refining process until
all issues were resolved. The full list of concepts, keywords,
modifiers, and diseases categories are listed in Textbox 1.

Figure 1. Rule system process flow. SBI: silent brain infarction; WMD: white matter disease.

Textbox 1. Silent brain infarction (SBI) and white matter disease (WMD) risk factor and indication keywords.

• Confirmation keywords—disease-finding SBI: infarct, infarcts, infarctions, infarction, lacune, lacunes

• Confirmation keywords—disease modifier SBI: acute, acute or subacute, recent, new, remote, old, chronic, prior, chronic foci of, benign, stable
small, stable

• Confirmation keywords—disease location SBI: territorial, lacunar, cerebellar, cortical, frontal, caudate, right frontoparietal lobe, right frontal
cortical, right frontal lobe, embolic, left basal ganglia lacunar, basal ganglia lacunar, left caudate and left putamen lacunar

• Confirmation keywords—disease-finding WMD: leukoaraiosis, white matter, microvascular ischemic, microvascular leukemic, microvascular
degenerative

• Exclusion WMD: degenerative changes

Machine Learning
The machine learning (ML) approach allows the system to
automatically learn robust decision rules from labeled training
data. The task was defined as a sequential sentence classification
task. We adopted Kim’s convolutional neural network (CNN)
[21] and implemented using TensorFlow 1.1.02 [22]. The model
architecture, shown in Figure 2, is a variation of the CNN
architecture of Collobert R [23].

We also adopted 3 traditional ML models—random forest [24],
support vector machine [25] and logistic regression [26]—for
baseline comparison. All models used word vector as input
representation, where each word from the input sentence is

represented as the k-dimensional word vector. The word vector
is generated from word embedding, a learned representation for
text where words that have the same meaning have a similar
representation. Suppose x1, x2, … , xn is the sequence of word
representations in a sentence where

xi = Exi, I = 1,2, …, n.

Here, Exi is the word embedding representation for word xi with
the dimensionality d. In our ML experiment, we used Wang’s
word embedding trained from Mayo Clinic clinical notes where
d=100 [27]. The embedding model is the skip-gram of
word2vec, an architecture proposed by Mikolov T [28]. Let
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xi:i+k-1 represent a window of size k in the sentence. Then the
output sequence of the convolutional layer is

coni = f(wk xi:i+k-1 + bk),

where f is a rectify linear unit function, wk and bk are the
learning parameters. Max pooling was then performed to record
the largest number from each feature map. By doing so, we
obtained fixed length global features for the whole sentence,
that is,

mk = max1≤i≤n-k+1(coni).

Then the features are fit into a fully connected layer with the
output being the final feature vector O=wmk + b. Finally, a
softmax function is utilized to make final classification decision,
that is,

p(sbi│x,θ) = e^(Osbi)/(e^(Osbi)+e^(Oother)),

where θ is a vector of the hyper parameters of the model, such
as wk, bk, w and b.

Figure 2. Convolutional neural network architecture with 2 channels for an example sentence.

Evaluation Metric
For evaluation of the quality of the annotated corpus, Cohen
kappa was calculated to measure the IAA during all phases [29].
As the primary objective of the study is case ascertainment, we
calculated the IAA at the report level.

A 2 x 2 confusion matrix was used to calculate performance
score for model evaluation: positive predictive value (PPV),
sensitivity, negative predictive value (NPV), specificity, and
accuracy using manual annotation as the gold standard. The
McNemar test was adopted to evaluate the performance
difference between the rule-based and ML models [30,31]. To
have a better understanding of the potential variation between
neuroimaging reports and neuroimages, we compared the model
with the best performance (rule-based) with neuroimaging
interpretation. A total of 12 CT images and 12 MRI images

were stratified—randomly sampled from the test set. A total of
2 attending neurologists read all 24 images and assigned the
SBI and WMD status. The cases with discrepancies were
adjudicated by the neuroradiologist (PHL) The agreement was
assessed using kappa and F-measure [32].

Results

Interannotator Agreements Across Neuroimaging
Reports
Among the total 400 double-read reports, 5 reports were
removed because of invalid scan types. The IAAs across Mayo
and Tufts neuroimaging reports were 0.87 and 0.91. Overall,
there is a high agreement between readers on both reports
(Tables 1 and 2). Age-specific prevalence of SBI and WMD is
provided in Multimedia Appendix 2.

Table 1. Interreader agreement across 207 Mayo neuroimaging reports.

Total (n=207)Magnetic resonance imaging (n=144)Computed tomography (n=63)Interannotator agreement

kappa% agreekappa% agreekappa% agree

0.8797.60.8397.20.9298.4Silent brain infarction

0.9899.00.9798.61.00100.0White matter disease

JMIR Med Inform 2019 | vol. 7 | iss. 2 | e12109 | p. 4http://medinform.jmir.org/2019/2/e12109/
(page number not for citation purposes)

Fu et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 2. Interreader agreement across 188 Tufts Medical Center neuroimaging reports.

Total (n=188)Magnetic resonance imaging (108)Computed tomography (n=80)Interannotator agreement

kappa% agreekappa% agreekappa% agree

0.9199.50.9499.10.7998.8Silent brain infarction

0.9999.50.9899.11.00100.0White matter disease

Natural Language Processing System Performance
Overall, the rule-based system yielded the best performance of
predicting SBI with an accuracy of 0.991. The CNN achieved
the best score on predicting WMD (0.994). Full results are
provided in Table 3.

According to the McNemar test, we found the difference
between rule-based system and CNN on SBI is considered to
be statistically significant (P value=.03). We found no
statistically significant difference between the rest of the models.

Table 4 lists the evaluation results of NLP and gold standard
derived from reports against the neuroimaging interpretation
for SBI and WMD. Both NLP and gold standard had
moderate-high agreements with the neuroimaging interpretation,
with kappa scores around .5. Our further analysis showed the
practice graded findings (gold standard and NLP) achieved high
precision and moderate recall scores compared with the
neuroimaging interpretation. Through the confirmation with
Mayo and TMC radiologists, we believed such discrepancy was
because of the inconsistency in documentation standards related
to clinical incidental findings, causing SBIs and WMDs
underreported.

Table 3. Performance on test dataset against human annotation as gold standard.

AccuracyNegative predictive
value

Positive predictive
value

SpecificitySensitivityEvaluation of natural language processing,
model name

Silent brain infarction (n=333)

0.9910.9901.0001.0000.925Rule-based system

0.9520.9540.9290.9930.650CNNa

0.9580.9700.8610.9830.775Logistic regression

0.9790.9771.0001.0000.825SVMb

0.9860.9831.0001.0000.875Random forest

White matter disease (n=333)

0.9280.9210.9330.9090.942Rule-based system

0.9940.9940.9940.9940.994CNN

0.8880.8770.8960.8650.906Logistic regression

0.8770.8300.9170.8940.864SVM

0.9100.9060.9130.8800.932Random forest

aCNN: convolutional neural network.
bSVM: support vector machine.

Table 4. Comparison of the neuroimaging interpretation with gold standard and natural language processing.

RecallPrecisionkappaF-measureEvaluation of natural language processing against the neuroimaging
interpretation

Silent brain infarction (n=24)

0.690.920.500.74Gold standard

0.690.920.500.74NLPa

White matter disease (n=24)

0.800.860.560.78Gold standard

0.730.850.490.74NLP

aNLP: natural language processing.
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Discussion

Machine Learning Versus Rule
In summary, the rule-based system achieved the best
performance of predicting SBI, and the CNN model yielded the
highest score of predicting WMD. When detecting SBI, the ML
models were able to achieve high specificity, NPV, and PPV
but moderate sensitivity because of the small number of positive
cases. Oversampling is a technique to adjust the class
distribution of training data to balance the ratio between positive
and negative cases [33]. This technique was applied to the
training data to help boost the signals of positive SBIs. The
performance was slightly improved but was limited by the issue
of overfitting, a situation when a model learns the training data
too well. Due to that, unnecessary details and noises in the
training data can create negative impact to the generalizability
of the model. In our case, the Mayo reports have larger language
variation (noise) because of a free style of documentation
method, whereas TMC uses a template-based documentation
method. According to the sublanguage analysis, Mayo had 212

unique expressions for describing no acute infarction, whereas
TMC had only 12. Therefore, the model trained on oversampled
data had a bias toward the expressions that only appeared in the
training set. When predicting WMD, the ML model
outperformed the rule-based model. The reason is because the
dataset for WMD is more balanced than SBI (60% positive
cases), which allows the system to equally learn from both
classes (positive and negative). The overall performance on
WMD is better than SBI because WMDs are often explicitly
documented as important findings in the neuroimaging report.

False Prediction Analysis
Coreference resolution was the major challenge to the rule-based
model for identifying SBIs. Coreference resolution is an NLP
task to determine whether 2 mentioned concepts refer to the
same real-world entity. For example, in Textbox 2, “The above
findings” refers to “where there is an associated region of
nonenhancing encephalomalacia and linear hemosiderin
disposition.” To determine if a finding is SBI positive, the
system needs to extract both concepts and detect their
coreference relationship.

Textbox 2. Example of coreference resolution.

“Scattered, nonspecific T2 foci, most prominently in the left parietal white matter <Concept 1>where there is an associated region of nonenhancing
encephalomalacia and linear hemosiderin disposition. <Concept 1/> Linear hemosiderin deposition overlying the right temporal lobe (series 9, image
16) as well. No abnormal enhancement today. <Concept 2>The above findings are nonspecific but the evolution, hemosiderin deposition, and gliosis
suggest post ischemic change. <Concept 2>”

For the ML system, the false positives from the identification
of SBIs were commonly contributed by disease locations. As
the keywords foci, right occipital lobe, right parietal lobe, right
subinsular region, and left frontal region often coexisted with
SBI expressions, the model assigned higher weights to these
concepts when the model was trained. For example, the
expression: “there are a bilateral intraparenchymal foci of
susceptibility artifact in the right occipital lobe, right parietal
lobe, right subinsular region and left frontal region” has 4
locations with no mention of “infarction” appearing in the
sentence. The ML system still predicted it as SBI positive.
Among all ML models, the CNN yielded the worse NPV, which
suggested the CNN was more likely to receive false signals
from disease locations. Our next step is to further refine the
system by increasing the volume of training size through
leveraging distant supervision to obtain additional SBI positive
cases.

Limitations
Our study has several limitations. First, despite the high
feasibility of detecting SBIs from neuroimaging reports, there
is a variation between NLP-labeled neuroimaging reports and
neuroimages. Second, the performances of the ML models are
limited by the number of annotated datasets. Additional training
data are required to have a comprehensive comparison between
the rule-based and ML systems. Third, the systems were only
evaluated using datasets from 2 sites; the generalizability of the
systems may be limited.

Conclusions
We adopted a standardized data abstraction and modeling
process to developed NLP techniques (rule-based and ML) to
detect incidental SBIs and WMDs from annotated neuroimaging
reports. Validation statistics suggested a high feasibility of
detecting SBIs and WMDs from EHRs using NLP.
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Multimedia Appendix 2
Supplementary result.
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