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Abstract

Background: Central precocious puberty (CPP) in girls seriously affects their physical and mental development in childhood.
The method of diagnosis—gonadotropin-releasing hormone (GnRH)–stimulation test or GnRH analogue (GnRHa)–stimulation
test—is expensive and makes patients uncomfortable due to the need for repeated blood sampling.

Objective: We aimed to combine multiple CPP–related features and construct machine learning models to predict response to
the GnRHa-stimulation test.

Methods: In this retrospective study, we analyzed clinical and laboratory data of 1757 girls who underwent a GnRHa test in
order to develop XGBoost and random forest classifiers for prediction of response to the GnRHa test. The local interpretable
model-agnostic explanations (LIME) algorithm was used with the black-box classifiers to increase their interpretability. We
measured sensitivity, specificity, and area under receiver operating characteristic (AUC) of the models.

Results: Both the XGBoost and random forest models achieved good performance in distinguishing between positive and
negative responses, with the AUC ranging from 0.88 to 0.90, sensitivity ranging from 77.91% to 77.94%, and specificity ranging
from 84.32% to 87.66%. Basal serum luteinizing hormone, follicle-stimulating hormone, and insulin-like growth factor-I levels
were found to be the three most important factors. In the interpretable models of LIME, the abovementioned variables made high
contributions to the prediction probability.

Conclusions: The prediction models we developed can help diagnose CPP and may be used as a prescreening tool before the
GnRHa-stimulation test.

(JMIR Med Inform 2019;7(1):e11728) doi: 10.2196/11728
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Introduction

Precocious puberty is related to the development of secondary
sexual characteristics in girls before the age of 8 years and in
boys before the age of 9 years. In recent years, the age of puberty
onset has shown a decreasing trend, and puberty is related to
subsequent health outcomes such as breast cancer, diabetes, and
behavioral disorders [1]. Central precocious puberty (CPP), also
known as true precocious puberty, is caused by early activation
of the hypothalamic-pituitary-gonadal axis with clinical pubertal
symptoms. CPP can influence final adult height and result in
psychological problems, which will cause inappropriate
behaviors. It is important for girls with suspected CPP to be
evaluated and diagnosed in a timely manner.

The gold standard in the confirmation of CPP is the positive
response of gonadotropin to a gonadotropin-releasing hormone
(GnRH)–stimulation test. In the absence of GnRH, GnRH
analogues (GnRHa) are usually used instead [2]. However, the
stimulation test is time consuming and expensive. Besides, the
test is painful and make patients uncomfortable due to the need
for repeated blood sampling at different time points. Therefore,
another method to avoid the disadvantages of the
GnRHa-stimulation test will be of great help in the diagnosis
of CPP.

Several studies have focused on investigating a single
gonadotropin biomarker to identify patients with CPP
conveniently. Basal or peak serum luteinizing hormone (LH),
follicle-stimulation hormone (FSH), and the ratio LH/FSH are
the most common biomarkers reported [3-7]. However, the
cut-off values of these single biomarkers depend on the assay
used to measure the gonadotropin levels. As a result, cut-off
points in previous studies differed widely. Moreover, both the
Pasternak group [3] and the Mogensen group [8] reported that
a single basal serum LH measurement could verify the presence
of CPP, but could not confirm the absence of CPP. Therefore,
a single gonadotropin parameter alone may not be sufficient for
the diagnosis of CPP, and clinical and laboratory factors that
can predict response to the GnRHa-stimulation test should be
combined [9,10]. Suh et al [10] found that accelerated growth
rate, advanced bone age, and increased basal gonadotropin and
insulin-like growth factor-I (IGF-I) levels were correlated with
CPP. Traditional statistical analysis including t test and binary
logistic regression were used to select factors correlated with
the GnRH test [11-14]. Although remarkable progress has been
made in these studies, there is a long way to go for their
application in clinics due to the low sensitivity or specificity of
tests.

Considering the previous studies and the extensive application
of machine learning algorithms in the medical field, we aimed
to determine whether combining multiple variables with machine
learning classifiers could improve prediction of the
GnRHa-stimulation test and thus help diagnose CPP.

Methods

Population and Variables
We enrolled 1757 girls with CPP symptoms who visited the
Pediatric Day Ward of the Endocrinology Department at
Guangzhou Women and Children’s Medical Center from
January 2012 to March 2018. All subjects had undergone the
GnRHa-stimulation test. Girls with any other disorders or
intracranial lesions were excluded from the study.

Girls fulfilling the following eligibility criteria were considered
to have a positive response to the GnRHa-stimulation test and
were diagnosed with CPP in our study: (1) peak LH level ≥ 10
IU/L or peak LH level ≥ 5 IU/L combined with a ratio of peak
LH to FSH value ≥ 0.6 and (2) onset of secondary sexual
characteristics at the age < 8 years. Girls whose laboratory tests
did not satisfy all the abovementioned criteria were considered
to have a negative response. According to the long-term clinical
practices, the first condition with a peak LH ≥ 10 IU/L is used
as the diagnosing criterion in our hospital. Peak LH level ≥ 5
IU/L combined with a ratio of peak LH to FSH value ≥ 0.6 is
widely used in China and some other countries for children
undergoing the GnRH-stimulation test [15,16]. Since the
stimulation effect of GnRHa is almost hundreds times that of
GnRH [17], a condition that affects the levels of sex hormones
due to GnRH would do the same with GnRHa. Our diagnostic
criteria are an improved version of the existing criteria that are
adapted to our population.

Information such as chief complaints, development of secondary
sexual characters, and abnormal duration of puberty were stored
as free text in the clinical records of the electronic medical
records system. Laboratory test values were reported as
structured data in the laboratory information system. In total,
19 variables were extracted from the clinical records and
laboratory results for all the 1757 patients. Specifically, 10
variables extracted from the clinical records were weight, height,
body mass index (BMI), abnormal duration of puberty in records
(History), menarche, core in breast (Core), pigmentation,
development stage of pubes (Pubes), development stage of left
breast, and development stage of right breast. Breast and pubic
hair development were evaluated using Tanner staging (stages
1 to 5). Nine variables extracted from the laboratory results
were age, basal serum LH, FSH, estradiol, prolactin,
testosterone, growth hormone, IGF-I, IGF-binding protein-3
levels before the GnRHa test.

Among the 1757 patients, 436 girls had examination reports
available, including pelvic ultrasonography (for development
of the uterus and ovaries) and radiography of the left hand (for
bone age). Six variables extracted from the examination reports
were development of uterus, existence of follicle, uterine
volume, left and right ovary volumes, and bone age. Bone age
was measured by the Greulich and Pyle method [18]. The
variables from the clinical records and the examination reports
were extracted first with traditional regex match using Python
[19] and then examined manually by two endocrinologists.

This study was approved by the Institutional Review Board of
Guangzhou Women and Children’s Medical Center and

JMIR Med Inform 2019 | vol. 7 | iss. 1 | e11728 | p. 2http://medinform.jmir.org/2019/1/e11728/
(page number not for citation purposes)

Pan et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


conducted in accordance with the ethical guidelines of the
Declaration of Helsinki of the World Medical Association. The
requirement to obtain informed consent was waived because of
the retrospective nature of the study. Data used in this study
were anonymous, and no identifiable personal data of the
patients were available for the analysis.

Data Preprocessing
Variables with more than 20% missing data, such as growth
rate of height and weight and heights of parents, were excluded
from this study. Missing values for continuous variables were
replaced with mean values of all the samples grouped by age.
Discrete variables like experience of menarche were filled with
a value of 0. Discrete variables like Tanner stage for breast and
pubes were filled with the least degree (stage 1).

Model Development and Assessment
Tree learning classifiers allow nonlinear interactions between
features and have good interpretability. Considering this, we
selected two tree-based ensemble binary classification
algorithms—extreme gradient boosting (XGBoost) and random
forest—to develop our models. We also used linear supported
vector machines (SVM) and decision trees for the classification
to compare the performance between ensemble models and
nonensemble models. The models aimed to identify relationships
between the input features and the output GnRHa test results,
thereby determining whether a patient responds positively to
the GnRHa test.

XGBoost is a scalable tree boosting and effective learning
algorithm [20]. It trains a sequence of models to minimize errors
made by existing models. Models in XGBoost are decision trees.
Many data scientists have applied this algorithm to solve
classification problems and achieved excellent results. XGBoost
has also been successfully used in medical studies [21,22]. As
XGBoost is essentially a gradient boosting tree model, which
is not based on distance, normalization is not required. Random
forest is another classical ensemble learning algorithm with a
combination of a large amount of trees [23], which trains
decision trees in parallel by using data with replacement. It
applies bootstrap aggregating to tree learners, which leads to
better performance as variance decreases. Random forest has
the ability to handle nonlinear data and is robust to noise.
Besides, parameter tuning is not that complex for these two
algorithms compared to other ensemble learning algorithms.
SVM is a binary classifier with a maximum margin hyperplane
[24]. The decision tree classifier is a tree-like model used for
classification [25].

In order to obtain robust assessments and prevent overfitting,
we used a nested cross-validation with an outer Monte Carlo
cross-validation [26] (MCCV, repeated 20 times) and an inner
k-fold cross-validation (k=5) for parameter tuning, yielding a
total of 20 times the five-fold cross-validation. In the outer
MCCV loop, the whole data set is randomly divided into the
training set (80%) and the test set (20%) for 20 times. For each
training set, the inner stratified five-fold cross-validation loop
is performed as follows. The training set is split into five subsets,
where four subsets are used for training and one is used for test.
Parameter tuning is performed with grid search in the inner

cross-validation. Finally, a model fitted on the training set with
parameters that has the best area under the curve (AUC)
evaluated on the inner test set is determined. The detailed
training and test process is presented in Figure 1.

Feature Importance
XGBoost and random forest classifier have the ability to
evaluate the importance of features. Feature importance is a
feature weight and can represent the contribution to prediction.
In XGBoost, feature importance is computed by the sum of
times that the feature is selected as a tree node. In random forest,
feature importance is calculated based on the out-of-bag (OOB)
error. OOB error is the mean prediction error for training
observations in the respective bootstrap sample. After randomly
adding noise perturbations to OOB samples, a feature with a
higher OOB error difference is more important, with higher
feature importance. For both models, each feature obtained 20
feature importance values with 20 times the MCCV. We
summed all the feature importance values for each feature and
obtained a rank for all features.

Model Interpretation
One disadvantage of machine learning is that the model usually
runs as a black box. However, it is necessary for a doctor to
understand the reasons why a model makes such a prediction
in the clinic, especially when timely detection is necessary.
Tree-based models can provide feature importance at a global
level but not in a specific case. The local interpretable
model-agnostic explanations (LIME) algorithm is developed to
identify an interpretable model that is locally faithful for each
individual prediction [27,28]. It provides relative feature
contributions for a single instance of the prediction result. LIME
generates neighborhood data by randomly perturbing features
from the instance. It then learns locally weighted linear models
on this neighborhood data to explain each of the classes in an
interpretable way. Parameters in LIME mainly include the
maximum number of features in explanation, number of
neighborhood samples to generate, and machine learning
prediction function. We used the LIME library from the original
authors for the model interpretation. The number of
neighborhood samples is 5000 by default. The parameter
num_features (maximum number of features) is the number of
features shown in the explanation. The default value is 10. In
our study, the value was 9 for a clear layout, as the contributions
of features ranked after 9 were almost zero.

In our study, we used a submodular pick [27] instead of a
random pick to select a diverse, representative set of samples
from the test set for nonredundant explanations. For these
samples, we then obtained the class probabilities, and the
representative individuals were assigned with and average
weight contributed by each feature to display how the classifier
made a decision. Finally, we went over all these LIME results
together with the endocrinologists to decide whether we should
trust the results of the model.

All computation and visualization were performed in Python
[19] using packages like Scikit-learn, Pandas, Lime, and
Matplotlib.
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Figure 1. Training and validation process of prediction models. AUC: area under receiver operating characteristic; XGBoost: extreme gradient boosting.

Results

Subject Characteristics
Among the 1757 girls included in our study, 966 were positive
for the GnRHa-stimulation test and diagnosed with CPP; the
remaining 791 girls showed a negative response to the test. As
shown in Table 1, 16 of the 19 variables were significantly
higher in the CPP group than in the non-CPP group (P<.05),
whereas prolactin, BMI, and pigmentation were similar in both
groups.

Evaluation for Models
First, we developed prediction models with the data of 19
clinical and laboratory variables (Table 1) from all 1757 patients.

Two machine learning algorithms, XGBoost and random forest
classifiers, were used, and parameters with the best AUC were
selected for each model. The performance as well as the selected
parameters of the models are listed in Table 2, and their receiver
operating characteristic (ROC) curves are plotted in Figure 2.
The performance was evaluated on the 20 test sets split with
MCCV. Both models had strong prediction powers, with a
specificity of ≥84.32%, a sensitivity of ≥77.91%, and an AUC
of ≥0.88. The XGBoost classifier is slightly more effective than
the random forest classifier, especially in terms of the specificity
(P<.01), whereas random forest is much more efficient in terms
of the computation speed with less model complexity.
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Table 1. Basic characteristics of girls who underwent the GnRHa-stimulation test.

P valuebCPP (n=791), mean (SD)Non-CPPa (n=966), mean (SD)Variables

<.0017.52 (0.99)7.07 (1.11)Age (years)

<.0010.93 (1.28)0.12 (0.23)LHc (IU/L)

<.0013.01 (1.62)1.82 (1.30)FSHd (IU/L)

<.0014.75 (4.69)3.27 (3.26)GHe (ng/mL)

<.001317.87 (89.84)231.35 (65.93)IGF-If (ng/mL)

<.0014.81 (0.55)4.55 (0.52)IGFBP-3g (μg/mL)

<.001125.81 (60.97)102.56 (50.96)Estradiol (pmol/L)

.528.59 (5.61)8.73 (5.39)Prolactin (ng/mL)

<.0010.94 (0.49)0.80 (0.39)Testosterone (nmol/L)

<.0019.27 (9.63)7.67 (10.39)Historyh (months)

.03N/AN/AiMenstruation/menarche (yes, no)

<.001131.61 (8.42)127.16 (8.61)Heightj (cm)

<.00129.60 (4.95)27.32 (5.32)Weightj (kg)

.3416.91 (1.96)16.73 (2.30)BMIk (kg/m2)

.02N/AN/ABreast core (yes, no)

<.0011.14 (0.44)1.06 (0.27)Pubesl (1-5)

.87N/AN/APigmentation (yes, no)

<.0012.76 (0.92)2.33 (0.84)Left breastl (1-5)

<.0012.78 (0.92)2.32 (0.84)Right breastl (1-5)

aCPP: central precocious puberty.
bThe equality of each indicator was evaluated by Chi-square or Student  t test. P<.05 was considered significant.
cLH: luteinizing hormone.
dFSH: follicle-stimulation hormone.
eGH: growth hormone.
fIGF-I: insulin-like growth factor-I.
gIGFBP-3: insulin-like growth factor binding protein-3.
hAbnormal duration in records.
iN/A: not applicable.
jAt stimulation test.
kBMI: body mass index.
lTanner stage.
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Table 2. Predictive performance of classifiers and the corresponding parameters. A paired t test was performed on specificity and sensitivity for
comparison against XGBoost.

ParametersAUCc,

mean (SD)

Sensitivityb (%),

mean (SD)

Specificitya (%),

mean (SD)

Algorithms/Variables

19 variables, 1757 patients

Learning rate=0.01, max depth=3, number of trees=5000.89 (0.02)77.94 (3.50)85.39 (1.38)XGBoostd

Max depth=3, criterion=gini, number of trees=200.88 (0.02)77.91 (3.59)f84.32 (1.88)eRandom forest

Kernel=linear, penalty coefficient=50.86 (0.04)62.36 (4.12)e88.94 (1.76)eSVMg

Criterion=entropy0.74 (0.02)71.71 (3.99)e75.90 (2.47)eDecision tree

19 variables, 436 patients

Learning rate=0.01, max depth=3, number of trees=5000.86 (0.04)75.28 (6.43)83.17 (5.29)XGBoost

Max depth=3, criterion=gini, number of trees=200.85 (0.04)74.72 (6.43)f83.46 (6.28)fRandom forest

Kernel=linear, penalty coefficient=50.86 (0.02)62.36 (7.73)e88.94 (4.90)eSVM

Criterion=entropy0.72 (0.04)68.06 (7.12)e76.25 (7.07)eDecision tree

25 variables, 436 patients

Learning rate=0.01, max depth=4, number of trees=5000.90 (0.04)76.64 (6.51)87.66 (5.52)XGBoostd

Max depth=3, criterion=entropy, number of trees=200.90 (0.05)75.03 (7.91)f87.41 (4.22)fRandom forest

Kernel=linear, penalty coefficient=50.86 (0.02)66.53 (7.01)e89.81 (4.28)fSVM

Criterion=entropy0.72 (0.05)68.61 (7.16)e76.35 (5.51)eDecision tree

1-3 variables, 1757 patients, XGBoostd

Learning rate=0.01, max depth=3, number of trees=5000.86 (0.02)76.39 (3.57)83.17 (1.62)LHh, IGF-Ii, FSHj

Learning rate=0.01, max depth=3, number of trees=5000.86 (0.02)75.69 (3.61)83.27 (1.62)LHh, IGF-Ii

Learning rate=0.01, max depth=3, number of trees=5000.84 (0.02)75.83 (3.13)83.56 (1.94)LHh, FSHj

Learning rate=0.01, max depth=3, number of trees=5000.84 (0.02)75.97 (3.74)83.37 (2.00)LHh

Learning rate=0.01, max depth=3, number of trees=5000.77 (0.02)57.08 (3.29)80.77 (2.47)IGF-Ii, FSHj

Learning rate=0.01, max depth=3, number of trees=5000.73 (0.02)53.19 (4.55)80.19 (3.14)IGF-Ii

Learning rate=0.01, max depth=3, number of trees=5000.68 (0.02)45.00 (5.34)84.13 (3.87)FSHj

aSpecificity=number of true negatives/(number of true negatives+number of false positives).
bSensitivity=number of true positives/(number of true positives+number of false negatives).
cAUC, area under the receiver operating curve.
dXGBoost: extreme gradient boosting.
eP<.01
fNot significant.
gSVM: supported vector machines.
hLH: luteinizing hormone.
iIGF-I: insulin-like growth factor-I.
jFSH: follicle-stimulation hormone.

In the data set, 436 girls had additional examination reports,
and we extracted six variables from these reports (see Population
and Variables subsection). To investigate whether adding image
features could enhance the prediction efficiency, we combined
the six variables with the 19 variables and trained and evaluated
both the XGBoost and random forest models on the 436 samples,
of which 180 patients belonged to the CPP group and 256

belonged to the non-CPP group. For the ease of comparison,
we retrained the previous 19-variable models with the 436
samples. As shown in Table 2, the reduction in sample size led
to a serious decline in model performance, whereas the addition
of six image features improved their performance. Specifically,
for XGBoost in 436 samples, the specificity increased from
83.17% for 19 variables to 87.66% for 25 variables, the
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sensitivity increased from 75.28% to 76.64%, and the AUC
increased from 0.86 to 0.90. For random forest in 436 samples
with 25 variables, the specificity increased from 83.46% to
87.41%, the sensitivity increased from 74.72% to 75.03%, and
the AUC increased from 0.86 to 0.90 compared to the results
from 436 samples with 19 variables. Similarly, as seen in the
ROC curves shown in Figure 2, XGBoost performed slightly
better than the random forest classifier.

To compare performance between ensemble models and
nonensemble models, the SVM and decision tree classifiers
were used to develop predictive models for the abovementioned
settings. Higher specificities were achieved with the SVM
models. However, sensitivities for the SVM models were much
lower than those for the ensembles models. The decision tree
models demonstrated significantly inferior performance in terms
of almost all the sensitivities, specificities, and AUCs. These
results suggest that the ensemble models are able to yield
excellent performance while maintaining a good balance
between sensitivity and specificity in the prediction of CPP.

Feature Importance
We computed the feature importance score for all the 19
variables to identify important features used by the models. The

importance of each feature calculated by the models is plotted
in Figure 3. In both models, the most important predictive
variable was LH level, followed by IGF-I and FSH levels. The
fourth most important feature for the random forest model was
height, which ranked fifth in the XGBoost model. Prolactin is
the fourth most important feature of XGBoost, but it contributed
only a little to random forest. These data suggest that different
machine learning algorithms attach importance to different
combination lists of variables, although they yield similar
predictive performance.

In order to further verify the importance of the top 3 features,
we constructed XGBoost models with these features individually
or in combination (Table 2). As expected, the models using one,
two, or three features had poorer performances than the models
using all features. The results showed that the higher the feature
ranked, the better the corresponding model performed.
Interestingly, LH alone or together with IGF-I and FSH is
sufficient to predict a response to the GnRHa test with a fairly
good performance and an AUC between 0.84 and 0.86. These
data support the results from the feature importance calculations.

Figure 2. ROC curves for classifiers with 19 variables for 1757 patients and 25 variables for 436 patients. ROC: receiver operating curve; AUC: area
under ROC.
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Figure 3. Feature importance ranking for 19 variables in two classifiers calculated by the models. LH: luteinizing hormone; IGF-I: insulin-like growth
factor-I; FSH: follicle-stimulation hormone; PRL: prolactin; GH: growth hormone; E2: estradiol; BMI: body mass index; TTE: testosterone; Rbreast:
right breast; Lbreast: left breast; IGFBP-3: insulin-like growth factor binding protein-3; PMT: pigmentation; MST: menstruation.

Local Interpretable Model-Agnostic Explanations for
Interpretation
A representative set of 200 samples, which accounted for more
than 50% of the test set and were enough to be the budget size
of individual instances to understand a model, were selected
with the submodular pick method [27] for the 19-variable
models. LIME was then applied to investigate feature
contributions for each prediction. Results with top 9 features
are presented in Figure 4 for one positive sample and one
negative sample (more representative samples can be seen in
Multimedia Appendix 1). In Figure 4, XGBoost predicts an

instance where CPP positively responds to the GnRHa test with
a probability of 90%. Only the feature growth hormone supports
the negative prediction, whereas LH, prolactin, IGF-I, and
information about body development support the positive
prediction. This makes sense in the clinical diagnosis of CPP
and reveals that we can trust our prediction models to a certain
extent. In Figure 4, left and right breast at Tanner stage 3, FSH
level > 2 IU/L, and several other features support the positive
prediction with a probability of 16%. LH level of 0.07 IU/L,
prolactin level > 9.53 ng/mL, IGF-I level > 220 ng/mL, and age
< 7 years contribute to the negative prediction with a probability
of 84%. Similar results are observed in Figure 4.
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Figure 4. Results of LIME with XGBoost and Random Forest classifiers applied to one positive (A, B) and one negative (C, D) instance. The left sides
are for XGBoost, and the right for Random Forest. Blue color is for the negative instance and orange is for the positive instance. The first column
represents the prediction probabilities of negative and positive results achieved from classifiers. The second column shows the features’ contributions
to the probability. Only the top nine features are displayed for clarity. The third column displays the original data values. LIME: local interpretable
model-agnostic explanations; XGBoost: extreme gradient boosting; LH: luteinizing hormone; IGF-I: insulin-like growth factor-I; FSH: follicle-stimulation
hormone; PRL: prolactin; GH: growth hormone; E2: estradiol; BMI: body mass index; TTE: testosterone; Rbreast: right breast; Lbreast: left breast;
IGFBP-3: insulin-like growth factor binding protein-3; PMT: pigmentation; MST: menstruation; PMT: pigmentation.

Discussion

Overview
CPP mimics pubertal development ahead of time at an
inappropriate chronological age. It requires timely detection
and treatment in case of physical and physiological effect on
girls. The GnRHa-stimulation test is expensive and time
consuming and causes discomfort to patients. Here, we applied
machine learning algorithms to multiple clinical variables and
built two tree-based ensemble learning classifiers for the
prediction of response to the GnRHa-stimulation test. Both the
XGBoost and random forest models achieved good performance
in distinguishing between positive and negative responses, with
the AUC ranging from 0.88 to 0.90, the sensitivity ranging from
77.91% to 77.94%, and the specificity ranging from 84.32% to
87.66%.

Comparisons with Previous Models
Several previous models focused on determining optimal blood
sampling time points or appropriate cut-off values to simplify
the stimulation test. Kandemir et al [29] found that a single
sample of LH tested at the 40th minute after stimulation with
a cut-off of 5 IU/L could yield 98% sensitivity and 100%
specificity in the diagnosis of CPP. Yazdani et al [30] showed
that an LH concentration > 5 IU/L at 3 hours has optimal
sensitivity (83%) and specificity (97%). In the study of Çatlı et
al [7], 100% sensitivity and 84% specificity were obtained using
a cut-off value > 0.24 for peak LH/FSH ratio in girls. Although
these models performed better than our models, they had to be
used after stimulation and therefore could not avoid the
disadvantages of the GnRH/GnRHa test completely.

Some models used only the basal sex hormone level. Yazdani
et al [30] found that a basal LH level of >0.1 IU/L, a basal
LH/FSH ratio >1, and basal estradiol level ≥1.5 ng/dL in girls

have low sensitivity (10%-67%) but excellent specificity
(94%-100%). Çatlı et al [7] also reported models with the basal
FSH or LH levels and achieved a sensitivity of 71% and a
specificity of 68% or 64%. Pasternak et al [3] reported that basal
LH levels ≤ 0.1 IU/L were sufficient to rule out positive response
to the GnRH test with a specificity of 94% but a sensitivity of
only 64% in girls. In another model [4], the basal LH level with
a cut-off value of 0.35 IU/L was associated with a sensitivity
of 63.96% and a specificity of 76.3% based on the ROC with
an AUC of 0.77. These results varied a lot due to the different
settings and sample sizes. In this study, our models showed
better performance with more features before stimulation and
a larger homogeneous population, which is the largest population
in such a study to our knowledge.

Predictive Features
Based on our machine learning models, basal LH, IGF-I, and
FSH levels are predictive factors with top ranks for the feature
importance in both models. Previous studies have demonstrated
that the measurement of LH could be better than that of other
sex hormones for initial evaluation of suspected puberty [3,8].
In our study, the LH level ranked first and was much more
important than other variables. Besides LH, another indicator
monitored in the stimulation test, FSH, was also selected by the
models as the third most–important variable. Obviously, LH
and FSH are important to CPP because they are biomarkers of
the hypothalamic-pituitary-gonadal axis activation, which is
the essence of CPP. IGF-I, which is the second most important
variable in our models, is reportedly involved in GnRH
regulation [31,32] and is increasingly expressed in girls with
CPP [9,5]. Animal studies showed that the IGF-I signaling
pathways play important roles in the timing of puberty in girls
[32]. Although IGF-I has not been considered in previous
models, our study suggests that IGF-I may be a valuable marker
for diagnosing CPP.
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Several studies [12,33,34] suggested that image reports like
pelvic ultrasound and radiography of the hand have adjunct
diagnostic values in CPP diagnosis but provide no reliable
differentiation alone. Here, we found that adding features from
the image reports improved the prediction results. Performance
of models built based on 1757 samples was better than that
based on 436 samples, suggesting a sample size effect.
Interestingly, in the case of 436 samples with additional six
image variables, the aforementioned sample size effect was
balanced. This suggests that more samples with image features
will produce better results. Thus, medical image examinations
like bone age radiography should be considered before the
GnRHa-stimulation test for girls with suspected CPP.

Interpretations of Models
We noticed that more variables were assigned with a moderate
value of feature importance in the XGBoost model than those
in the random forest model. This is reasonable when considering
the different algorithms the two models used for prediction and
importance evaluation. In XGBoost, trees are sequentially built
in a boosting manner to enhance the overall performance. The
estimates of feature importance are provided explicitly with the
frequency that the feature is selected as a tree node from a
trained predictive model. In contrast, trees are trained parallelly
in a bootstrapping way in random forest to vote for the final
decision. The feature importance is estimated implicitly through
permuting the feature’s values and calculating the change of
the model’s prediction error. Obviously, XGBoost includes each
contribution of each feature to each tree into the feature
importance, whereas random forest only evaluates each feature
globally without specific contributions. It should be noted that
different combinations of variables may produce models with
similar predictive accuracy, relating to the uncertainty analysis
of the solutions in any decision-making problem [35-37]. This
is not rare in machine learning models in medicine [38-40].
Moreover, the most important features in the clinic such as basal
LH, IGF-I, and FSH levels were all sorted out by both models,
demonstrating that they are both reliable and effective in
predicting response to the GnRHa test.

In order to provide endocrinology physicians a trustworthy
insight into the prediction models, we also used LIME to show
each feature’s contribution to predicting probabilities reasonably.
The most important features used by the models for individual
prediction have been proven to be significant in the clinic
[3-5,7,9,10], demonstrating that our models are credible. This
will greatly increase the interpretability of the machine learning
models and make it convenient for individualized diagnosis in
the clinic.

Limitations
There are some limitations to this study. First, growth velocity
is specially related to physical development. Due to the lack of
height growth rate and weight growth rate, we did not include
growth velocity in our feature set. For further research, we will
focus more on medical imaging and growth velocity to identify
their diagnostic value with CPP. Second, our work included
only girls with suspected CPP from a single center in China.
The prediction models in this study may not be suitable for the
population in other districts or countries. Third, manual
inspection of values extracted through regular expression
matching from free text could reduce errors to improve the
model performance. However, this adds a considerable amount
of work and thus reduces the scalability of the model. We are
improving the matching algorithm with the manually inspected
data to increase the level of model automation. Finally, features
generated from laboratory results are more complete than those
extracted from free text, which may affect the rank of feature
importance. More efforts are required to enhance the data quality
of unstructured features in the future.

Conclusions
Our study is the first one to apply both machine learning
algorithms and the explanation method to the diagnosis of CPP.
Our models can predict the response to the stimulation test
before injection of GnRHa in girls who are suspected of having
CPP and thus may be used as a prescreening tool to help
physicians make decisions in conjunction with the
GnRHa-stimulation test.
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LH: luteinizing hormone 
LIME: local interpretable model-agnostic explanations
MCCV: Monte Carlo cross-validation 
OOB: out-of-bag 
ROC:  receiver operating characteristic
SVM: supported vector machines 
XGBoost: extreme gradient boosting 
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