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Abstract

Background: The data missing from patient profiles in intensive care units (ICUs) are substantial and unavoidable. However,
this incompleteness is not always random or because of imperfections in the data collection process.

Objective: This study aimed to investigate the potential hidden information in data missing from electronic health records
(EHRs) in an ICU and examine whether the presence or missingness of a variable itself can convey information about the patient
health status.

Methods: Daily retrieval of laboratory test (LT) measurements from the Medical Information Mart for Intensive Care III database
was set as our reference for defining complete patient profiles. Missingness indicators were introduced as a way of representing
presence or absence of the LTs in a patient profile. Thereafter, various feature selection methods (filter and embedded feature
selection methods) were used to examine the predictive power of missingness indicators. Finally, a set of well-known prediction
models (logistic regression [LR], decision tree, and random forest) were used to evaluate whether the absence status itself of a
variable recording can provide predictive power. We also examined the utility of missingness indicators in improving predictive
performance when used with observed laboratory measurements as model input. The outcome of interest was in-hospital mortality
and mortality at 30 days after ICU discharge.

Results: Regardless of mortality type or ICU day, more than 40% of the predictors selected by feature selection methods were
missingness indicators. Notably, employing missingness indicators as the only predictors achieved reasonable mortality prediction
on all days and for all mortality types (for instance, in 30-day mortality prediction with LR, we achieved area under the curve of
the receiver operating characteristic [AUROC] of 0.6836±0.012). Including indicators with observed measurements in the
prediction models also improved the AUROC; the maximum improvement was 0.0426. Indicators also improved the AUROC
for Simplified Acute Physiology Score II model—a well-known ICU severity of illness score—confirming the additive information
of the indicators (AUROC of 0.8045±0.0109 for 30-day mortality prediction for LR).

Conclusions: Our study demonstrated that the presence or absence of LT measurements is informative and can be considered
a potential predictor of in-hospital and 30-day mortality. The comparative analysis of prediction models also showed statistically
significant prediction improvement when indicators were included. Moreover, missing data might reflect the opinions of examining
clinicians. Therefore, the absence of measurements can be informative in ICUs and has predictive power beyond the measured
data themselves. This initial case study shows promise for more in-depth analysis of missing data and its informativeness in ICUs.
Future studies are needed to generalize these results.
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Introduction

Background
The increased adoption of electronic health record (EHR)
systems has boosted interest in the secondary use of EHR data
[1]. Although the literature has introduced various dimensions
for EHR data quality, completeness and correctness have been
reported as the fundamental dimensions [1,2]. Although these
issues can also be observed in paper-based records, EHR brought
us the opportunity to identify them faster and helped us with
addressing them. The data missing from clinical contexts are
substantial [3,4] and unavoidable [5]; many studies have focused
on resolving this issue [6-8]. Although many researchers treat
missing data as a challenge [9-18], others continue to debate
whether lack of completeness also provides useful information
[4,19-21]. Researchers do agree that a part of this
incompleteness is not random or because of imperfections in
the data collection process [21,22]. Recently, Angiel et al [21]
demonstrated that the laboratory ordering time (ie, the interval
between 2 orders of a laboratory test; LT) for some LT is more
informative than the actual values in predicting 3-year survival.
Our study focuses on systematically investigating the
implications or possible value of lack of data, particularly in
intensive care units (ICUs) and proposes a representation method
for missing data to capture hidden information. In general, 2
reasons are given for missing data in EHRs:

• No intention to collect: the clinical variable was never
measured because there was no clinical indication to do
so—the patient was not suffering from a relevant symptom
or comorbidity [4] or it could not be measured [19].

• Intention to collect: records are missing although the
variables were measured [4].

Therefore, the health care process (eg, clinicians’ decision to
order a test and nurse data entry) affects the recorded EHR and
can cause incompleteness in data.

Incomplete EHR data can complicate or prohibit the data
analysis process, as many machine learning (ML) algorithms
assume that there are no missing data in the dataset or require
users to clean the data in the preprocessing stage and so provide
a complete dataset. Therefore, from a research perspective, the
ideal situation is to increase the amount and accuracy of EHR
documentation by employing approaches that focus on intention
to collect such as reducing the error in data entry or increasing
data documentation in terms of resolution. Although the current
amount of testing and bloodwork has been reported as actually
redundant in ICUs [23-25] and requires extra time and work
from clinicians [4], these approaches suffer from their own
shortcomings. Besides analytical methods that can handle
missing data (that are missing at random) such as decision trees
(DTs) or mixed-effects models for longitudinal data, other
approaches usually assume missing data are missing completely
at random. In general, the literature proposes 3 analytical

approaches: complete case analysis (CCA) or deletion, available
case analysis (ACA), and imputation.

CCA starts with the list of variables included in the analysis
and discards records with missing data on any of the variables.
However, this subsample might not be a random sample of the
population. Although researchers argue that sample selection
based on the predefined eligibility criteria in randomized clinical
trials can limit the external generalizability of these studies [26],
CCA in studies using EHR data can also potentially threaten
the external validity of a study [19] and cause bias as the
literature shows a statistically significant relationship between
severity of illness and data completeness [20]. A study [19] on
10,000 EHRs from patients receiving anesthetic service showed
that patients with an anesthesiologists physical status (ASA)
[27] class-4 fitness rating had 5.05 more days with laboratory
results and 6.85 more days with medication orders than patients
with ASA class 1, suggesting more data are recorded for sicker
patients than healthier patients. Thus, imposing complete case
requirements when using EHR data for secondary use can cause
bias toward selecting patients with more severe conditions (or
several comorbidities). Despite this drawback, CCA has been
identified as the leading approach in studies on ICU data [28].
That said, CCA provides valid inference only when data are
missing completely at random (MCAR), which is unlikely in
practice [29].

The ACA (or pairwise deletion) uses all available data for a
given analysis. In other words, it maximizes the availability of
data by an analysis-by-analysis basis [30]. The advantage of
this method is that more data are included in each analysis than
with CCA. It also allows for valid inference by likelihood-based
models when missing data are ignorable—often the case when
the data are missing at random (MAR) [29]. Although ACA is
an improvement to CCA [30], it also has limitations. As different
samples are being used in each analysis, not only is comparison
of various analyses impossible [31] but also using different
samples for estimating the parameters of interest has
occasionally led to biased or mathematically inconsistent results
[32-34].

Imputation methods, which try to draw inferences from
incomplete data, rely on knowing the mechanism of missingness,
which cannot be validated from the available data. Single
imputation methods suffer from 2 problems. First, an inference
based on imputed data can be biased if the underlying
assumptions are not valid. Second, because imputed data are
assumed to be true, the model’s statistical precision is overstated.
Multiple imputation methods, in spite of their promising
performance, rely on parametric assumptions that, if not valid,
can lead to incorrect imputation. Due to these limitations,
imputation methods should be used with caution and checking
underlying assumptions with clinicians is highly recommended
[5]. However, Gorelick [35], in a simulation study, demonstrated
that either CCA or imputation could cause bias in predictive
modeling, and that assuming missing values to be normal when
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missingness rates are high and substituting them with normal
values would also cause substantial bias. In brief, if primary
assumptions are not fully satisfied, neither considering complete
or available cases nor imputating missing data is likely to yield
reliable results. Furthermore, these statistical methods on their
own are not sufficient to capture the hidden information about
the patient health status and care process in the complex EHR
data. Alternatively, we can try to learn from what is missing
rather than only dealing with missingness as a deficiency.

Objectives
This case study provides evidence that missing data in ICU
might be missing because of the patient’s health status or health
care process and introduces a new method for representing
patient profiles. In this representation, auxiliary variables, called
indicators, are used to represent the presence or absence of a
measurement and might convey the possible hidden information
in the missing data. Then, by employing various analytical
methods, this study attempts to demonstrate the informativeness
of missing data. In the rest of the study, the term missing data
is used to describe not-at-random missing information in patient
profiles. In other words, the potential informativeness of data
that has not been recorded by choice is of interest.

Methods

Measurement Protocol and Data Collection
As patient monitoring strongly relies on clinical needs, no
universal standards for ICU data completeness have been
established [36-38]. However, a study by Frassica in 2005 [39]
published a list of the top 80% of LTs common to all ICU
patients within a university teaching hospital. We revised this

list based on the presence of these tests in our database and
updated it with input from an ICU clinician to reflect current
practices (Textbox 1).

The data for this study were collected from the Medical
Information Mart for Intensive Care III (MIMIC-III) [40]
database which contains data from 38,597 distinct adult patients
admitted to the Beth Israel Deaconess Medical Center in Boston,
Massachusetts, between 2001 and 2012. For patient cohort
selection, a tailored version of the generalized cohort selection
heuristics for retrospective EHR studies introduced by Harrell
et al [41] was used. The data for first admission to 1 of the 5
ICUs—medical ICU, surgical ICU, cardiac care unit, cardiac
surgery recovery unit, and trauma surgical ICU—were extracted
for adult patients (aged 15 years or older). Included patients
must have had at least one data point in any of the variable
categories during the first, second, and third days of their ICU
stay.

Data Preprocessing and Missing Data Representation
Each day’s extracted data were mapped into a matrix with
columns for measurements and rows for patients. Therefore,
we had a column for each daily measurement of LTs, resulting
in 36 columns for LTs. An auxiliary matrix was generated to
store binary values reflecting the presence (0) or absence (1) of
measurements. As many well-performing ML algorithms are
designed to work with a complete data matrix, 2
methods—predictive mean matching (PMM) [42] and hot deck
(HD)—were used to impute missing values. PMM is a
commonly used and well-accepted imputation method in public
health research [43] and is also robust against model
misspecification [44]. HD imputation is used commonly in
applied data analysis when missing data exist [45].

Textbox 1. A total of 36 laboratory tests used in investigating informativeness of missing data.

Variable category and variables

Top 80% laboratory tests and profiles common to all intensive care units [39] reviewed and revised by domain expert

• Alanine aminotransferase (ALT)

• Alkaline phosphatase (ALK)

• Aspartate aminotransferase (AST)

• Arterial blood gases: pH, partial pressure of carbon dioxide (PCO2), and partial pressure of oxygen (PO2)

• Base excess (BE)

• Basic metabolic panel: sodium (Na), potassium (K), chloride (Cl), bicarbonate (HCO3), anion gap (AG), blood glucose (BG), blood urea nitrogen
(BUN), and creatinine (Cr)

• Complete blood count: white blood cells (WBCs), red blood cells (RBCs), hemoglobin (HGB), hematocrit (HCT), mean corpuscular volume
(MCV), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), red cell distribution width (RDW), platelet
count (PLT), absolute monocytes (MO), absolute eosinophils (EO), absolute basophils (BA), absolute lymphocytes (LY), and absolute neutrophils
(NE)

• Lactate (Lac)

• Calcium (Ca)

• Magnesium (Mg)

• Phosphate (Phos)

• Partial thromboplastin time (PTT)

• Prothrombin time (PT)

• Total bilirubin (TBil)
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Given that imputed values are indistinguishable to the ML
algorithm from true values, we combined the original matrix
and auxiliary matrix to form an augmented matrix that directly
indicates where values were imputed. This was done to mitigate
the risk of treating imputed values the same as actual values, in
a setting where the underlying reason for missing data is not
fully known (Figure 1). Missing data indicators in this
augmented matrix might also provide extra information about
the reliability of the values (actual and imputed values) and
potentially preserve any meaningful missing data patterns.
Missingness indicators have been used as a method of handling
missing data in epidemiological and clinical studies. However,
in the current use of indicators, missing values are set to a fixed

value (0 or the normal value for the variable) and the indicators
are used as dummy variables in analytical models to indicate
that a value was missing [46,47]. Studies have shown that this
method causes bias as the missing values are imputed with a
single value [48]. In our study, we are not using indicators as
dummy variables; instead, we are introducing them as a source
of information to be used besides imputation methods.

Validation
Several validation techniques are available in medical research.
In this study, for all experiments where applicable, we used
cross-validation technique (10-fold cross-validation). We also
repeated the cross-validation procedure several times (20 times)
to acquire more stable results as suggested in the literature [49].

Figure 1. An example of the augmented data matrix, the imputed data matrix (imputed values are underlined and italicized), and the auxiliary matrix
(containing the missingness indicators: 0-present, 1-absent).
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Assessments

Exploratory Analysis
First, the trends of missingness among LTs were visualized for
comparison. Afterward, pairwise correlation among indicators,
using Phi coefficient, was done to explore the general behavior
of missingness. The Elixhauser [50] and the Charlson [51]
comorbidity indices are the most common comorbidity scores
in clinical applications. The literature has shown that the
Elixhauser Comorbidity Index (ECI) in general has the best
performance [52-55]. This better performance can be the result
of (1) including new comorbidities in ECI, (2) the differences
in the coding of variables common between both indices, or (3)
a combination of the first and second factors [53]. The
Simplified Acute Physiology Score II (SAPS-II) [56] scoring
system that has been widely used by most ICUs for predicting
illness severity was also chosen. Therefore, the association of
missingness rates with ECI and SAPS-II was investigated using
Spearman correlation. Besides the clinical information, SAPS-II
also has the information about type of admission (scheduled
surgical, medical, or unscheduled surgical) and presence of 3
chronic diseases (metastatic cancer, hematologic malignancy,
and AIDS).

Feature Selection
After exploratory analyses, we assessed the importance of the
indicators as potential predictors. First, we used feature selection
methods, which are widely used to determine which predictors
should be used in a model, particularly for high-dimensional
data [22]. Two copies of the augmented matrix (derived from
HD and PMM imputation) were fed to various feature selection
methods. Our study considered in-hospital and 30-day
postdischarge mortality as outcomes. Overall, we used 2
categories of supervised feature selection methods described
below.

First, filter techniques evaluated the importance of a predictor
by looking at data properties. Filter methods, in general, use a
metric to identify irrelevant features and filter out the redundant
predictors from the data matrix [57]. We selected 3 different
metrices: LR beta value, relief algorithm [58], and information
gain (InfGain) [59]. The relief algorithm examines the relevance
of predictors based on their power to distinguish between similar
patients with the same and different outcome. InfGain measures
the reduction in entropy of the class variable achieved by
partitioning the data based on the index predictor; relevant
predictors receive a high InfGain value [60]. This ensemble of
the scoring methods was then used to determine the normalized
informativeness of all predictors. Aggregating these methods
in one score provides a tool for comparing predictors from
different aspects.

Second, we used embedded techniques to search for the optimal
set of predictors. In these techniques, feature selection is
embedded in the model’s construction and interacts with the
classifier. Least absolute shrinkage and selection operator
(LASSO), used in this study, is a penalizing method in this
category. LASSO regression in its objective functions considers
a penalty that equals to the sum of the absolute values of the

coefficients. As absolute function (L1 norm) is not differentiable,
the estimated coefficients are close to 0, and some will be
exactly 0 resulting in an automatic variable selection. For this
and the next experiments, 10-fold cross-validation with 20
repeats was used (leading to 200 repetitions in total). This
number of repetitions is recommended to achieve desired
accuracy for prediction performance estimation [49].

Predictive Modeling
In the last assessment, we first trained group of classification
models, including DT, logistic regression (LR), and random
forest (RF), on the indicator and imputed data matrices and
evaluate their performance for predicting desired outcomes
using the area under the curve of the receiver operating
characteristic (AUROC) validation metric. Thereafter, new
models were trained using the augmented data matrix and their
performance was compared with that of the original to determine
whether the indicators have predictive power and can boost the
models’predictive accuracy. We also investigated the predictive
performance of SAPS-II score, and then we added indicators
to these scores to examine the impact of indicators beyond
SAPS-II score. It is worth mentioning that in this assessment,
the absolute accuracy of the models is not of our interest,
instead, the relative improvement in the performance when
including indicators as input. That is, achieving the best possible
mortality prediction AUROC is not the objective of this study.

Results

Population
The analyses of the first 24 hours ICU stays included 32,618
patients but decreased to 20,381 for the second 24-hour interval,
as many patients were discharged after 24 hours. The third
24-hour period included 13,670 patients. Of these groups,
10.99% (3586/32,618), 13.59% (2769/20,381), and 16.19%
(2213/13,670) experienced death in-hospital and 15.12%
(4933/32,618), 18.26% (3722/20,381), and 21.32% (2915/
13,670) experienced death within 30 days of discharge,
respectively. Figure 2 demonstrates the retrospective study
design.

Exploratory Analysis
Missingness rates for LTs ranges from 1.36% (445/32,618) to
88.27% (12066/13,670) in the first 72 hours after admission.
Figure 3 shows the missingness rate for LTs over 3 days.
Absolute basophils (BA), absolute eosinophils (EO), absolute
monocytes (MO), absolute lymphocytes (LY), absolute
neutrophils (NE), alanine aminotransferase (ALT), alkaline
phosphatase (ALK), aspartate aminotransferase (AST), total
bilirubin (TBil), and lactate (Lac) were among the less-common
LTs and were missing in the profiles of more than 60% of
patients.

We calculated the association between each indicator and the
mortality flag. Although association values were small, on day
1, ALT, ALK, AST, and TBil stand out as the top LTs associated
with both types of mortality.
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Figure 2. The retrospective cohort study design. LOS: length of stay.

Figure 3. The average missingness rate among patients for laboratory tests in the first 72 hours of admission.
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On days 2 and 3, partial pressure of carbon dioxide (PCO2),
partial pressure of oxygen (PO2), and base excess (BE) were
the top LTs associated with both mortality types. Lac also joined
the top tests on day 2 for 30-day mortality. Detailed association
values are provided in See Multimedia Appendix 1.

Figure 4 visualizes the pairwise correlations among indicators.
In total, 7 major groups of highly correlated (ρ ≥.95) indicators
were observed in the results using Phi coefficient: (1) BA, MO,
NE, EO, and LY; (2) mean corpuscular hemoglobin
concentration (MCHC), red cell distribution width (RDW) mean
corpuscular volume (MCV), red blood cell (RBC), and mean
corpuscular hemoglobin (MCH); (3) BE, PCO2, and PO2; (4)
TBil, ALT, AST, and ALK; (5) Blood urea nitrogen (BUN) and
creatinine (Cr); (6) chloride (Cl) and bicarbonate (HCO3); (7)
partial thromboplastin time (PTT) and prothrombin time (PT).

The Spearman correlation between missingness rates and ECI
was also calculated daily. Results show a statistically significant
correlation between these variables (day 1: ρ=–.233; day 2:
ρ=–.196; day 3: ρ=–.184; P<.001). The same assessment was

done using SAPS-II. The results were in line with the previous
one and demonstrate higher correlation (day 1: ρ=–.315; day
2: ρ=–.277; day 3=–.234; P<.001). These findings are interesting
as they confirm that the missingness of data is associated with
patient severity of illness.

Feature Selection: Missing Data Indicators as
Important Predictors
Each of the imputation methods was applied to the original
dataset, and the potential informativeness of missingness
indicators in comparison with actual variables was investigated
using an ensemble of the most representative filter selection
methods [61]: LR beta value, relief, and InfGain. Table 1 shows
the top 18 variables selected on each day based on the
PMM-generated imputed matrix predicting 30-day mortality.
BUN, RDW, and anion gap (AG) were among the top variables
in all 3 days. Indicators for TBil, phosphate (Phos), calcium
(Ca), and Lac were selected on the first day, whereas indicators
for Lac, BE, PO2, and PCO2 were among the top features on
the second and third days. PTT and pH indicators were also
among the important indicators on the third day.

Figure 4. Visualization of the correlation matrix for variable indicators in first 72 hours.
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Table 1. The top 18 variables selected on each day after employing predictive mean matching imputation with regard to 30-day mortality. I at the
beginning of the variables’ names means indicator. Numbers represent the ranking after aggregating the ranking results from the 3 different feature
selection methods.

Day 3Day 2Day 1

ScoreVariableScoreVariableScoreVariable

.748997RDWc.795419AGb.762397BUNa

.666667BUN.783337HCO3
d

.680087RDW

.544964HCO3.77677BUN.668965MCHCe

.540542BE.609532BEf.540484AG

.488433pH.608711RDW.436429I-Cag

.450426AG.587151I-PO2
i

.436071Crh

.418716I-Lacj.585947I-PCO2.416741HCO3

.40463I-pH.585592I-BE.404289PO2
k

.400008Cr.53158Clm.386964MCVl

.387661Phos.462085PTo.374431I-Phosn

.387019I-PCO2.461869Lac.353913PTTp

.386739I-PO2.451999Cr.342786HGBq

.385935I-BE.424956PTT.32767pH

.367257PCO2.422474Nar.320339Lac

.360791NEs.419171Phos.320299BE

.351266MCV.415475I-Lac.318216I-Lac

.338352I-PTT.368343MCV.316668PCO2

.331205Lac.363146MCHC.31277I-TBilt

aBUN: blood urea nitrogen.
bAG: anion gap.
cRDW: red cell distribution width.
dHCO3: bicarbonate.
eMCHC: mean corpuscular hemoglobin concentration.
fBE: base excess.
gCA: calcium.
hCr: creatinine.
iPO2: partial pressure of oxygen.
jLac: lactate.
kPCO2: partial pressure of carbon dioxide.
lMCV: mean corpuscular volume.
mCl: chloride.
nPhos: phosphate.
oPT: prothrombin time.
pPTT: partial thromboplastin time.
qHGB: hemoglobin.
rNa: sodium.
sNE: absolute neutrophils.
tTBil: total bilirubin.

Similar results were observed when using the HD imputation
method, except that ALT and Phos were also selected on the

first and second day, respectively. Moreover, PTT and pH
indicators were not among the important indicators on the third
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day. Detailed results of this assessment can be found in
Multimedia Appendix 1.

Results for in-hospital mortality were slightly different (Table
2). Although the selected indicators were almost the same as
for 30-day mortality, more indicators were selected on the first
day for in-hospital mortality, implying that indicators are more
associated with in-hospital mortality than 30-day mortality.
Detailed results are available in Multimedia Appendix 1.

To validate our previous results, we assessed the predictive
power of the indicators using embedded feature selection
methods. Each day, a LASSO model was trained on the
augmented data from HD and PMM imputation using 10-fold
cross-validation with 20 repeats. In general, the AUROC of
mortality prediction (in-hospital and 30-day postdischarge) and
number of selected variables decreased from days 1 to 3 (Table
3).

Moreover, prediction of in-hospital mortality resulted in higher
AUROCs than 30-day mortality. Regardless of mortality type,
on all days, more than 40% of the predictors selected by the
best-performing model were indicators. Moreover, more than
61% of selected predictors were indicators on the third day.
Sliding lambda to compromise the predictor number and model
performance led to almost the same results. Generally, more
than 40% of the selected predictors were indicators, and on the
third day, this number increased to 61%.

Results in this section once more confirm the informativeness
of missing data as missingness indicators have been selected
by various feature selection methods. The high percentage of
selected indicators also implies that the actual value of an LT
is not always required in outcome prediction; instead, knowledge
about whether the test was performed would suffice.

Predictive Modeling: Missing Data Indicators in
Predictive Modeling
In the second assessment, we compared the performance of a
set of 3 classification models (DT, LR, and RF) using the
indicators, imputed and augmented data matrices, and SAPS-II
score with or without indicators with 10-fold cross-validation
over 20 repeats. We investigated whether including indicators

can improve prediction and whether indicators alone have
predictive power. For our LR, the iteratively reweighted least
square method was used to fit the model. The complexity
parameter (CP) for DT was tuned based on the model
performance. On the basis of some preliminary model fitting,
we set the CP value to vary from 0 (including all variables and
having a large tree) to .02 for each model and then we picked
the best performance model. In all models, the best-tuned model
had a CP greater than 0. Figure 5 shows the AUROC with 95%
CI for all 3 days with regard to 30-day mortality (Multimedia
Appendix 1 provides the AUROC values for 30-day mortality
and in-hospital mortality).

Including indicators improved the AUROC in all modeling
techniques, on average by 0.0511; the maximum improvement
was 0.1209 (Figure 5). AUROC has been demonstrated as an
insensitive metric, for which an increase of 0.01 suggests
meaningful improvement and is clinically of interest [62-64].
Although using only indicators demonstrated reasonable
performance in all scenarios (AUROC=0.6019 [0.0862]>0.5),
conventional scores such as SAPS II perform better
(AUROC=0.6390 [0.0853]) on their own. Therefore, models
trained only on indicators are not sufficient. However, including
indicators with conventional scores can improve the performance
(AUROC=0.7263 [0.0578]). The SAPS-II score has information
for age, heart rate, systolic blood pressure, Glasgow coma scale,
temperature, mechanical ventilation administration, partial
pressure of oxygen in the arterial blood (PaO2), fraction of
inspired oxygen (FiO2), urine output, BUN, sodium (Na),
potassium (K), HCO3, TBil, white blood cells (WBCs), presence
of chronic diseases, and type of admission. These results
demonstrate that indicators have information beyond that
included in SAPS-II.

Figure 6 demonstrates the AUROC curves for LR 30-day
mortality prediction on day 1.

This combination of findings provides more support for the
informativeness of missing data. Employing the missing
indicators in mortality prediction modeling can improve the
results in comparison to not including them.
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Table 2. The top 18 variables selected on each day after employing predictive mean matching imputation with regard to in-hospital mortality. I at the
beginning of the variables names means indicator. Numbers represent the ranking after aggregating the ranking results from the 3 different feature
selection methods.

Day 3Day 2Day 1

ScoreVariableScoreVariableScoreVariable

.75246RDWb1BUN.825715BUNa

.635729BUN.711852RDW.668918AGc

.633926BEe.684191HCO3
d

.573188RDW

.62367HCO3.664339AG.531746HCO3

.595553I-BE.528778BE.507343MCHCf

.595238I-PCO2.503805MCHC.489483PCO2
g

.594924I-PO2
j

.453111PTi.480181Crh

.556242pH.429405Clk.452599BE

.494694Phosm.425279I-Lac.436382I-Lacl

.492864AG.395266Cr.415773Lac

.470007I-pH.382404I-PO2.414263HGBn

.469215I-Lac.381737I-PCO2.402466pH

.415249Cr.381448I-BE.399363I-TBilo

.396136Lac.357339PTTp.395278I-Ca

.338372NEr.352738Phos.376004I-ALTq

.326491PT.345109Nat.375944I-ASTs

.319146LY.333936I-PT.375163LYu

.314868MCVx.320947BGw.366346I-ALKv

aBUN: blood urea nitrogen.
bRDW: red cell distribution width.
cAG: anion gap.
dHCO3: bicarbonate.
eBE: base excess.
fMCHC: mean corpuscular hemoglobin concentration.
gPCO2: partial pressure of carbon dioxide.
hCr: creatinine.
iPT: prothrombin time.
jPO2: partial pressure of oxygen.
kCl: chloride.
lLac: lactate.
mPhos: phosphate.
nHGB: hemoglobin.
oTBil: total bilirubin.
pPTT: partial prothrombin time.
qALT: alanine transaminase.
rNE: absolute neutrophils.
sAST: aspartate transaminase
tNa: sodium
uLY: absolute lymphocytes.
vALK: alkaline phosphatase.
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wBG: blood glucose.
xMCV: mean corpuscular volume.

Table 3. Results from feature selection by least absolute shrinkage and selection operator (LASSO) for 3 days (area under the curve of the receiver
operating characteristics are reported with the SE). The best performing model refers to the model with a lambda value associated with minimum
cross-validation error. The adjusted model refers to a LASSO model with the largest value of lambda such that the error remains within 1 SE of the
minimum.

Day 3Day 2Day 1Criteria, outcome, and imputation method

AUROCa for best performing model

30-day mortality

0.7302 (0.0043)0.7685 (0.0041)0.7858 (0.0033)HDb

0.7391 (0.0053)0.7708 (0.0046)0.7876 (0.0039)PMMc

In-hospital mortality

0.7476 (0.0042)0.7804 (0.0046)0.7983 (0.0040)HD

0.7582 (0.0054)0.7838 (0.0049)0.8007 (0.0047)PMM

Indicators among selected predictors by the best performing model, n (%)

30-day mortality

19 (707)24 (48)23 (43)HD

17 (68)26 (47)26 (45)PMM

In-hospital mortality

21 (60)29 (48)28 (46)HD

24 (62)27 (49)29 (47)PMM

AUROC for adjusted model

30-day mortality

0.7262 (0.0041)0.7646 (0.0043)0.7826 (0.0034)HD

0.7339 (0.0044)0.7667 (0.0045)0.7840 (0.0038)PMM

In-hospital mortality

0.7439 (0.0041)0.7762 (0.0047)0.7944 (0.0043)HD

0.7536 (0.0045)0.7793 (0.0050)0.7961 (0.0049)PMM

Indicators among selected predictors by the adjusted model, n (%)

30-day mortality

22 (67)16 (48)20 (45)HD

31 (62)16 (52)19 (45)PMM

In-hospital mortality

16 (64)13 (42)20 (47)HD

16 (62)11 (41)18 (50)PMM

aAUROC: area under the curve of the receiver operating characteristic.
bHD: hot deck.
cPMM: predictive mean matching.
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Figure 5. The 95% CIs of the area under the curve of the receiver operating characteristic for logistic regression, decision tree, and random forest
models on missingness indicators, simplified acute physiology score -II, and actual variables with and without the missingness indicators.

Figure 6. The receiver operating characteristic curves for logistic regression 30-day mortality prediction on day 1.

Discussion

Principal Findings
We used missingness indicators to represent missing information
in patient profiles in ICU. The informativeness of these
indicators was demonstrated in 3 sets of assessments. First, our
exploratory analysis confirms that the missingness of data is
associated with patient severity of illness or comorbidities.

Afterward, by means of feature selection methods, the predictive
power of the presence of an LT in the patient profile was found
to be more than the actual measured value. Finally, missingness
indicators noticeably improved the performance of mortality
prediction models. The high correlation observed among some
of the variable indicators suggests that all the variables in a set
are typically measured or ordered together. Therefore, if a
patient is missing 1 variable of a set, he or she will likely be
missing the others as well. This fact is well represented in all 7
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groups. The first group comprises the differential WBC counts
(BA, MO, NE, eosinophil; EO, and LY), which itemizes the
number of basophils, monocytes, neutrophils, eosinophils, and
lymphocytes among present WBCs. The second group (RDW,
MCHC, MCV, RBC, and MCH) comprises tests that are used
to measure the actual number of RBCs and their physical
characteristics. The third group (BE, PCO2, and PO2) consists
of blood gas components and focuses on oxygen and carbon
dioxide pressure as well as excess or deficit of base levels in
the blood. Tbil, ALT, AST, and ALK in the fourth group are
liver enzymes [65] that are ordered when a patient is suffering
from or showing symptoms of a liver-related comorbidity. BUN
and Cr mainly focus on kidney function. Bicarbonate; HCO3

and chloride; Cl are the primary measured anions in the blood.
PT along with PTT are used for investigating hemostasis and
are the starting points for looking into potential bleeding or
clotting complications. Therefore, the presence of a clinical
variable in a patient profile can represent a comorbidity in the
patient. Although LTs are mainly ordered for diagnostic and
prognostic reasons, studies have shown widely diverse
test-ordering behavior among clinicians for similar symptoms
[66-68]. Therefore, indicators could also reflect the opinions,
preconceptions, and biases of the treating clinicians. In other
words, by using the missingness indicators, we are learning
from practice patterns rather than physiologic patterns.
Therefore, indicators as introduced in this study can then be
used for modeling health care process in various applications
such as clinical care, clinical research, health care economics,
and health care policy [21,69].

Filter methods verified the importance of some indicators with
regard to our outcomes. Results also demonstrated that indicators
become more and more important on ICU days 2 and 3 (Tables
1 and 2). This observation aligns with clinical practice in which
ICU clinicians might try to get a complete dataset on day 1 to
fully investigate the patient and understand the situation but are
likely to be more selective with LT ordering on subsequent
days. The Lac indicator was associated with 30-day and
in-hospital mortality on the second and third day. Lactate is
usually used as a biomarker for shock states. The literature has
constantly reported an association between lactate levels and
mortality rates among critically ill patients [70]. Our study
demonstrated that just the presence of this information could
represent the severity of a patient’s illness, as patients with
profound shock have a very high mortality rate in hospitals and
ICUs [71]. Moreover, BUN [72-74], RDW [75-79], and AG
[80-83] have been repeatedly determined as a risk factor of
all-cause mortality and their indicators received a high score in
our analysis. These results are consistent with those of Agniel
et al’s [21] who demonstrated that the presence of these tests
have significant association with odds of 3-years survival.

The LASSO model selected indicators among the clinical
predictors of in-hospital mortality and 30-day mortality,
implying the predictive power of indicators. More indicators
than clinical variables were selected on the third day (60%-70%
of selected predictors were indicators); the assessment
demonstrates that indicators from the third day are more
informative than those from the first, again supporting the idea
that the practice patterns diverge later during ICU stays, so there

is more variability in what gets measured. In other words, care
on the first day is likely to be highly protocolized—all patients
get the same tests regardless of their condition because their
trajectory is still unclear. As time goes on, the patterns become
more evident and ordering and prescribing practices change
according to clinical need. This high percentage of selected
indicators suggests that clinical variables are not always required
in outcome prediction; instead, information about their presence
would suffice.

The last assessment demonstrated that models trained on
indicators alone in some scenarios have reasonable performance
(for instance, in 30-day mortality prediction with LR, we
achieved AUROC of 0.6836 [0.012]). These results imply that
by considering missing data as noise or a random artifact, we
can lose valuable information about patient outcomes. Moreover,
indicators improved the AUROCs in most scenarios.
Researchers in this field are looking for predictors that can be
included in the models to improve the prediction results. Having
a low-dimensional set of typical predictors plus these missing
data indicators can actually lead to performance comparable
with that achieved using typical predictors plus other potentially
useful predictors identified a priori by medical researchers:
First, in comparison with including extra numeric predictors,
the computational load for performing mathematical calculations
on binary values such as indicators is usually less. Second,
binary data require less computational memory than numbers
when performing data mining techniques. Finally, for some
important clinical variables, storing the missing data indicators
instead of the actual value better protects patient privacy while
preserving predictive power. In other words, less privacy
concern is expected in a situation when the type of test is
disclosed rather than the actual test result. The comparative
analyses on the predictive models showed that missing data
indicators could improve the prediction models’ performance.
Although literature considers a small increase (0.01) in AUROC
meaningful and of clinical interest (because of insensitivity of
AUROC) [62,64], including the indicators in our study could
improve the average AUROC by 0.0511. Thus, missing data
indicators can be introduced as informative predictors and be
used to learn from. In other words, these indicators can be
representative of physicians’ and patients’ opinions during the
health care process. Furthermore, the overall model performance
decreased over time perhaps implying that patients’ data on the
first 24-hour has the highest level of information. The same
pattern was also observed in the previous assessment. According
to these observations, we can infer that presence or absence of
a variable can be used in predicting patients’ severity of illness.

Strengths and Limitations of the Project
A significant strength of this study is its new insight on missing
data in a real-world ICU database. The results confirm the
predictive power of some indicators and their advantage over
actual values in predictive modeling. The findings further clarify
the factors associated with lack of data collection such as the
healthier status of a patient or practice patterns of clinicians.
These insights, in turn, can be used to design models that
consider missing data and benefit from the hidden information.
On the basis of our results, missingness indicators can be
introduced as potential predictors of ICU patients’ outcome.
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Despite the strength, significance, and novel nature of this study,
there also exist limitations that cannot be overlooked. First,
because of the nature of ICUs, the amount of missing data in
MIMIC is less than that from a general ward. Therefore, our
study may not fully demonstrate the informativeness of these
indicators. Moreover, adding the indicators of interest to the
actual data matrix increases the dimension of the matrix and
may become computationally burdensome. Using other
imputation methods, the power of missing data indicators may
vary but this was beyond the scope of our study, which focused
on providing evidence on missing data informativeness.

Perspectives for Future Work
Although our study demonstrates that missingness indicators
are informative and have predictive power in mortality
prediction in ICU, further studies are required to investigate
their power in predicting other clinical outcomes. Future
researchers can investigate the association between missingness
patterns and patient diagnosis. They can also consider more
sensitive criteria such as net reclassification or integrated
discrimination improvements while preserving improvement
in the AUROC as the first criterion. Moreover, as this study
looked at the 3 days in the ICU independently, one can

investigate if the missing data on a particular day are still
informative given all the clinical and indicator variables from
previous days. These future studies should also investigate the
effect of missing rate on the predictive power of indicators.
Another area of future work is examining the test-ordering
behavior among clinicians, by using missingness indicators.

Conclusions
Our study has demonstrated that the missingness of data itself
might be informative in ICU and might have added predictive
value beyond observed data alone. Moreover, indicators for
variables with higher missingness rates had more predictive
power. In practice, the lack of a set of symptoms might lead
health professionals to conclude that a particular set of tests is
not required at the current stage. Therefore, these missing data
are not a random occurrence. This study showed that the number
of comorbidities is associated with a decreased rate of missing
data. Therefore, rudimentary treatments of missing data (eg,
CCA) can cause bias toward sicker patients. The study is also
notable because it provided new insight about the
informativeness of missing data and described how this
information could be used in predicting mortality.
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MCAR: missing completely at random
MCH: mean corpuscular hemoglobin
MCHC: mean corpuscular hemoglobin concentration
MCV: mean corpuscular volume
Mg: magnesium
MIMIC: Medical Information Mart for Intensive Care
ML: machine learning
MO: monocytes
Na: sodium
NE: neutrophils
PaO2: partial pressure of oxygen in the arterial blood
PCO2: partial pressure of carbon dioxide
Phos: phosphate
PLT: platelet count
PMM: predictive mean matching
PO2: partial pressure of oxygen
PT: prothrombin time
PTT: partial thromboplastin time
RBC: red blood cell
RDW: red cell distribution width
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RF: random forest
SAPS-II: Simplified Acute Physiology Score II
TBil: total bilirubin
WBC: white blood cell
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