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Abstract

Background: Bleeding events are common and critical and may cause significant morbidity and mortality. High incidences of
bleeding events are associated with cardiovascular disease in patients on anticoagulant therapy. Prompt and accurate detection
of bleeding events is essential to prevent serious consequences. As bleeding events are often described in clinical notes, automatic
detection of bleeding events from electronic health record (EHR) notes may improve drug-safety surveillance and
pharmacovigilance.

Objective: We aimed to develop a natural language processing (NLP) system to automatically classify whether an EHR note
sentence contains a bleeding event.

Methods: We expert annotated 878 EHR notes (76,577 sentences and 562,630 word-tokens) to identify bleeding events at the
sentence level. This annotated corpus was used to train and validate our NLP systems. We developed an innovative hybrid
convolutional neural network (CNN) and long short-term memory (LSTM) autoencoder (HCLA) model that integrates a CNN
architecture with a bidirectional LSTM (BiLSTM) autoencoder model to leverage large unlabeled EHR data.

Results: HCLA achieved the best area under the receiver operating characteristic curve (0.957) and F1 score (0.938) to identify
whether a sentence contains a bleeding event, thereby surpassing the strong baseline support vector machines and other CNN
and autoencoder models.

Conclusions: By incorporating a supervised CNN model and a pretrained unsupervised BiLSTM autoencoder, the HCLA
achieved high performance in detecting bleeding events.

(JMIR Med Inform 2019;7(1):e10788) doi: 10.2196/10788
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Introduction

Background and Significance
Bleeding is defined as the escape of blood from the circulatory
system (arteries and veins) due to trauma, anatomic
malformation, bleeding disorder, medications, and aging.
Bleeding events include symptoms like reddening or darkening
of urine or stools, bleeding of gums, blood blisters, bruises, and
vomiting of blood. Studies show that high incidences of bleeding
events are associated with cardiovascular disease in patients on
anticoagulant therapy [1-9], which has contributed to its standing
as the most-frequent adverse drug events (ADEs) [1,3-9].
Anticoagulants are considered a high-alert medication by the
Institute for Safe Medication Practices because of the potential
severity of anticoagulant-related bleeding. In a study on patients
receiving oral anticoagulant therapy, major bleeding occurred
at a rate of 7.22 per 100 person-years and fatal bleeding occurred
at a rate of 1.31 per 100 person-years, with a case-fatality rate
of 13.4% for major bleeding [3]. Adverse health outcomes
resulting from bleeding include poor functional status,
myocardial infarction, heart failure, stroke, and even death [3-9].
Prompt and accurate detection of bleeding events is essential
to prevent such adverse health outcomes and improve
drug-safety surveillance and pharmacovigilance.

Bleeding events are frequently not recorded in the structured
fields and are buried in the electronic health record (EHR) notes
[10]. Manual abstraction is prohibitively expensive. Rapid,
accurate, and automated detection of bleeding events in EHR
notes may have significant cost and logistical benefits over
manual detection. Therefore, this study aimed to develop natural
language processing (NLP) approaches to automatically detect
bleeding events in EHR notes.

NLP approaches have demonstrated increasing utility in clinical
text mining in recent years [11-14]. Deep neural network
methods have recently achieved new state-of-the-art
performance in a wide range of NLP tasks [15-17]. In this study,
we explored deep learning models and compared them with the
strong traditional machine-learning classifiers (eg, support vector
machines [SVM]).

Two architectures of deep neural networks relevant to this work
include convolutional neural network (CNN) [18] and recurrent
neural network (RNN) with its variants of long short-term
memory (LSTM) [19] and gated recurrent unit [20]. Both
architectures have demonstrated advantages in text-processing
tasks. The CNN models use layers with convolutional filters
that are applied to local features [18] and therefore are able to
capture local relationships between neighboring w-gram words
in a sentence, but are less efficient for long-distance
dependencies. In contrast, the LSTM models [19] are designed
to learn long-term dependencies by maintaining an internal
state, which represents the memory cell of the LSTM neuron.
Thus, the LSTM models are able to memorize information for
a longer duration than the CNN models. Bleeding events can
be inferred by local context. Therefore, we chose CNN as the
major model of our architecture, but leveraged the LSTM model
to learn sentence-level representation. Our CNN model differs
from the previous neural network models in that we deployed

an autoencoder neural network [21] as an unsupervised learning
algorithm to learn a latent representation from unlabeled
sentences in order to help improve CNN performance.
Specifically, we propose the hybrid CNN and LSTM (HCLA)
autoencoder model, which employs a CNN model that is
integrated with a bidirectional LSTM (BiLSTM)-based
autoencoder model to classify whether a sentence contains a
bleeding event.

The knowledge-acquisition bottleneck problem presents a unique
challenge in clinical NLP. Unlike data collection in the open
domain, crowdsourcing methods (eg, Amazon Mechanic Turks
[22]) cannot be easily applied to medical domain data collection
due to privacy concerns. Annotation by medical professionals
is expensive and time consuming, and annotated data in the
clinical domain are typically limited. Because our HCLA model
leverages a large number of unlabeled EHR notes, our results
demonstrate that domain-specific features learned through such
an autoencoder can effectively improve the supervised learning
performance, despite the small amount of the training data.

Related Works
Existing work in automated bleeding detection mainly involves
detection and classification of bleeding for wireless capsule
endoscopy images. Neural network methods are also employed
for such image detection [23,24]. In addition, previous studies
have assessed detection of bleeding events in outcome studies
by using health registers [25]. However, studies on the detection
of bleeding events in EHR notes are lacking.

The proposed model is based on neural network models that
learn feature representations for sentence-level classification.
Related work includes the CNN models that first made a series
of breakthroughs in the computer vision field and subsequently
showed excellent performance in NLP tasks such as machine
translation [26], sentence classification [27,28], and sentence
modelling [29]. Autoencoders were originally proposed to
reduce the dimensionality of images and documents [21] and
were subsequently applied to many NLP tasks such as sentiment
analysis [30], machine translation [31], and paraphrase detection
[32].

Neural network models have been applied to the clinical
data-mining tasks. Gehrmann et al [33] applied CNNs to 10
phenotyping tasks and showed that they outperformed concept
extraction-based methods in almost all tasks. CNN was used to
classify radiology free-text reports and showed an accuracy
equivalent to or beyond that of an existing traditional NLP
model [34]. Lin et al [35] also used a CNN model to identify
the International Classification of Diseases, Tenth Revision,
Clinical Modification, diagnosis codes in discharge notes and
showed outstanding performance compared with traditional
methods; they also showed that the convolutional layers of the
CNN can effectively identify keywords for use in the prediction
of diagnosis codes. Since our annotated data are relatively small,
we expanded the CNN model by integrating it with an
LSTM-based autoencoder. Tran et al [36] developed two
independent deep neural network models: one based on CNNs
and the other based on RNNs with hierarchical attention for the
prediction of mental conditions in psychiatric notes; their study
showed that the CNN and RNN models outperformed the
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competitive baseline approaches. Furthermore, a previous study
used semisupervising learning methods such as learning from
positive and unlabeled examples [37] and the anchor-and-learn
method [38], for which traditional machine-learning algorithms
like expectation–maximization and SVM can be used to build
classifiers.

Methods

Models
The EHR notes used in this study were provided by the
University of Massachusetts Medical School. Our study was
approved by the Institutional Review Board. All the EHR notes
were deidentified.

Our HCLA model integrates a supervised CNN architecture
and an unsupervised BiLSTM-based autoencoder. Given a
sentence as input, we trained a classifier to determine whether
the sentence contains a bleeding event. Figure 1 illustrates the
architecture of our model. After passing the sentence through
the CNN model and the BiLSTM-based autoencoder
simultaneously, the HCLA model generates two separate
representations for the input sentence: local features encoded
by the CNN model and global features encoded by the
autoencoder. A softmax function was then used to determine
whether the input contained a bleeding event.

Bidirectional Long Short-Term Memory-Based
Autoencoder
An autoencoder is a neural network that typically has three
layers: an input layer, a hidden (encoding) layer, and a decoding
layer. Through the encoding process, the inputs are compressed
into a hidden representation, which is then used to reconstruct
the input back in the decoding process.

A BiLSTM-based autoencoder has two major parts: encoder
and decoder. During the encoding phase, an LSTM is used to

scan the input X={x1, x2... xi... xn} in a sequential order. Each
time, it takes a word xi with ei as its embedding and the hidden
representation hi–1 generated at the previous step as the input

to generate the representation for the
current step.

The final is the representation of the input sentence. A
BiLSTM model uses the same LSTM to scan the input sentence

again in reverse and obtains another representation , so
that the input is encoded as the concatenated hidden

representation , hn ∈ Rk, where k is a predefined
dimensionality.

The decoder is another LSTM layer. The hidden representation
is fed to the decoder LSTM layer to reconstruct the input words.
First, we set h'0=hn to repeat the following steps until the input
is reconstructed:

h'i=LSTM( h'i–1, e i–1)

o i= Wh'i+ b

ei = emb(xi)

The LSTM takes the h'i–1 that is the hidden state of the previous
step and ei–1 that is the word generated in the previous step as
input and updates h'i–1 to h'i. Subsequently, h'i is passed through

a softmax layer to generate the word at ith step xi.

After training by the abovementioned procedures, the hidden

representation is obtained as a condensed and
better representation of the sentence.

Figure 1. The hybrid convolutional neural network (CNN) and long short-term memory (LSTM) autoencoder (HCLA) model architecture with two
major components: the CNN model and the bidirectional LTSM (BiLSTM)-based autoencoder. NG: nasogastric.
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Convolutional Neural Networks
The CNN model takes a sequence of words as input and outputs
a fixed-length low-density vector as a representation of the
input. Words are first represented using their embeddings, which
can be learned during training or loaded from pretrained models.
We will report how we set the embeddings for each of our
specific models in the Models subsection. The sentence
subsequently becomes a matrix whose dimensions are decided
by the word numbers of the input and the dimensions of word
embeddings. Convolutional layers of different sizes scan the
matrix to generate a new and dense representation of the input.
The newly generated representations are further projected to a
fixed-length vector through max pooling as the final
representation of the input. We adapted the architecture of an
open-domain CNN model [27] with the following components:

1. Input layer: The input is a sequence of tokens X={x1, x2...
xi... xn} where n denotes the length of the sentence. Token

xi is associated with a d-dimensional embedding ei, ei={ei
1,

ei
2... ei

d}. Therefore, the input is represented as a feature
map of dimensionality n×d.

2. Convolutional layer: A convolutional operation with a filter
sliding over the input is applied for local feature learning.
Given the input sentence X={x1, x2... xn} (zero padded if
necessary), a feature ci can be learned from a window of
words [xi:i+k–1] as ci= f (w [xi:i+k–1]+ b), where w is the

convolutional weights w ∈ Rd×kd, bias b ∈ Rd, f is the
nonlinear activation function (we used a hyperbolic tangent
in our experiments), and k is the filter width. In our model,
we used three filters of width 3, 4, and 5, and the number
of filters used was 10.

3. Max-pooling layer: A max operation is applied to the result
of each filter to keep the most-salient information and

reduce dimensionality . The outputs of
the three filters after max pooling are concatenated in this
framework.

4. Concatenation layer: After the max-pooling layer was fully
connected, at this step, we concatenated the final hidden

representation of the encoder layer obtained
from the BiLSTM-based autoencoder approach, as described
in the above Bidirectional Long Short-Term Memory-Based
Autoencoder subsection.

5. Softmax layer: Another fully connected layer and softmax
operation was applied for the prediction. The cut-off point
of 0.5 was used to convert the predicted probability to a
binary outcome with regard to whether the sentence contains
a bleeding event.

Results

Experimental Datasets
We expert annotated a corpus of 878 longitudinal EHR notes
of patients with cardiovascular events. This corpus contains
76,577 sentences and 562,630 word-tokens. Each note was
annotated by at least two physicians. The interannotation
agreement (Cohen k) among the annotators was k=0.9182.

We preprocessed the data and removed duplicate sentences. In
addition, we removed sentences with length <5 word-tokens,
as those were mostly incomplete sentences or sentence
fragments. The remaining 48,628 sentences were used for
training and validation. Textbox 1 presents the representative
sentences in our annotated corpus.

Although we had a total of 878 annotated notes, only 291 notes
mentioned bleeding events, from which we identified a total of
1451 sentences. These 1451 sentences were considered as
“positive” data for training. From the 291 notes, a total of 285
sentences that mentioned bleeding events, but were annotated
as negation. Those sentences presented as “harder” examples
for our NLP systems, and we included them in the “negative”
data for training.

We performed downsampling to include equal number of
positive and negative data for training and validation. Since we
had included 285 sentences that contain negated bleeding events,
1166 negative sentences were randomly selected from the
remaining negative sentences in the 291 notes, as those
sentences were more challenging for an NLP system to identify
than sentences from the notes that did not contain a bleeding
event. Although we did not include any sentence from the 587
annotated notes that did not contain a bleeding event, the 32,704
sentences from those notes were included to train the
autoencoder on feature representation.

Of the combined 2902 positive and negative sentences (50%
each), we randomly selected 1 of 10 sentences as the testing
data, and the other 9 sentences were used for model training.
By setting aside the testing data, we trained the BiLSTM-based
autoencoder model on all the remaining sentences of the 878
notes, with a total of 48,338 sentences after preprocessing.

An NLP system that is trained for downsampling may not
perform well for the real-world data; in our case, the positive
and negative data were highly unbalanced (only 2.9% of
annotated sentences contained a bleeding event). To accurately
evaluate the performance of our NLP system, we annotated 6
additional EHR notes as unseen hold-out data for testing. Those
6 notes included a total of 2,345 sentences, of which only 64
sentences (2.7%) were positive.

Textbox 1. Sentence samples from our dataset with 2 positive bleeding samples and 2 negative bleeding samples. POS: positive bleeding sample
sentence; NEG: negative bleeding sample sentence.

POS 1: Patient was admitted with hematemesis and blood per rectum.

POS 2: Anticoagulation has been held on this patient secondary to recent gastrointestinal bleed.

NEG 1: She has done well with the warfarin with no further thromboembolic episodes and no bleeding problems.

NEG 2: The patient is also on Keppra for seizure activity, and he has been seizure-free on that medication.
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Experimental Setup
We implemented the neural network models in Pytorch [39].
For the evaluation metrics, we used precision, recall, and F-score
and reported the overall performance as well as the performance
on positive instances and negative instances. In addition, we
reported the area under the receiver operating characteristic
curve (AUC-ROC) score. The AUC-ROC plots the true positive
rate (y-coordinate) against the false positive rate (x-coordinate)
at various threshold settings. For the testing on the natural EHR
notes, we reported overall accuracy as well as the precision,
recall, and F-score on positive samples. All the word embedding
sizes were initialized or pretrained with 200 dimensions. The
dropout rate was set as 0.3, batch size as 16, and learning rate
as 0.001. Optimization was performed using stochastic gradient
descent. For the BiLSTM autoencoder model, the number of
hidden neurons was 64.

Models
We conducted experiments with the following baselines to
compare them with our proposed model. We first compared our
model with a strong traditional machine-learning classifier as
the SVM model. The basic bag-of-words features are used for
SVM. A stronger SVM baseline with both bag-of-words features
and bag of the unified medical language system (UMLS) [40]
concept features were implemented for comparison. In addition,
as the proposed model was an integrated model including a
word-embedding CNN and a BiLSTM autoencoder, we
conducted experiments to determine the separate performance
of the two components. Pretrained word embeddings were used
in additional experiments to examine their effect in model
performance.

Support Vector Machines+Bag of Words
A standard linear SVM classifier [41] with bag-of-words
features was used. Parameter C (penalty parameter of the error
term) was set as 1, and other parameters were set as default in
the sklearn.SVM.SVC implementation [41].

Support Vector Machines+Bag of Words+Unified
Medical Language System
A standard linear SVM classifier [41] with bag-of-words
features and bag of UMLS [40] concept features were used.
Further, we used MetaMap [42], a tool created by NLM that
maps from free text to biomedical concepts in the UMLS, to
identify medical phrases. The same parameters were used as
mentioned in the Support Vector Machines+Bag of Words
subsection above.

Autoencoder
The BiLSTM-based autoencoder model has been described
above (see Methods section); all word embedding was randomly
initialized and modified during training. A fully connected layer
was used to connect the obtained hidden representation of

followed by a softmax operation to generate
the prediction.

Autoencoder and Pretrained Word Embedding
This model was similar to the autoencoder model. However, in
this model, we pretrained the word embedding on 4.7 million

EHR notes using the Glove model [43]. The pretrained vectors
were fine tuned for the task during training.

Convolutional Neural Network
The CNN model used has been described in the Methods section,
with all word embeddings randomly initialized and modified
during training.

Convolutional Neural Network and Pretrained Word
Embedding
This model was similar to the CNN model. The same pretrained
word embeddings described in the Autoencoder and Pretrained
Word Embedding experiment were used, and the vectors were
fine tuned for the task during training.

Hybrid Convolutional Neural Network and Long
Short-Term Memory Autoencoder
Our proposed model incorporates CNN, pretrained word
embedding, and a BiLSTM-based autoencoder, as described in
the Methods section.

Convolutional Neural Network for Negation Bleeding
As negation bleeding (eg, NEG1 in Textbox 1) is a relatively
difficult and misleading subset of the corpus for the model to
make predictions, we conducted this extra experiment with only
the 285 sentences that mentioned negated bleeding as negative
samples. Of these, 185 sentences were used with the 1451
positive samples for training, and the remaining 100 sentences
were used for testing.

Hybrid Convolutional Neural Network and Long
Short-Term Memory Autoencoder for Negation Bleeding
The same data setting was used as mentioned above for
Convolutional Neural Network for Negation Bleeding.

Experimental Results
Our HCLA model showed the best performance across all
evaluation metrics, with an AUC-ROC value of 0.957, overall
F-score of 0.938, and F-scores of 0.932 and 0.943 for positive
and negative sentences, respectively (Table 1). With pretrained
word embedding, both the autoencoder and the CNN models
performed better than learning word representation directly
from the data. For the traditional SVM model, improved
performance was achieved by incorporating the UMLS
knowledge, leading to an overall F-score of 0.886 and an
AUC-ROC value of 0.934 compared to an F-score of 0.862 and
an AUC-ROC of 0.921 without the UMLS features. The
incorporation of UMLS knowledge especially improved the
precision score on positive samples with a large increase of
0.043. The precision score of all CNN models demonstrated a
consistent increase in all positive and negative samples. As
shown in Table 1, the CNN model without the autoencoder
outperformed the model that was solely built on the autoencoder.

To further evaluate our model’s performance on natural EHR
notes (as compared to negative sampling), we tested the
proposed HCLA model on the 6 extra annotated notes. The
resulting overall accuracy outcomes and precision, recall, and
F-score on positive samples are shown in Table 2.
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Table 1. Comparison of the study results at baseline.

AUC-ROCaOverallNegativePositiveModel

F-scoreRecallPrecisionF-scoreRecallPrecisionF-scoreRecallPrecision

0.9210.8620.8620.8620.8590.8410.8780.8650.8830.848SVMb+BOWc

0.9340.8860.8860.8860.8780.8860.8700.8890.8870.891SVM+BOW+UMLSd concept

0.9200.8590.8590.8590.8590.8620.8560.8580.8550.861Autoencoder

0.9260.8720.8720.8720.8730.8760.8700.8720.8690.875Autoencoder+pretrained word
embedding

0.9380.8930.8930.8930.8940.9100.8790.8920.8770.908CNNe

0.9460.9210.9210.9210.9210.9310.9120.9200.9110.930CNN+pretrained word embedding

0.9570.9380.9380.9380.9430.9610.9250.9320.9120.954HCLAf

N/AN/AN/AN/A0.8200.8200.820N/AN/AN/AgCNN for negation bleeding

N/AN/AN/AN/A0.8600.8600.860N/AN/AN/AHCLA for negation bleeding

aAUC-ROC: area under the receiver operating characteristic curve.
bSVM: support vector machines.
cBOW: bag of words.
dUMLS: unified medical language system.
eCNN: convolutional neural network.
fHCLA: hybrid convolutional neural network and long short-term memory autoencoder.
gN/A: not applicable.

Table 2. Performance of the hybrid convolutional neural network and long short-term memory autoencoder model on natural electronic health record
notes.

ValuePerformance parameter

0.938Overall accuracy

0.992Precision on positive samples

0.944Recall on positive samples

0.967F-score on positive samples

Discussion

Principal Findings
This study addresses the detection of important bleeding events
in EHR notes. Clinical phenotyping is challenging mainly due
to irregularity of clinical narratives, which incorporates
domain-specific medical jargon, abbreviations, incorrect use of
natural language (eg, spelling errors), etc [44,45]. In addition,
negation is common in the clinical domain, which adds
complexity. The difficulty of the NLP task is further exacerbated
by the limited size of human annotated gold standard positive
samples, which makes it difficult for our data-driven deep
learning approaches to extract effective features. However, the
proposed HCLA model (Textbox 1) achieved the best result of
0.938 (F-score) and 0.957 (AUC-ROC value).

Our results show that all end-to-end CNN models outperformed
the baseline SVM model, despite the incorporation of
knowledge-based features for SVM. When we pretrained word
embedding over large unlabeled EHR notes (4.3 million), the
overall F-score performance improved by approximately 0.03,
demonstrating the effectiveness of using unlabeled data. Our

results demonstrate that the BiLSTM-based autoencoder
improved sentence representation. By concatenating the
representation of the BiLSTM-based autoencoder, we further
improved the performance by 0.017 (from 0.921 to 0.938) and
the AUC-ROC value by 0.957, even though the model was
trained with a relatively small data set (1451 positive samples
and 285 negative samples).

Our annotated data incorporated both bleeding and negated
bleeding events. Detection of bleeding signals is challenging
from narratives, but separating true bleeding events from negated
bleeding events is more challenging due to different negation
variations. We therefore evaluated how our model performed
in terms of accurately identifying negated bleeding events.
Comparing the data setting described above for CNN and HCLA
for negation bleeding, the CNN model achieved an accuracy of
0.82 and our proposed model achieved an accuracy of 0.86. The
results validate the ability of the model to learn to grasp
meaningful features in the dataset, rather than just depend on
“bleeding”-related word indicators. For example, in Textbox 1,
the NEG1 sentence contains the word “bleeding” but describes
a nonbleeding event.
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Textbox 2. Misclassified sentence samples by the proposed hybrid convolutional neural network and long short-term memory autoencoder system.
NEG: negative bleeding sample sentence; POS: positive bleeding sample sentence.

NEG1: Here is no chest pain, chest pressure, shortness breath, wheezing, coughing, nausea, vomiting, or gastrointestinal bleeding.

POS1: At that time, he was found to be anemic with heme-positive stools and was admitted for evaluation.

POS2: There is no evidence or stigmata for recent bleed.

Table 2 presents the model’s performance in real applications
in the 6 natural EHR notes. In this unbalanced data of total 2345
sentences with only 64 positive sentences (2.7%), our model
showed good results. The overall accuracy was 0.938. The
model achieved high precision, recall, and F-score of 0.992,
0.944, and 0.967, respectively, on positive samples. Performance
in positive samples is meaningful because it reflects how
accurately the NLP system detects bleeding events in the EHR
notes.

Error Analysis
Our error analyses showed that HCLA needs improvement in
negation detection and analyzing complex sentences. Textbox
2 includes representative examples to show that HCLA failed
the classification. The first sentence in Textbox 2 was a negated
bleeding sample, but was misclassified as a positive instance.
Since our employed CNN model mainly focused on the local
context, it may fail to recognize the distant negation cue “no.”
The second sentence was a positive sample, but was
misclassified as a negative sample by the system. The second
sentence is complex and required knowledge inference, which
may be challenging for the model.

The third sentence in Textbox 2 was annotated as a positive
instance, but seemed to be correctly identified by our system
as a negative instance. On examining the note, we found that it
was a follow-up of a patient whose chief complaint was
hemorrhoidal bleeding. Our annotators annotated bleeding
events at the whole-note level. Although the bleeding event in
this specific sentence in the section of Physical Examination,
seemed to be negative, it was annotated as “bleeding present.”
In this case, the annotators interpreted the bleeding as the present
complaint, even though the sentence clearly indicated no
evidence of a recent bleed.

This sentence represents a complex case of annotation
consistency. The annotation guideline needs to be updated to

refine the definition of “assertion.” On the other hand, this
annotation highlights one limitation of our NLP system that is
based on sentence-level classification. Our future work will
focus on exploring the context of the whole note.

Study Strength
The contributions of this study are several folds: This study is
the first to automatically detect bleeding events from EHR notes.
We have demonstrated the effectiveness of HCLA as a
high-performance bleeding event-detection NLP system from
EHRs. In addition, we have demonstrated the effectiveness of
the HCLA architecture that can be trained from small annotated
data.

Limitations
We acknowledge a few limitations to this study. The gold dataset
for our experiments was relatively small. Therefore, we built
unsupervised models to leverage the large unlabeled EHR data
in order to improve the performance. However, the
generalizability and robustness of the model were not evaluated
on a large scale. In addition, our system was based on
sentence-level classification and does not consider the context
of whole notes.

Conclusions
This is the first study to address bleeding detection in EHRs.
Our proposed HCLA neural network model effectively
outperformed standard CNN models, autoencoder models, and
SVM models by using a limited number of expert annotations.
In the future, we will attempt to use active learning methods in
order to improve the efficiency of experts’ annotation.
Depending on more high-quality annotation, we will further
mine data on bleeding causes, anatomic sites of bleeding,
bleeding severity, and assertion (current vs history) from EHRs,
as tasks are important and require further examination.
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