
Original Paper

Predictive Modeling of 30-Day Emergency Hospital Transport of
Patients Using a Personal Emergency Response System:
Prognostic Retrospective Study

Jorn op den Buijs1, PhD; Mariana Simons1, PhD; Sara Golas2, MA; Nils Fischer2, MPH; Jennifer Felsted2,3, PhD;

Linda Schertzer4; Stephen Agboola2,3,5, MPH, MD; Joseph Kvedar3,5,6, MD; Kamal Jethwani2,3,5, MPH, MD
1Philips Research, Eindhoven, Netherlands
2Partners HealthCare Pivot Labs, Partners HealthCare, Boston, MA, United States
3Department of Dermatology, Harvard Medical School, Boston, MA, United States
4Philips Lifeline, Framingham, MA, United States
5Department of Dermatology, Massachusetts General Hospital, Boston, MA, United States
6Partners Connected Health, Partners HealthCare, Boston, MA, United States

Corresponding Author:
Jorn op den Buijs, PhD
Philips Research
High Tech Campus 34
Eindhoven, 5656 AE
Netherlands
Phone: 31 631926890
Email: jorn.op.den.buijs@philips.com

Abstract

Background: Telehealth programs have been successful in reducing 30-day readmissions and emergency department visits.
However, such programs often focus on the costliest patients with multiple morbidities and last for only 30 to 60 days postdischarge.
Inexpensive monitoring of elderly patients via a personal emergency response system (PERS) to identify those at high risk for
emergency hospital transport could be used to target interventions and prevent avoidable use of costly readmissions and emergency
department visits after 30 to 60 days of telehealth use.

Objective: The objectives of this study were to (1) develop and validate a predictive model of 30-day emergency hospital
transport based on PERS data; and (2) compare the model’s predictions with clinical outcomes derived from the electronic health
record (EHR).

Methods: We used deidentified medical alert pattern data from 290,434 subscribers to a PERS service to build a gradient tree
boosting-based predictive model of 30-day hospital transport, which included predictors derived from subscriber demographics,
self-reported medical conditions, caregiver network information, and up to 2 years of retrospective PERS medical alert data. We
evaluated the model’s performance on an independent validation cohort (n=289,426). We linked EHR and PERS records for
1815 patients from a home health care program to compare PERS–based risk scores with rates of emergency encounters as
recorded in the EHR.

Results: In the validation cohort, 2.22% (6411/289,426) of patients had 1 or more emergency transports in 30 days. The
performance of the predictive model of emergency hospital transport, as evaluated by the area under the receiver operating
characteristic curve, was 0.779 (95% CI 0.774-0.785). Among the top 1% of predicted high-risk patients, 25.5% had 1 or more
emergency hospital transports in the next 30 days. Comparison with clinical outcomes from the EHR showed 3.9 times more
emergency encounters among predicted high-risk patients than low-risk patients in the year following the prediction date.

Conclusions: Patient data collected remotely via PERS can be used to reliably predict 30-day emergency hospital transport.
Clinical observations from the EHR showed that predicted high-risk patients had nearly four times higher rates of emergency
encounters than did low-risk patients. Health care providers could benefit from our validated predictive model by targeting timely
preventive interventions to high-risk patients. This could lead to overall improved patient experience, higher quality of care, and
more efficient resource utilization.
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Introduction

Background
With the worldwide increase in the elderly population [1],
chronic diseases and associated health care utilization, such as
costly emergency department (ED) visits and subsequent
hospitalizations, are also on the rise. In the United States, nearly
40% of patients making ED visits arrived by emergency
ambulance transport [2,3], and 80% of unscheduled hospital
admissions were through the ED [4]. Preventing avoidable ED
visits and admissions among elderly patients is becoming a
global priority [5,6], since emergency hospitalizations may be
particularly distressing for older people and have been associated
with adverse events such as hospital-acquired infections, loss
of functional independence, and falls [7].

Various telehealth programs have been demonstrated to be
effective in reducing readmissions, ED visits, and mortality for
patients with congestive heart failure (CHF), stroke, and chronic
obstructive pulmonary disease (COPD) [8]. For instance, a large
nonprofit health care system in the United States introduced a
home-based telehealth program that lasts 30 to 60 days after
discharge from hospital, targeting the top 5% high-cost patients
with multiple chronic conditions [9]. In addition, our recent
work unveiled cost-saving opportunities by managing the
patients in the lower-cost segments that are at risk of becoming
more costly in the long term, such as beyond institutional
settings and 30- to 60-day telehealth services [10]. Population
health management programs may benefit from data analytics
that integrate home monitoring devices to monitor patients after
discharge and find out whether they have issues before ED
utilization. These devices include personal emergency response
systems (PERSs), which can help older adults get immediate
assistance when a serious home-based accident occurs and where
delayed response may result in preventable ED utilization [11].
Furthermore, our preliminary findings suggested that predictive
analysis using PERS data could be useful for identifying patients
at high risk for imminent emergency health care utilization [12].

A PERS service enables older adults to get help in a situation
that potentially requires emergency transport by ambulance to
the hospital, such as a sudden worsening of their chronic
condition or a fall [13,14]. PERS is a widely used wearable
technology with a help button that is worn as either a bracelet
or a pendant. Patients may press the help button at any time to
activate an in-home communication system that connects to a
24/7 call center. The call center associate may contact an
informal responder (eg, a neighbor or a family member) or

emergency medical services (EMSs) based on the patient’s
specific situation and follows up with the patient to confirm
that help has arrived. The call center associate records notes
from the conversations with the subscribers in an electronic
record and classifies the type, situation, and outcome of the case
(Figure 1). In combination with user enrollment data, such as
demographic, caregiver network, and medical condition data,
these case data provide valuable information about the patient’s
status.

Progress in big-data analysis techniques, such as predictive
modeling to identify patients at risk of worsening health
conditions, may contribute to cost-effectively reducing
potentially avoidable health care utilization [15]. Previous efforts
in the field of risk prediction include predictive modeling of
hospital readmission [16], repeat ED visits [17,18], and the use
of specialized discharge services [19]. For example, the LACE
index (length of stay; acuity of the admission; comorbidity of
the patient, measured with the Charlson comorbidity index
score; and emergency department use, measured as the number
of visits in the 6 months before admission) was designed for
the prediction of death or unplanned readmissions after
hospitalization [20], achieving a predictive performance of the
area under the receiver operating characteristic curve (AUC) of
0.68. Another model, HOSPITAL (hemoglobin, discharge from
an oncology service, sodium level, procedure performed, index
type of admission [urgent vs elective], number of admissions
in the last year, and length of stay), is a risk score for predicting
30-day potentially avoidable readmission with a performance
of AUC=0.72 as evaluated in 9 hospitals in 4 countries [21].
Yet another study used 1-year retrospective electronic health
record (EHR) data to predict 30-day ED revisits, with predictive
power of AUC=0.70, in a prospective validation cohort [18].
These predictive models rely only on clinical data collected
before or during the clinical encounters or at the time of
discharge, but not on data from home monitoring postdischarge.
In contrast, PERS services collect information while the patient
is back at home. This information includes the details—time
stamp, type, situation, and outcome—of incidents such as falls,
respiratory issues, chest pain, or general pain, as well as other
check-in or social calls [13]. Such events may indicate a decline
in patient status, and some patients may eventually request
emergency transport to the hospital via the PERS service. Thus,
patient decline may be captured earlier with PERS–based
prediction models than with models based on clinical data.
Therefore, the hypothesis of this study is that the medical alert
pattern data collected via the PERS service may be used to
predict imminent risk for emergency transport to the hospital.
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Figure 1. Overview of the personal emergency response system (PERS) process and data collection.

Objectives
The objectives of this study were to (1) develop and validate a
predictive model of 30-day emergency hospital transport based
on PERS data; and (2) compare the model’s predictions with
clinical outcomes derived from the EHR, namely outpatient and
inpatient emergency encounters. We used a large, deidentified
PERS dataset of more than 580,000 individuals to develop and
validate the predictive model. For a subpopulation of 1815
patients, we linked PERS and EHR data so that we could
compare PERS–predicted risk of hospital transport with
observed clinical outcomes.

Methods

General Overview
In this study, we followed the guidelines by Luo et al for
developing and reporting machine learning predictive models
in biomedical research [22]. This was a prognostic retrospective
predictive modeling study of emergency hospital transport in

the next 30 days. Figure 2 presents an overview of the
methodology for predictive model development and evaluation.
We used retrospective, deidentified data of 581,675 subscribers
of a commercial PERS service (Philips Lifeline, Framingham,
MA, USA). We developed and validated the predictive model
on cohort 1 using data from 579,860 subscribers. For 1815
subscribers (validation cohort 2), who were patients of the
Partners HealthCare at Home (PHH; Partners HealthCare at
Home, Inc, Waltham, MA, USA) program in the greater Boston,
Massachusetts area, we also collected clinical outcomes in the
year following prediction to evaluate how prediction of
emergency hospital transport compared with rates of outpatient
and inpatient emergency encounters. Patients in the model
development cohort and both validation cohorts were mutually
exclusive.

This study was approved by the Internal Committee on
Biomedical Experiments of Philips Research (ICBE-2-16049).
Furthermore, we obtained approval for linkage of PERS and
EHR records from the Partners HealthCare institutional review
board.

Figure 2. Overview of the study design to develop and evaluate the predictive model of emergency hospital transport. AUC: area under the receiver
operating characteristic curve; EHR: electronic health record; NPV: negative predictive value; PERS: personal emergency response system; PHH:
Partners HealthCare at Home; PPV: positive predictive value.

JMIR Med Inform 2018 | vol. 6 | iss. 4 | e49 | p. 3http://medinform.jmir.org/2018/4/e49/
(page number not for citation purposes)

op den Buijs et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Study Cohorts

Model Development Cohort and Validation Cohort 1
We included patients if they were subscribers of the Lifeline
PERS service on January 1, 2014 (model development cohort)
or February 1, 2014 (model validation cohort 1) and were
between the ages of 18 and 100 years. We excluded patients if
they appeared to be more than 10 years on the service due to
the use of a different back-end system prior to 2004 where some
patients may have left the service in the meantime without an
indication recorded in the database. Also, patients who left the
PERS service for any reason in 30 days from the prediction date
were excluded from the analysis. Reasons for leaving the service
included death, moving to long-term care, and financial reasons.
We excluded patients from the model development cohort and
validation cohort 1 if they were part of the PPH program, as we
included these patients into validation cohort 2. Furthermore,
3.27% (19,886/606,848) of total patients had missing
demographic data and were excluded from the analysis.

The primary PERS data source for model development was the
Philips Lifeline database, which contained historical data such
as demographics, patients’ living situation and caregiver
network, self-reported medical conditions, and medical alert
data. We collected data on self-reported medical conditions,
including medication allergies, using a custom coding system,
which consisted of a drop-down list of common disease
categories, such as COPD, CHF, and diabetes. Caregiver
network information included the number of responders, the
number of people who lived with the patients, and persons to
be notified after an incident occurred. Medical alert data from
the PERS device included all information gathered during the
interactions of the patients with the Lifeline call center
associates. Call center associates categorized the calls as
incidents or nonincidents. For all calls, the situation (eg, fall,
respiratory problems, chest pain, and social call) and the
outcome (eg, subscriber okay, responder assistance, and
emergency hospital transport) was collected by the associate
via custom-made software.

Validation Cohort 2
Validation cohort 2 included PERS users who were on the
service on February 1, 2014 and received care at PHH, a
homecare management service that offers general care as well
as specialized services to help patients manage chronic
conditions at home. PHH uses a variety of technological
innovations to remotely monitor their patients, including the
Philips Lifeline PERS, which is a service routinely
recommended for elderly or chronically ill patients who are at
risk of falls or other health-related emergencies. We excluded
patients if they left the PERS service in the 30 days after the
prediction date.

The primary data source for comparison of PERS–based
predicted risk for emergency hospital transport with clinical
outcomes in validation cohort 2 was the Enterprise Data
Warehouse, an electronic medical record data repository of
hospitals within the Partners HealthCare System. The data
include demographic information, medical conditions, and
hospital utilization. We combined longitudinal clinical data
from the EHR (from February 1, 2014 to January 31, 2015) for
1815 individuals who met the inclusion criteria with the
PERS–based predictive score of emergency hospital transport.
All data were deidentified before analysis. It should be noted
that, in this study, we did not use EHR data to train the
predictive model; rather, we compared PERS–based predictions
of 30-day emergency hospital transport with clinical
observations from the EHR.

Data Processing
We processed PERS data for input into the predictive model
using the statistical programming language R [23]. Different
database tables were extracted from an operational PERS
database, deidentified, and made accessible to the research team.

One table included subscriber demographics, including age,
sex, and region in the United States, subscription type, and
enrollment information. A few test accounts, used for
demonstration purposes and training of call center agents, were
removed prior to the predictive analysis. We used enrollment
information to determine which subscribers were active on the
prediction date. Subscribers with missing enrollment dates
(79,764/1,221,073, 6.53% of all subscribers in the initial data
extract) were already deactivated or were pending a PERS
installation and were therefore excluded from further analysis.
We derived time on the PERS service as the number of days
between enrollment and prediction dates.

One table consisted of the subscribers’ caregiver network
information. This included the number of responders (eg, son,
daughter, or neighbor) and number of emergency service
providers (eg, ambulance or fire department) listed by the
subscriber at the time of enrollment.

One table included self-reported medical conditions and
medication allergies. Medical conditions and medication
allergies were recorded at enrollment by the call center agent
via a custom-made drop-down list for the purpose of informing
EMSs in case of an incident. We extracted the 50 most
frequently occurring medical conditions and medication allergies
from the database for use in the prediction model. Up to 3 of
the most common medical conditions and medication allergies
were listed for various categories (Table 1).
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Table 1. The most common self-reported medical conditions and medication allergies by personal emergency response system subscribers per category
(N=581,675).

Subscribers, n (%)Category and condition description

Auditory

66,102 (11.36)Hearing loss

20,802 (3.58)Hearing aid

Cancer

11,507 (1.98)Cancer

Cardiovascular

221,416 (38.07)High blood pressure

80,113 (13.77)Heart condition

41,925 (7.21)History of stroke

Endocrine

133,694 (22.98)Diabetes

10,435 (1.79)Thyroid disease

Medication allergy

85,982 (14.78)Penicillin

59,327 (10.20)Sulfa drugs

42,581 (7.32)Codeine

Musculoskeletal, falls, or movement problems

136,215 (23.42)Cane, crutches, or walker

83,565 (14.37)Arthritis

83,395 (14.34)History of falls

Neurological

38,672 (6.65)Balance problems or unsteady gait

20,360 (3.50)Dementia

17,557 (3.02)Dizziness or vertigo

Psychiatric

19,788 (3.40)Depression

12,848 (2.21)Anxiety

Pulmonary

40,868 (7.03)Chronic obstructive pulmonary disease

28,190 (4.85)Oxygen dependent

21,905 (3.77)Asthma

Visual

20,055 (3.45)Impaired vision

15,078 (2.59)Glasses

13,207 (2.27)Macular degeneration

One table consisted of up to 2 years of historical PERS service
use data, which totaled to more than 25 million data points. We
categorized cases by case type, situation, and outcome (Table
2). For each case, we constructed 2 features for input to the
predictive model, namely frequency and recency. Frequency

was the sum of cases experienced by the subscriber prior to the
prediction date. Recency was the number of days between the
most recent case prior to the prediction date and the prediction
date.
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Table 2. Case types, situations, and outcomes for which frequency and recency features were derived for input into the predictive model. Examples
are given per category.

DescriptionCase category and classification example

Types

Case where help is sent to the subscriberIncident

Subscriber accidentally pushed the help buttonAccidental

Social call by subscriberCheck-in

Situations

Incident with subscriber experiencing breathing problems, chest pain, dizziness, a fall, illness, or other
pain

Breathing problems, chest pain, dizzi-
ness, fall, illness, other pain

Outcomes

Social callCheck-in

EMS sent to subscriber’s house—subscriber transported to hospitalEMSa—transport

Responder sent to subscriber’s house—subscriber not transported to hospitalResponder—no transport

aEMS: emergency medical service.

We derived the dependent variable—having 1 or more
emergency hospital transports in the 30 days from the prediction
date—from the PERS service use data. As the prediction
problem was treated as a classification problem, the dependent
variable was rendered binary, with 1 if the patient had 1 or more
emergency hospital transports in the 30 days following the
prediction date and 0 otherwise.

After preprocessing, we merged the data into 1 large table with
129 columns representing predictive model features and 1
column for the dependent variable. Each of the rows
corresponded to 1 PERS user. For 1815 PERS users in the PHH
program, clinical outcomes from the EHR were available, and
we assigned these to validation cohort 2. We randomly assigned
the remaining PERS users on a 1:1 basis to the model
development cohort and the validation cohort 1.

Predictive Model of Emergency Hospital Transport
We then developed a predictive model using a boosted
regression trees approach called extreme gradient boosting
within R [24]. We chose extreme gradient boosting because it
was adopted by more than half of the winning competitions on
the Kaggle platform for data science competitions in 2015 [24].
This methodology was also carried out within the commercial
PERS–based prediction system CareSage (Philips Lifeline).
During initial model development, we also considered logistic
regression as a candidate modeling technique but it resulted in
significantly lower AUC values in the validation cohort.

The frequency and recency features based on medical alert
pattern data are highly skewed. While this may pose a problem
for certain predictive modeling methods, the tree-based method
we used did not make any assumptions on normality of the
features. Monotonic transformations of the features to render
them more normal did not affect the predictive performance of
the models. We determined variable importance according to
the gain, a measure of the relative contribution of the
corresponding variable to the predictive model, calculated by
taking the improvement in accuracy brought by a variable to
the branches it is on. We reduced the number of features by

selecting only those with non–zero gain values for the final
model, resulting in a total of 121 features in the final model.
The boosted regression model also involved tuning
hyperparameters of the learning algorithm, such as the number
of trees, the maximum depth of the trees, and the learning rate.
We achieved this optimization using 5-fold cross-validation on
the model development set with the optimization metric
determined by the AUC in the test fold.

Predictive Model Evaluation
We evaluated the discriminatory accuracy of the predictive
models using the AUC, which indicates the probability of the
predictive model ranking a randomly selected patient with
30-day emergency transport higher than a randomly selected
patient without the event. Furthermore, the negative predictive
value (NPV) is the percentage of patients not having emergency
transport in the group classified as negative, while the positive
predictive value (PPV) indicates the percentage of patients
having emergency transport in the group classified as positive.
We varied the threshold for classifying patients as positive using
risk scores above the 90th, 95th, and 99th percentiles such that
10%, 5%, and 1%, respectively, of patients were classified as
high risk. For these thresholds, we computed the NPV, PPV,
sensitivity, specificity, and accuracy. We derived 95%
confidence intervals for performance metrics using a stratified
bootstrapping method with 1000 bootstrap replicates.

While we used AUC to assess the ability of the predictive model
to discriminate between patients with and without transport,
regularization, as done in extreme gradient boosting, may have
created bias in the predictive model [22]. Therefore, we also
checked the model for calibration—the agreement between
predictions made by the model and the outcome—by plotting
the observed outcome in ranges of the predicted probabilities
(0%-20%, 20%-40%, …, 80%-100%). We also tested
goodness-of-fit using the Hosmer-Lemeshow test. This is a
systematic way of assessing whether the observed outcomes
match the predicted probabilities in subgroups of the model
population.
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Statistical Analysis
We tested differences in age between the model development
and 2 validation cohorts using analysis of variance followed by
Tukey post hoc test. Pairwise comparison between pairs of
proportions with Holm correction for multiple testing was
applied to the patients’ sex, self-reported medical conditions,
and 30-day emergency transport.

To determine how PERS predicted risk for 30-day emergency
hospital transport compared with clinical outcomes, we derived
the rates of emergency outpatient and inpatient encounters from
the EHR at 30, 60, 90, 180, and 365 days following prediction
for validation cohort 2. We split the cohort into low, medium,
and high risk according to the risk thresholds that corresponded
to the 0 to 50th percentile, 51st to 95th percentile, and greater
than 95th percentile. The numbers of emergency encounters in
these 3 risk groups were normalized as the number of emergency
encounters per 100 patients. Emergency encounters were
statistically compared using a pairwise Wilcoxon rank sum test.

Results

Patient Characteristics and Prevalence of the
Dependent Variable
Table 3 presents the characteristics of the model development
and both validation cohorts. PERS users were on average 81
years old and most were female (234,817/290,434, 80.85%) in
the model development cohort and validation cohort 1. There
was no statistically significant difference in age between the

model development and validation cohort 1. Average age was
slightly, but statistically significantly, younger in validation
cohort 2 than in the model development cohort.

The distribution of the number of self-reported conditions was
different in validation cohort 2, with only 6.89% (125/1815) of
users not reporting any conditions, compared with 20.58%
(59,769/290,434) in the model development cohort. One reason
may be that these were patients receiving care for 1 or more
specific conditions through a home health care program.
Regarding the dependent variable of having 1 or more
emergency hospital transports in 30 days, 2.20% (40/1815) of
patients had emergency hospital transport in the 30 days
following the prediction date in validation cohorts 1 and 2. This
was not significantly different from the model development
cohort (6686/290,434, 2.30%). The ratio of positive to negative
classes was 0.024 for the model development cohort and 0.023
for both validation cohorts. According to the EHR data,
509/1815 patients of validation cohort 2 (28.04%) had 1 or more
emergency encounters in the year following the prediction date.

Model Performance
Table 4 details the performance of the predictive model in both
validation cohorts for various risk thresholds. The AUC for
emergency hospital transport in 30 days was 0.779 (95% CI
0.774-0.785) in validation cohort 1 and 0.766 (95% CI
0.686-0.845) in validation cohort 2. Nonsignificant
Hosmer-Lemeshow test results (P=.99 for validation cohort 1
and P=.78 for validation cohort 2) showed that predicted
probabilities matched observed outcomes.

Table 3. Patient characteristics and prevalence of the dependent variable in the model development and validation cohorts.

Validation cohort 2 (n=1815)Validation cohort 1 (n=289,426)Model development
cohort, (n=290,434)

Variable

P valueStatisticP valueStatistic

N/AFebruary 1, 2014N/AaFebruary 1, 2014January 1, 2014Prediction date

<.00179.8 (11.5).2081.2 (11.5)81.3 (11.5)Age (years), mean (SD)

.911461 (80.50).66233,692 (80.74)234,817 (80.85)Female patients, n (%)

PERSb self-reported medical conditions, n (%)

<.001125 (6.89)<.00161,685 (21.31)59,769 (20.58)0

<.001656 (36.14).0271,094 (24.56)72,067 (24.81)1-2

.31519 (28.60).2776,384 (26.39)77,739 (26.77)3-4

.84515 (28.37).2580,263 (27.73)80,859 (27.84)≥5

.9940 (2.20).086411 (2.22)6686 (2.30)Patients with 30-day emergency
hospital transport, n (%)

Patients with ≥ 1 emergency encounters at 3 time points after the prediction date, n (%)

N/A64 (3.53)N/AN/AN/A30 days

N/A321 (17.69)N/AN/AN/A180 days

N/A509 (28.04)N/AN/AN/A365 days

aN/A: not available.
bPERS: personal emergency response system.
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Table 4. Performance of the predictive model evaluated by the area under the receiver operating characteristic curve (AUC), negative predictive value
(NPV), positive predictive value (PPV), sensitivity, specificity, and accuracy using the 90th, 95th, and 99th percentiles as thresholds in the 2 validation
cohorts.

Prediction score thresholdCharacteristic

>99th percentile>95th percentile>90th percentile

Validation cohort 1 (n=289,426)a

0.779 (0.774-0.785)0.779 (0.774-0.785)0.779 (0.774-0.785)AUC (95% CI)

98.0% (98.0%-98.0%)98.4% (98.4%-98.4%)98.6% (98.6%-98.7%)NPV (95% CI)

25.5% (24.1%-27.2%)13.5% (13.1%-14.0%)9.6% (9.3%-9.9%)PPV (95% CI)

11.5% (10.7%-12.3%)30.5% (29.3%-31.7%)43.8% (42.5%-45.0%)Sensitivity (95% CI)

99.2% (99.2%-99.3%)95.6% (95.5%-95.7%)90.7% (90.6%-90.8%)Specificity (95% CI)

97.3% (97.3%-97.3%)94.1% (94.1%-94.2%)89.6% (89.5%-89.7%)Accuracy (95% CI)

Validation cohort 2 (n=1815)b

0.766 (0.686-0.845)0.766 (0.686-0.845)0.766 (0.686-0.845)AUC (95% CI)

98.0% (97.8%-98.3%)98.3% (98.0%-98.7%)98.8% (98.4%-99.1%)NPV (95% CI)

16.7% (4.3%-29.6%)9.2% (5.1%-13.9%)8.3% (5.9%-10.7%)PPV (95% CI)

12.5% (2.5%-22.5%)30.0% (15.0%-45.0%)52.5% (37.5%-67.5%)Sensitivity (95% CI)

98.6% (98.0%-99.1%)93.4% (92.2%-94.5%)86.9% (85.3%-88.4%)Specificity (95% CI)

96.7% (96.1%-97.3%)92.0% (90.7%-93.2%)86.2% (84.4%-87.7%)Accuracy (95% CI)

aHosmer-Lemeshow test: χ2
98=13.1; P=.99.

bHosmer-Lemeshow test: χ2
8=4.8; P=.78.

PPVs were on the low side due to the low prevalence of 30-day
emergency hospital transport, which was around 2.2% in both
validation cohorts (Table 3). By increasing the prediction score
threshold, PPV increased but at the expense of decreased
sensitivity. In validation cohort 1, at a risk score threshold
corresponding to the 90th percentile, the predictive model
identified 43.8% (95% CI 42.5%-45.0%) of the patients who
had emergency transport in the 30 days following the prediction
date (sensitivity); however, only 9.6% (95% CI 9.3%-9.9%) of
flagged patients had emergency transport in the following 30
days (PPV) at this threshold. At thresholds corresponding to
the 95th and 99th percentiles, the sensitivity dropped to 30.5%
(95% CI 29.3%-31.7%) and 11.5% (95% CI 10.7%-12.3%),
respectively, while the PPV increased to 13.5% (95% CI
13.1%-14.0%) and 25.5% (95% CI 24.1%-27.2%), respectively.
This analysis using different thresholds illustrates the trade-off
between sensitivity and PPV, that is, trying to find as many
positive cases as possible with an acceptable false-positive rate.
A similar trade-off between sensitivity and PPV was also
observed in validation cohort 1.

The predictive model produced a probability (from 0% to 100%)
for each patient to assess the risk of 30-day emergency hospital

transport. The actually observed percentage of patients with
emergency hospital transport increased as the predicted
probabilities increased (Figure 3). At predicted probabilities
between 80% and 100%, 80% (4/5) of patients had 30-day
emergency hospital transport in validation cohort 1.

Predictor Variables
Table 5 provides the number of predictors and total gain, a
measure of predictability, for each broad category of predictors.
Predictors from the medical alert data formed the most important
predictor category for the predictive model, as they accounted
for 87.7% of the total gain. A total of 8 predictor variables with
zero gain did not contribute to predictability. These included
certain uncommon medication allergies and self-reported
medical conditions.

The predictive model of 30-day emergency hospital transport
included 121 variables with nonzero values for the gain. Figure
4 shows the 5 most important predictors for each category. For
self-reported medical conditions, COPD, CHF, and heart
conditions are among the 5 most important predictors. Other
important predictors include age, sex, and the number of
responders.
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Figure 3. Observed percentage of patients needing 30-day emergency hospital transport versus model-predicted probability in validation cohort 1.

Table 5. Number of predictors and total gain per predictor category.

Total gain (%)Number of predictorsPredictor category

87.762Medical alert pattern-based predictors

3.744Self-reported medical conditions and medication allergies

8.715Other predictors

Comparison With Clinical Outcomes
We then used the predictive model of 30-day emergency hospital
transport to segment validation cohort 2 into high risk (>95th
percentile), medium risk (51st-95th percentile), and low risk
(≤50th percentile) after ranking them according to the predicted
probabilities of 30-day emergency hospital transport. We
normalized the number of emergency encounters (both
outpatient visits and inpatient admissions) in the year following

the prediction date to 100 patients (Figure 5). Compared with
emergency encounters in the low-risk group, patients in the
high-risk group had significantly more emergency encounters
at 30 (P=.001), 60 (P<.001), 90 (P<.001), 180 (P<.001), and
365 (P<.001) days. The medium-risk group had significantly
more emergency encounters at 90 (P=.01), 180 (P<.001), and
365 (P<.001) days. After 365 days, there were 3.9 times more
emergency encounters in the high-risk group than in the low-risk
group.
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Figure 4. The 5 most important variables in the predictive model for 3 categories of predictors: predictors derived from medical alert data, self-reported
medical conditions, and other predictors. Predictor importance as measured by the gain is reported for validation cohort 1. COPD: chronic obstructive
pulmonary disease; PERS: personal emergency response system.

Figure 5. Emergency encounters per 100 patients (pts) in low-, medium-, and high-risk groups in the year following the prediction date. Data shown
are for validation cohort 2. *P<.05 compared with low risk, pairwise Wilcoxon rank sum test.
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Discussion

Principal Findings
Retrospective validation demonstrated the effectiveness of the
PERS medical alert data-based predictive model of 30-day
emergency hospital transport in identifying patients at risk of
hospital transport with good discrimination (AUC=0.779). A
goodness-of-fit test and calibration plot indicated that the
model-predicted probabilities matched with observed outcomes
across ranges of predicted risk. We evaluated the trade-off
between finding many true-positive cases (ie, a high sensitivity)
and reducing the number of false-positives (ie, a high PPV) by
varying the threshold to classify patients as positive. At a risk
threshold corresponding to the 99th percentile, 1 out of 4 patients
flagged at high risk needed hospital transport in the next 30
days (PPV=25.5%), while at this threshold the sensitivity was
rather low at 11.5%. PPV was nearly 12 times higher than the
prevalence of 30-day emergency transport in validation cohort
1, which was 2.20%. The trade-off between sensitivity and PPV
was also reported by other predictive modeling studies of
emergency health care utilization [18,25].

Recent studies have reported on the development and validation
of predictive models that can be used to systematically identify
individuals at high risk for an unfavorable outcome in a hospital
setting [26,27]. Such risk assessment models have great potential
to inform treatment decisions and improve the quality of care
delivered to patients [26-28]. As innovative connected health
technologies and value-based care policy influence the evolution
of geriatric models of care to deliver more individualized,
multifaceted management strategies, home health programs for
community-dwelling seniors may benefit from enhanced risk
assessment of patients. For instance, a 32-center randomized
controlled trial of the guided care model used health care
encounter–based predictive modeling software to identify the
25% of patients with the highest risk of needing complex health
care in the coming year. The study provided them with geriatric
assessment and specialized support, resulting in significantly
reduced health care utilization by home health care patients
compared with a group that followed usual care [29]. By using
remotely collected PERS data to predict the risk of emergency
health care utilization, our predictive model of 30-day
emergency hospital transport presents a unique opportunity to
efficiently allocate limited health care resources to patients who
need them the most and thereby reduce costs associated with
excessive use.

This predictive modeling study was, to the best of our
knowledge, unique, as it used PERS data to predict emergency
hospital transport. Most state laws in the United States require
that patients in need of emergency medical care must be taken
to the nearest appropriate health care facility capable of treating
the patient, which may be an out-of-network facility.
Furthermore, in case of ED crowding [30], ambulance diversion
to other potentially out-of-network facilities may be requested.
In both cases, the resulting ED visit may not be captured in the
EHR of the in-network organization. Therefore, predictive
models of emergency health care utilization developed on EHR
data of a particular health care provider may be missing outcome

data. We minimized this limitation in our study, since response
agents from the PERS service recorded information about any
ambulance transport after an incident that required help from
an EMS in the electronic case record of the user.

Linkage of PERS and EHR data in a cohort of 1815 PERS users
who were patients of an accountable care organization in the
greater Boston area group enabled comparison of PERS–based
predicted risk of 30-day emergency hospital transport with
emergency encounters derived from the clinical EHR. The
patients in the high-risk group—that is, those above the 95th
percentile range of risk for emergency transport—also had 3.9
times more emergency encounters per 100 patients in the year
following the prediction date than did patients classified as
having low risk. Here we specifically analyzed rates of health
care encounters, as these are the events that could ultimately be
avoided with the appropriate interventions. These results suggest
that prediction of emergency health care utilization based on
PERS data may be a good alternative to EHR-based prediction
models, which could be especially helpful for continuous
monitoring of patients after discharge and where patients have
missing or limited EHR records.

Our previous study on health care utilization by PERS users
indicated that 21% of emergency admissions were considered
potentially avoidable [10]. Therefore, we believe that prediction
of risk for emergency transport, in combination with appropriate
interventions, could potentially reduce emergency
hospitalizations. Clinical and financial implications of predictive
models largely depend on how well case managers and health
professionals can integrate risk prediction of patients into
clinical workflows. It is vital to have a detailed guideline that
clarifies how the algorithm will inform care [15]. An example
of such an approach is a predictive model to detect impending
deterioration of patients outside the intensive care unit [31],
which was implemented in routine clinical care in 2 community
hospitals [32]. In an ongoing randomized clinical trial, we are
developing workflows that integrate daily PERS–based risk of
30-day emergency hospital transport with care pathways [33].
In this randomized clinical trial, we are using the predictive
model described herein to predict patients’ risk for 30-day
emergency transport, followed by a nurse assessment and
tailored interventions for high-risk patients. The number of
patients who will ultimately benefit from a combination of
prediction and intervention will depend on various factors,
including the population size and the prevalence of emergency
health care utilization, the performance of the predictive model
and the risk threshold above which patients are considered to
be high risk, and the efficacy of the interventions provided to
high-risk patients.

Limitations
This study had a few limitations. The PERS population is mostly
old and primarily female, and the service is predominantly
privately paid for by patients and not covered by their health
insurance. This may limit the generalizability of the study to
older women who can afford the service. Interpretation of the
predictive model may have been influenced by confounding of
unobserved variables, including when and where users wore
the PERS device [34]. While the second objective of the study
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was to validate the PERS–based prediction model in a specific
health system, we believe it is more broadly applicable, since
the prediction model was developed on PERS–data only and
did not rely on specific inputs from the EHR.

More PERS subscribers in validation cohort 2 self-reported on
medical conditions than in the development and validation
cohorts. It is likely that this cohort was a biased patient group
with higher risk and more medical conditions, as they were
receiving care from a health care provider. Given that the AUC
for 30-day transport was not significantly lower in validation
cohort 2, we do not expect that this affected the predictions.
Furthermore, patients with emergency transport in validation
cohort 2 may not have ended up in the ED of one of the hospitals
of the Partners HealthCare network, but in a different hospital
system, such that emergency health care utilization was not
recorded in the EHR data that we used. Additionally, patients
may have initiated emergency hospital transport outside of the
PERS service. Both above-mentioned limitations may have
affected the correlation between PERS–based risk for emergency

hospital transport and emergency encounters derived from the
EHR.

Conclusions
This study showed that remotely collected patient data using a
PERS service can be used to predict 30-day hospital transport.
Furthermore, linking these data to clinical observations from
the EHR showed that predicted high-risk patients had nearly
four times higher rates of emergency encounters in the year
following the prediction date compared with low-risk patients.
Health care providers could benefit from our validated predictive
model by estimating the risk of 30-day emergency hospital
transport for individual patients and target timely preventive
interventions to high-risk patients. We are testing this hypothesis
in a randomized clinical trial where risk predictions are
combined with a stepped intervention pathway. This approach
could lead to overall improved patient experience, higher quality
of care, and more efficient resource utilization. Future studies
should explore the impact of combined EHR and PERS data on
predictive accuracy.
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CHF: congestive heart failure
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ED: emergency department
EHR: electronic health record
EMS: emergency medical service
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PERS: personal emergency response system
PHH: Partners HealthCare at Home
PPV: positive predictive value
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