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Abstract

Background: Pharmacovigilance and drug-safety surveillance are crucial for monitoring adverse drug events (ADEs), but the
main ADE-reporting systems such as Food and Drug Administration Adverse Event Reporting System face challenges such as
underreporting. Therefore, as complementary surveillance, data on ADEs are extracted from electronic health record (EHR) notes
via natural language processing (NLP). As NLP develops, many up-to-date machine-learning techniques are introduced in this
field, such as deep learning and multi-task learning (MTL). However, only a few studies have focused on employing such
techniques to extract ADEs.

Objective: We aimed to design a deep learning model for extracting ADEs and related information such as medications and
indications. Since extraction of ADE-related information includes two steps—named entity recognition and relation extraction—our
second objective was to improve the deep learning model using multi-task learning between the two steps.

Methods: We employed the dataset from the Medication, Indication and Adverse Drug Events (MADE) 1.0 challenge to train
and test our models. This dataset consists of 1089 EHR notes of cancer patients and includes 9 entity types such as Medication,
Indication, and ADE and 7 types of relations between these entities. To extract information from the dataset, we proposed a
deep-learning model that uses a bidirectional long short-term memory (BiLSTM) conditional random field network to recognize
entities and a BiLSTM-Attention network to extract relations. To further improve the deep-learning model, we employed three
typical MTL methods, namely, hard parameter sharing, parameter regularization, and task relation learning, to build three MTL
models, called HardMTL, RegMTL, and LearnMTL, respectively.

Results: Since extraction of ADE-related information is a two-step task, the result of the second step (ie, relation extraction)
was used to compare all models. We used microaveraged precision, recall, and F1 as evaluation metrics. Our deep learning model
achieved state-of-the-art results (F1=65.9%), which is significantly higher than that (F1=61.7%) of the best system in the MADE1.0
challenge. HardMTL further improved the F1 by 0.8%, boosting the F1 to 66.7%, whereas RegMTL and LearnMTL failed to
boost the performance.

Conclusions: Deep learning models can significantly improve the performance of ADE-related information extraction. MTL
may be effective for named entity recognition and relation extraction, but it depends on the methods, data, and other factors. Our
results can facilitate research on ADE detection, NLP, and machine learning.
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Introduction

Background
An adverse drug event (ADE) is an injury resulting from a
medical drug intervention [1]. Previous studies reported that
ADEs could account for up to 41% of all hospital admissions
[2,3]. An ADE may cause a prolonged length of stay in the
hospital and increase the economic burden [4]. The annual cost
of ADEs for a 700-bed hospital is approximately $5.6 million
[5]. Moreover, the total number of iatrogenic deaths can reach
nearly 800,000 per year, which is higher than the death rate of
heart disease or cancer [6]. In 2013, medical error, including
ADEs, is the third most-common cause of death in the United
States [7]. Therefore, ADE detection and report are crucial for
pharmacovigilance and drug-safety surveillance [8,9].

Two methods are usually used to detect and report ADE. In
premarketing surveillance, ADEs can be discovered during
phase III clinical trials for drug development. In postmarketing
surveillance, ADEs are discovered by patients and physicians
using the Food and Drug Administration (FDA) Adverse Event
Reporting System (FAERS). These traditional methods are
limited by the number of participants [10], underreporting [11],
and missing patterns of drug exposure [12]; for example,
underreporting is a known issue in FAERS and may occur due
to several reasons. First, the objective and content of the report
in FAERS change over time, which may confuse physicians
and the general public. Second, patients may choose not to
mention some reactions, due to which practitioners fail to report
them. Third, ADEs with long latency or producing unusual
symptoms may be unrecognized. Other reasons may include
payments from pharmaceutical companies to doctors [13] and
inefficient communication between patients, physicians, and
pharmacists. Recently, the FDA made the FAERS data available
through a public dashboard [14]. Since anyone can view ADE
reports online, this venture may help the FDA receive feedback
to improve the FAERS.

Many researchers have used other resources to identify ADEs,
such as biomedical publications [15,16], social media [17,18],
and electronic health record (EHR) notes [19-21]. The ADEs
extracted from these resources are an important complement to
traditional ADE-surveillance systems. However, manual
collection of ADEs from these data is laborious [22]. As such,
the use of computer systems is a good choice to automatically
detect ADEs, but may fail since these data are often unstructured
text. Therefore, natural language processing (NLP) techniques
are employed for this significant task [15,20,21,23].

From the viewpoint of NLP, ADE detection is covered under
the task of information extraction, which includes ADE
extraction as well as information related to ADE, such as

medications and indications. Extraction of ADE-related
information can be casted as a two-step pipeline. The first step
is named entity recognition (NER) [24], which recognizes a
string of text as an entity (eg, medication or ADE) that is
predefined by dataset annotators. The second step is relation
extraction (RE) [15], which is a model that determines whether
two entities have a specific relation (eg, medication and ADE).

Previous studies employed traditional machine-learning
techniques [15,16,23,24] such as condition random field (CRF)
[25] or support vector machine (SVM) [26]. Recently, deep
learning attracted much attention in NLP due its numerous
advantages such as better performances and less feature
engineering compared to other systems [27,28]. However, only
a few studies have addressed extraction of ADE-related
information via deep learning. Since ADE detection can be
divided into two tasks (ie, NER and RE), it is logical to
incorporate multi-task learning (MTL) [29] into ADE detection.
However, only limited prior work has investigated the impact
of MTL on ADE detection.

Relevant Literature

Adverse Drug Event Detection
Since ADEs play an important role in drug-safety surveillance,
ADE detection receives increasing attention from both the
federal regulation and the research community. Besides the
official reporting system FAERS, there are other databases that
collect data on known ADEs, such as the Comparative
Toxicogenomics Database [30] and SIDER [31]. Various
resources have been used to detect ADEs, such as biomedical
publications [15,16], social media [17,18], and electronic health
record (EHR) notes [19-21]. For example, Gurulingappa et al
[16] leveraged medical case reports to build a corpus in order
to support drug-related adverse effects. Wei et al [15] organized
a challenge task to extract chemical-induced disease relations
from the literature and created an annotated corpus from 1500
articles. With respect to the methods, both supervised and
unsupervised methods were used. Ramesh et al [32] developed
a supervised machine-learning model to extract adverse event
entities from FAERS narratives. Xu and Wang [33] used a
semisupervised bootstrapped method to construct a knowledge
base for the drug-side-effect association. Liu et al [34] proposed
a causality-analysis model based on structure learning for
identifying factors that contribute to adverse drug reactions.
Yildirim et al [35] applied the k-mean algorithm to identify
adverse reactions. Xu et al [23] used SVM to extract ADEs
between sentence-level and document-level drug-disease pairs.
Recently, Munkhdalai et al [21] attempted to use deep learning
to address ADE extraction, but their model was not end-to-end
and relied on the entities.
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Figure 1. Study overview. NER: named entity recognition. RE: relation extraction. BiLSTM: bidirectional long short-term-memory. CRF: conditional
random field. MTL: multi-task learning. MADE: Medication, Indication, and Adverse Drug Events. HardMTL: multi-task learning model for hard
parameter sharing. RegMTL: multi-task learning model for soft parameter sharing based on regularization. LearnMTL: multi-task learning model for
soft parameter sharing based on task-relation learning.

Named Entity Recognition
NER is a standard task that has been studied for many years in
NLP [25]. Many researchers made important contributions to
dataset construction including the GENIA corpus [36], the NCBI
disease corpus [37], and the ShARe/CLEF eHealth evaluation
[38]. Early studies addressed NER by diverse approaches such
as rule-based [39] and machine-learning approaches [40-42],
among which CRF-based approaches predominated. For
example, Campos et al [40] presented a CRF model to
recognize biomedical names, which achieved state-of-the-art
performance at the time by incorporating rich features. Tang et
al [43] modified the label scheme of CRF to make it be capable
of recognizing disjoint clinical concepts. However, such
approaches need many efforts for feature engineering. Recently,
a bidirectional LSTM (BiLSTM) model [44,45] was proposed
and became a popular method for NER. In the biomedical
domain, Jagannatha and Yu [20] used such a model to detect
medical events from EHR notes.

Relation Extraction
RE has been widely studied, and some typical RE corpora in
the biomedical domain include the 2010 i2b2/VA challenge
[46] and BioCreative V CDR task [15]. Early work used rules
and NLP structures such as dependency trees [47] and
coreference chains [48] to help extract relations. Others usually
leveraged machine-learning approaches such as SVM [49,50]
and structured learning [51]. As deep learning developed,
researchers proposed a number of neural network models to
handle RE [52,53]. Our study is related to the joint or end-to-end
entity and RE, which allows performance of NER and RE
simultaneously. Miwa and Bansal [54] proposed an end-to-end
model based on the sequence and tree LSTM. Similarly,
Mehryary et al [55] proposed an end-to-end system to extract
information about bacteria and their habitats.

Multi-Task Learning
MTL [29] refers to training the model for multiple related tasks.
It is widely used in artificial intelligence research such as
computer vision [56] and NLP [57]. Learning these tasks
simultaneously may improve the performance as compared to
learning the tasks individually. Prior MTL studies mostly

focused on homogeneous MTL that consists of tasks with only
one type such as classification or regression [58]. Some of their
tasks are closely related, such as cross-lingual [59] and synthetic
data [60]. Based on a previous study [58], MTL can be roughly
divided into two categories—hard and soft parameter sharing.
For hard parameter sharing, the lower layers are shared among
multiple tasks and each task has its own higher layer [54]. For
soft parameter sharing, each task has its own model with its
own parameters. There are some representative methods for
soft parameter sharing such as regularization [59] or learning
task relations [56].

Objective
Since only a few prior studies have addressed end-to-end
detection of ADE via deep learning, we aimed to design a
two-step pipeline model that consists of two submodels: a
BiLSTM [61] CRF [25] network for NER and a
BiLSTM-Attention [62] network for RE. Since extraction of
ADE-related information includes two steps, it is possible to
study the impact of MTL on NER and RE. However, only
limited prior work has focused on MTL with such heterogeneous
and loosely related tasks. Therefore, our second objective was
to fill this gap by proposing three MTL models and comparing
them with the pipeline model. An overview of this study is
shown in Figure 1.

Methods

Deep Learning Pipeline Model

BiLSTM-CRF Submodel for NER
Our NER submodel is presented in Figure 2. We extended the
state-of-the-art BiLSTM-CRF model [44,45] by enriching its
features. For a sentence, we extracted four kinds of features for
each token, namely, its word, whether the initial character is
capital, its part-of-speech (POS) tag, and its character
representation. We employed a convolutional neural network
to obtain character representation. After the token
representations are obtained by concatenating the features, we
fed them into a bidirectional LSTM layer to learn the hidden
representations. Subsequently, the hidden representations were
input into the CRF layer to determine the optimal labels for all
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the tokens in the sentence. For labels, we use the BMES (Begin,
Middle, End, Singular) label scheme [45] plus entity types. For
example, the label of the token “Renal” is “B_Disease.” The
details of the BiLSTM-CRF submodel for NER are provided
in Multimedia Appendix 1.

BiLSTM-Attention Submodel for RE
Our RE submodel is presented in Figure 3. A relation instance
can be considered as a token sequence and two target entities.
Here, the token sequence did not necessarily have to be one
sentence, as we could also extract intersentence relations. For
each token, we extracted four kinds of features, namely, its
word, its POS tag, and the position embeddings [63]. Here, the
character representation was not used, because it reduced the
performance in our preliminary experiments. Similar to the case
for NER, we employed a BiLSTM layer to generate the hidden
representations. Subsequently, the attention method [62] was
used to obtain context features.

Because only context features may not be enough to capture
the semantic relation, we also employed other features for
concision, which are not shown in Figure 3. Considering
previous work [21], these features included words of two target
entities, types of two target entities, the token number between
two target entities, and the entity number between two target
entities. Like the word or POS embeddings, these features can
be represented as vectors. Therefore, the output layer considers
the concatenation of all these features to determine the relation
of target entities. The details of the BiLSTM-Attention submodel
for RE are provided in Multimedia Appendix 2.

Multi-Task Learning Models
In this section, we propose three MTL models: one model used
hard parameter sharing [54] and two models used soft parameter
sharing, namely, regularization [59] and task relation learning
[56].

HardMTL
Our MTL model for hard parameter sharing is presented in
Figure 4. We employed the shared-private architecture [64] to
make each submodel of each task retain its private parts and
share some parts for multi-task learning. The NER and RE

submodels had their own BiLSTM layers, namely, LSTMner and

LSTMre, and shared a BiLSTM layer, LSTMshare. During training,

the shared BiLSTM layer LSTMshare was used by both the NER
and RE submodels, so that it was tuned during the
back-propagation by both submodels. Therefore, the model was

able to learn useful knowledge from both tasks. The details of
the HardMTL model are provided in Multimedia Appendix 3.

RegMTL
Our first MTL model for soft parameter sharing was based on
regularization, and its architecture is presented in Figure 5. With
reference to previous studies [59,60], we employed the L2
regularization in order to encourage the parameters of the NER
and RE submodels to be similar instead of sharing some parts
in the networks. Two BiLSTM layers were considered because
different inputs of the NER and RE submodels lead to different
dimensions of the first BiLSTM layer; therefore, L2
regularization of the parameters of the first BiLSTM layer was
computationally intractable. We resolved this issue by
performing L2 regularization in the second BiLSTM layer. The
details of the RegMTL model are provided in Multimedia
Appendix 3.

LearnMTL
Our second MTL model for soft parameter sharing was based
on task relation learning [56], and its architecture is illustrated
in Figure 6. After generating hidden representations from the
BiLSTM and attention layers, we used a linear layer, W5, to
exchange information between the NER and RE submodels. To
utilize task-specific and shared information, the concatenation
of hidden representations of the BiLSTM and information

exchange layers was fed into the upper decoders Dner and Dre.
The details of the LearnMTL model are provided in Multimedia
Appendix 3.

Dataset
We used the MADE dataset from the MADE1.0 challenge for
detecting medications and ADEs from EHR notes [65]. It
consists of 1089 EHR notes of patients with cancer, from which
data for 18 common Protected Health Information aspects were
removed according to the Health Insurance Portability and
Accountability Act. The dataset was separated into 876 notes
for training and 213 notes for testing. In this dataset, the
annotators annotated not only ADEs, but also other ADE-related
information. They predefined 9 entity types, namely,
Medication, Indication, Frequency, Severity, Dosage, Duration,
Route, ADE, and SSLIF (any sign, symptom, and disease that
is not an ADE or Indication). In addition, they predefined 7
relation types between these entity types, namely,
Dosage-Medication, Route-Medication, Frequency-Medication,
Duration-Medication, Medication-Indication, Medication-ADE,
and Severity-ADE.
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Figure 2. NER submodel. For simplicity, here we use “Renal Failure” to illustrate the architecture. For “Renal,” the word feature is “Renal,” the capital
feature of the initial character is “R,” the POS feature is “JJ,” and the character representation is generated from CNN. NER: named entity recognition.
CNN: convolutional neural network. CRF: condition random field. LSTM: long short-term memory. CNN: convolutional neural network. POS: part of
speech.

Figure 3. RE submodel. The target entities are “renal failure” (e1) and “antibiotics” (e2). Positions represent token distances to the target entities. RE:
relation extraction. LSTM: long short-term memory. POS: part of speech.
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Figure 4. The high-level view of HardMTL. For conciseness, “LSTM” indicates a BiLSTM layer, and the layers above the BiLSTM layer are denoted

as Dnew and Dre. The forward procedures for an NER instance and an RE instance are indicated by blue and green arrow lines, respectively. HardMTL:
multi-task learning model for hard parameter sharing. LSTM: long short-term-memory. BiLSTM: bidirectional long short-term-memory. CRF: conditional
random field. NER: named entity recognition. RE: relation extraction.

Figure 5. The high-level view of RegMTL. LSTM1
ner and LSTM2

ner indicate the first and second BiLSTM layers of the NER model. LSTM1
re and

LSTM2
re indicate the first and second BiLSTM layers of the RE model. NER: named entity recognition. RE: relation extraction. RegMTL: multi-task

learning model for soft parameter sharing based on regularization. BiLSTM: bidirectional long short-term-memory. CRF: conditional random field.
LSTM: long short-term-memory.
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Figure 6. The high-level view of LearnMTL. LearnMTL: multi-task learning model for soft parameter sharing based on task-relation learning. CRF:
conditional random field. LSTM: long short-term-memory.

Results

The experimental settings used to obtain these results are
provided in Multimedia Appendix 4.

Comparison Between Our Best Model and Existing
Systems
We compared our models with the top three systems in the
MADE1.0 challenge. Chapman et al [66] used CRF for NER
and random forest for RE. Specifically, two random forest
models were used—one for detecting whether relations exist
between entities and the other for classifying what specific
relation type exists. Xu et al [67] used BiLSTM-CRF for NER
with word, prefix, suffix, and character features. For RE, they
used SVM and designed features such as positions, distances,
bag of words, and bag of entities. Dandala et al [68] also used
BiLSTM-CRF for NER, but they input different features into
the model such as words, POS tags, and characters. For RE,
they employed the BiLSTM-Attention model that takes tokens,
entity types, and positions as input.

Full neural systems ([68] and our study) achieve better
performances with the MADE dataset than with other systems
(Table 1). Although the main methods between the study of
Dandala et al [68] and our study are similar, our model is much
better, as it significantly improved the F1 for RE by 5%. The
reasons for this superiority may be that we used more features
than previous work, such as capital information and entity
words, and our model attained approximately 0.8% improvement
in F1 from MTL.

Comparison Between the Pipeline and MTL Models
The HardMTL model outperforms other models, achieving an
F1 of 84.5% in NER and 66.7% in RE (Table 2); the pipeline
model ranks second, with F1 values of 84.1% and 65.9%,
respectively. The RegMTL model obtains the best recall in both

NER (84.5%) and RE (63.6%). Surprisingly, the most-complex
MTL model LearnMTL ranked last.

In our experiments, HardMTL successfully boosted the NER
F1 by 0.4% (P=.003) and the RE F1 by 0.8% (P=.01), but
RegMTL and LearnMTL failed to boost the performances. Thus,
the effectiveness of different MTL methods depends on the
selected tasks and data. For heterogenous and loosely related
tasks such as NER and RE, it is more difficult for MTL to be
effective.

Performance of Each Entity Type
Table 3 shows the performance of each entity type. Medication
and Route (both F1>90%) were easier to recognize than other
types. In contrast, ADE is the most-difficult type to recognize
(F1=55%). Other entity types with lower performances included
Indication and Duration.

Performance of Each Relation Type
Table 4 shows the performance of each relation type.
Medication-ADE relations are the most-difficult type to extract
(F1=45.5%). Severity-ADE ranks second (F1=54.1%), followed
by Duration-Medication (F1=59.5%). In contrast,
Route-Medication and Dosage-Medication extraction are
relatively easier, with F1>80%.

Comparison Between the Pipeline Model and MedEx
System
MedEx [69] is an end-to-end system used to identify medications
and their attributes such as routes and dosages. Therefore, the
final results of MedEx correspond to our results for extracting
4 kinds of relations: Route-Medication, Dosage-Medication,
Duration-Medication, Frequency-Medication. Table 5 compares
MedEx with our model. Our model significantly outperformed
MedEx, which demonstrates that our model is a competitive
system in this domain.
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Table 1. Comparison of our model with the existing systems in the Medication, Indication, and Adverse Drug Events dataset. The microaveraged F1s
of relation extraction are shown according to the official evaluation report.

F1Relation extractionNamed entity recognitionSystem

59.2Random forestCRFaChapman et al [66]

59.9Support vector machineBiLSTMb-CRFXu et al [67]

61.7BiLSTM-AttentionBiLSTM-CRFDandala et al [68]

66.7BiLSTM-AttentionBiLSTM-CRFOur Best (HardMTLc)

aCRF: conditional random field
bBiLSTM: bidirectional long short-term memory
cHardMTL: multi-task learning model for hard parameter sharing

Table 2. Performances (%) of the pipeline and multi-task learning models. The values presented are the means of 5 runs of each model. The microaveraged
P, R, and F1s of all entity or relation types are shown.

Relation extractionEntity recognitionMethod

F1RPF1RP

65.962.469.884.183.285.0Pipeline

66.763.670.284.584.185.0HardMTLa

65.163.666.784.584.584.5RegMTLb

64.261.567.283.682.884.5LearnMTLc

aHardMTL: multi-task learning model for hard parameter sharing
bRegMTL: multi-task learning model for soft parameter sharing based on regularization
cLearnMTL: multi-task learning model for soft parameter sharing based on task relation learning

Table 3. Performance (%) of each entity type.

F1RPEntity type

91.392.091.1Medication

64.864.865.4Indication

86.386.587.1Frequency

84.784.784.6Severity

88.086.487.9Dosage

77.676.675.3Duration

91.991.991.6Route

55.457.659.5Adverse drug events

84.984.883.9SSLIFa

aSSLIF: any sign, symptom, and disease that is not an ADE or Indication
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Table 4. Performance (%) of each relation type.

F1RPRelation type

54.154.455.0Severity-Adverse drug events

82.182.581.0Route-Medication

52.952.553.9Medication-Indication

81.079.880.9Dosage-Medication

59.563.760.3Duration-Medication

78.478.677.7Frequency-Medication

45.547.650.4Medication-Adverse drug events

Table 5. Results (%) of comparisons between our pipeline model and the MedEx system.

Pipeline modelMedEx systemEntity type

F1RPF1RP

82.182.581.057.547.971.9Route-Medication

81.079.880.96.23.529.7Dosage-Medication

59.563.760.319.415.625.5Duration-Medication

78.478.677.742.836.252.5Frequency-Medication

Discussion

Principal Findings
Existing systems usually selected a two-step pipeline to address
ADE-related information extraction: recognizing entities and
extracting relations. BiLSTM-CRF is the most-popular model
for NER, whereas the selections of RE models are mixed. All
our models outperformed the existing systems in the MADE1.0
challenge, which may be because of the following reasons: First,
our models benefited from deep learning that is able to learn
better from the data. Second, we enriched the features of deep
learning models; therefore, our model outperformed the system
[68] that used similar deep learning models as ours.

For MTL, we found that the model using hard parameter sharing
(HardMTL) performed better than the other two models using
soft parameter sharing (RegMTL and LearnMTL) and that the
most complex MTL model, LearnMTL, performed the worst
in our data. Our results are not surprising, as different MTL
methods depend on different tasks and data [54,56,59]. Overall,
MTL more difficult between heterogeneous and loosely related
tasks such as NER and RE.

In our experiments, the entity type “ADE” and relation type
“Medication-ADE” were the most difficult information to be
extracted. Based on our analysis, this is not only due to a lack
of training data, but also the intrinsic character of ADEs. ADEs
are often implicit in the context without any obvious pattern,
which negatively affects the model (Example 1 in Multimedia
Appendix 5). In contrast, some entity or relation types with
obvious patterns (eg, Medication-Dosage) are easier to identify
(Example 2 in Multimedia Appendix 5).

Finally, we found that the performance improved when we used
the pretrained word embeddings in the biomedical domain [70]
rather than those in the general domain. Furthermore, if the
pretrained word embeddings were not tuned, our models would

perform better. One likely reason for this is that such a method
can alleviate the overfitting problem.

Error Analysis
We randomly sampled hundreds of error instances of NER and
RE. Through the manual analyses, we found several sources of
errors. For NER, the major false-negative errors are due to long
expressions of entities (Examples 3 and 4 in Multimedia
Appendix 5). These entities (eg, IgG kappa monoclonal protein)
include multiple words; therefore, it is difficult to detect their
boundaries. Moreover, the major false-positive errors for NER
occur because some entity types are incorrectly recognized as
SSLIF (Examples 5 and 6 in Multimedia Appendix 5). This
may be because the training instances of SSLIF are ≥10 times
those of other entity types such as ADE. Thus, imbalanced data
distribution may lead to certain bias of our models.

With respect to RE, the major false-negative errors are due to
long distances between target entities (Example 9 in Multimedia
Appendix 5). The relation of two entities can be expressed
through ≥6 sentences in EHRs; therefore, our model may miss
such relations in a long context. In addition, the major
false-positive errors for RE occur because relation expressions
exist in the instance, but are not related to the target entities
(Examples 7 and 8 in Multimedia Appendix 5). For instance,
in Example 7 of Multimedia Appendix 5, “His current therapy
includes [thalidomide]Entity1 50 mg a day for 2 weeks out of the
month. He had been on Velcade, which was stopped secondary
to increasing [peripheral neuropathy]Entity2, ” “peripheral
neuropathy,” and “thalidomide” have no Medication-ADE
relation, but the model incorrectly predicts their relation due to
the words “secondary to.”

Contributions

The main contributions of this work are as follows: (1) We
proposed an up-to-date deep learning model to perform
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ADE-related information extraction in an end-to-end manner.
Our model achieved new state-of-the-art performance,
improving the F1 by 4.2% (absolute value). (2) To our
knowledge, this is the first attempt to investigate the impact of
MTL on two heterogeneous and loosely related tasks (ie, NER
and RE). One of our MTL models further improved the F1 by
0.8% (absolute value). (3) Our manually annotated
dataset—Medication, Indication, and Adverse Drug Events
(MADE) [65]—will be publicly available to support the research
on extraction of ADE-related information.

Conclusions
We proposed a deep learning model to detect ADEs and related
information. We also investigated MTL on two ADE-related
tasks, NER and RE. Our models achieved state-of-the-art
performance in an ADE-detection dataset. MTL can improve
performance, but it depends on the methods and data used. In
the future, we plan to evaluate our models with more related
datasets.
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