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Abstract

Background: In the United States, a rare disease is characterized as the one affecting no more than 200,000 patients at a certain
period. Patients suffering from rare diseases are often either misdiagnosed or left undiagnosed, possibly due to insufficient
knowledge or experience with the rare disease on the part of clinical practitioners. With an exponentially growing volume of
electronically accessible medical data, a large volume of information on thousands of rare diseases and their potentially associated
diagnostic information is buried in electronic medical records (EMRs) and medical literature.

Objective: This study aimed to leverage information contained in heterogeneous datasets to assist rare disease diagnosis.
Phenotypic information of patients existed in EMRs and biomedical literature could be fully leveraged to speed up diagnosis of
diseases.

Methods: In our previous work, we advanced the use of a collaborative filtering recommendation system to support rare disease
diagnostic decision making based on phenotypes derived solely from EMR data. However, the influence of using heterogeneous
data with collaborative filtering was not discussed, which is an essential problem while facing large volumes of data from various
resources. In this study, to further investigate the performance of collaborative filtering on heterogeneous datasets, we studied
EMR data generated at Mayo Clinic as well as published article abstracts retrieved from the Semantic MEDLINE Database.
Specifically, in this study, we designed different data fusion strategies from heterogeneous resources and integrated them with
the collaborative filtering model.

Results: We evaluated performance of the proposed system using characterizations derived from various combinations of EMR
data and literature, as well as with sole EMR data. We extracted nearly 13 million EMRs from the patient cohort generated
between 2010 and 2015 at Mayo Clinic and retrieved all article abstracts from the semistructured Semantic MEDLINE Database
that were published till the end of 2016. We applied a collaborative filtering model and compared the performance generated by
different metrics. Log likelihood ratio similarity combined with k-nearest neighbor on heterogeneous datasets showed the optimal
performance in patient recommendation with area under the precision-recall curve (PRAUC) 0.475 (string match), 0.511
(systematized nomenclature of medicine [SNOMED] match), and 0.752 (Genetic and Rare Diseases Information Center [GARD]
match). Log likelihood ratio similarity also performed the best with mean average precision 0.465 (string match), 0.5 (SNOMED
match), and 0.749 (GARD match). Performance of rare disease prediction was also demonstrated by using the optimal algorithm.
Macro-average F-measure for string, SNOMED, and GARD match were 0.32, 0.42, and 0.63, respectively.

Conclusions: This study demonstrated potential utilization of heterogeneous datasets in a collaborative filtering model to support
rare disease diagnosis. In addition to phenotypic-based analysis, in the future, we plan to further resolve the heterogeneity issue
and reduce miscommunication between EMR and literature by mining genotypic information to establish a comprehensive
disease-phenotype-gene network for rare disease diagnosis.
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Introduction

Background
In the United States, a rare disease is described as the one
affecting no more than 200,000 patients at a certain time [1].
Currently, there are nearly 10% Americans suffering from rare
diseases [2]. However, patients often are misdiagnosed or left
undiagnosed because of insufficient clinical knowledge and
experience. Furthermore, merely 5% of these diseases have
treatment plans [2]. Therefore, accelerating rare disease
diagnostic decision support is crucial and urgent.

The very initial step in diagnosing rare disease is to stratify
patients into subgroups with similar phenotypic
characterizations. In addition, with computationally accessible
medical data growing at an exponential rate, an abundance of
rare disease-related phenotypic information is believed to be
buried in electronic medical records (EMRs) and medical
literature. Therefore, we hypothesize that patients’ phenotypic
information available among these resources can be leveraged
to accelerate disease diagnosis. Few studies focus on phenotypic
characterization of diseases and the analysis of
phenotype-disease associations from free-text data such as
EMRs and medical literature. One of the most representative
efforts, the Human Phenotype Ontology (HPO) [3] was built to
collect human phenotypic information for the differential
diagnosis of rare diseases. In our previous work, we leveraged
the HPO to annotate a large collection of clinical narratives and
demonstrated a use case by using an annotation pipeline to
perform knowledge discovery on Wilson disease [4]. We also
proposed the use of collaborative filtering in our previous study
for rare disease diagnosis [5], as making diagnostic decision
making for a patient based on phenotype is similar to
recommending a similar online product according to customers’
previous purchases in e-commerce [6-8].

Since all datasets are flawed, it is important to prepare data with
good quality, as machine learning depends heavily on data [9].
Especially for collaborative filtering algorithm, a proper
preparation of data can largely avoid key information loss and
improve learning performance [10]. More challenges come into
the picture while feeding heterogeneous data into collaborative
filtering model.

Previous Work
One of these challenges is the alignment of semantic
heterogeneity. Semantic heterogeneity is referred to as a
situation where 2 or more datasets are provided by different
parties with various perspectives and purposes [11]. For
structured data, the fusion of heterogeneous data is difficult due
to inconsistent data models, data schemas, query languages,
and terminology [12]. For unstructured or semistructured data,
such issues are exacerbated as schemas must become much
more flexible to accommodate the nonstandardized data and as
such semantic drift becomes a more significant problem. Some

studies have focused on making good semantic alignment across
heterogeneous data. For example, MedKDD is a system for
integrating and aligning heterogeneous biomedical ontologies
[13]. Bache et al targeted on identifying patient cohort from
heterogeneous resources by developing an adaptive query model
[14]. Bleich et al made a comparison between integrated and
interfaced hospital systems [15]. Burkle et al conducted a study
to transfer data stored in one electronic patient record to another
health care information system [16]. EHR4CR demonstrates an
interoperable way to reuse electronic health records [17]. Mate
et al conducted a study on integrating ontology data between
clinical and research systems [18]. SHRINE provides a platform
for disease studies across multiple health care institutions [19].
Ohmann et al proposed an overview of studies on data
interoperability of basic research, clinical research, and medical
data [20].

Another challenge is to get benefit from heterogeneous data to
improve performance of machine learning. To investigate this,
Lewis et al applied support vector machine on heterogeneous
biological data to infer gene function [21]. Yu et al introduced
a l2-norm multiple kernel learning algorithm and applied it on
biomedical data fusion [22]. Ye et al showed a study on
Alzheimer disease using heterogeneous data fusion [23]. Wang
et al made a comparison among clinical notes, biomedical
literature, and their combination to test their performances with
word embeddings [24]. Torii et al showed the performance for
concept extraction using machine learning taggers across
narratives from heterogeneous data sources [25]. A GOstruct
extension was developed to annotate protein functions from
heterogeneous data [26].

Objective
According to the aforementioned related work, although some
success was demonstrated, the issue regarding semantic
heterogeneity is still an unsolved puzzle. Moreover, to the best
of our knowledge, no study has paid attention to the impact of
applying collaborative filtering on heterogeneous data, especially
in biomedical domain. Therefore, it is interesting to investigate
how data fusion strategies on heterogeneous resources can work
with collaborative filtering for an optimal recommendation.

In this work, we developed a new framework based on our
previous designed collaborative filtering system to incorporate
heterogeneous data sources with different data fusion strategies
to assist in diagnosing rare diseases. We extracted Unified
Medical Language System concepts with MetaMap [27] and
applied the HPO with the Genetic and Rare Diseases Information
Center (GARD) [28] to annotate clinical notes at the Mayo
Clinic generated from 2010 to 2015 as well as research articles
stored in the Semantic MEDLINE Database (SemMedDB) [29]
published up to December 2016. We integrated different data
fusion strategies with collaborative filtering and evaluated their
performances for patient recommendation and rare disease
prediction.
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Methods

Data Collection
For the EMR dataset, we collected clinical notes generated at
the Mayo Clinic from 2010 to 2015. The extracted corpus
maintained about 13 million unstructured clinical notes for over
700,000 patients. We only annotated sections with problems
and diagnoses. For the medical literature dataset, we extracted
abstracts of research articles from the SemMedDB. We then
used HPO and GARD terms to match either subject or object
for each predication [29] and finally came up with 91,680
phenotype-rare disease associations to process.

Collaborative Filtering Model for Rare Disease
Recommendation
In e-commerce, collaborative filtering techniques [30] are
popularly applied to recommend products to a customer based
on customers with similar purchase preferences and other
interests. Diagnosing a patient with a disease based on patients’
phenotypic information is very similar to recommending a
product to a customer; therefore, it is natural to propose the use
of collaborative filtering for disease diagnosis.

In our previous work, we developed a collaborative filtering
model based on a cohort of rare disease patients to stratify
patients into subgroups and accelerate the diagnosis of rare
diseases. Here, we treated patient profiles with their respective
phenotypes as binary inputs, which means that the patient either
has or does not have a phenotype. For the patients with a
confirmed rare disease diagnosis, we used their phenotypes as
input and treated their rare disease diagnosis as labels to train
the collaborative filtering model.

Specifically, we applied the Tanimoto coefficient similarity
(TANI), overlap coefficient similarity (OL), Fager & McGowan
coefficient similarity (FMG), and log likelihood ratio similarity
(LL) as 4 measurements to compute patient similarity [5]. For
any 2 patients m and n, |Pm| and |Pn| denote the number of
phenotypes each patient has, and TANI, OL, FMG, and LL are
described as shown in Equations 1, 2, 3, and 4, respectively.

We also applied 2 neighborhood algorithms to provide
recommendations: k-nearest neighbors (KNN) and threshold
patient neighbor (TPN) [5]. Detailed steps of identifying
neighborhood for 2 approaches are shown in Textbox 1.

Semantic MEDLINE Database
SemMedDB is a repository of semantic predications (ie,
subject-predicate-object triples) extracted from the titles and
abstracts of all PubMed citations [29,31-33]. In this study, we
used SemMedDB Version 25, which contains more than 84
million predications (ie, associations) between concepts retrieved
from abstracts of over 25 million PubMed-indexed publications
[34].

Human Phenotype Ontology
The HPO is a standardized vocabulary for phenotypic terms,
and it is built based on collecting phenotypic knowledge from
various biomedical literature as well as databases. In this study,
we used HPO released in September 2016 to annotate
phenotypic terms.

Genetic and Rare Diseases Information Center
The GARD is a database that contains information on rare
diseases. It groups collected 4560 diseases into 32 disease
categories. In this study, we used the GARD to extract rare
disease terms.

Textbox 1. Algorithm 1-Neighborhood identification.

Input: Sorted Similarity Score Map S (Neighbor_Patient, Score) for each patient, number of neighbor k, similarity threshold t

Output for KNN: Neighbor List LK

Output for TPN: Neighbor List LT

1. FOR each neighbor_patient NP in S

2.      scorenp=S.get(NP)

3.      IF (LK.size()<k)

4.         add NP into LK

5.      IF (scorenp>t)

6.         add NP into LT

7. RETURN LK, LT
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Learning Methods
Figure 1 illustrates the system workflow of our study. The
proposed system is able to absorb heterogeneous data sources,
and it adapted the collaborative filtering model on any type of
input for rare disease recommendation in a general manner. For
EMRs, we leveraged the developed annotation pipeline to collect
all phenotypic information mentioned within 1 year of the first
appearance of the rare disease [4]. For medical literature, we
first retrieved all predications from SemMedDB and saved them
with PMID. We looked up HPO and GARD glossaries to check
each predication (subject, predicate, object) and filtered out
those sentences in which neither subject nor object could be
found. To exclude disease-disease and phenotype-phenotype
associations, we also filtered out those predications in which
both the subject and the object could be mapped to the same
vocabulary (GARD or HPO) and only kept the associations
between phenotypes and rare diseases.

The format of input data is composed of patient identification
or PMID and unique phenotypes manifested by each patient or
article. We treated a positive diagnosis of a rare disease as a
gold standard for association tasks involving patients and PMID
to rare disease mentions as a gold standard for literature
association tasks. We used 3 different data fusion strategies to
prepare homogeneous and heterogeneous resources:

1. EMR only: Only patient-phenotype information extracted
from the EMR was used.

2. EMR and literature (EMR+L): We first conducted a
treatment on medical literature. Since each publication
might only mention 1 phenotype with 1 rare disease, to
strengthen the evidence power provided by the literature,
we merged multiple literature sources together as 1 large
document if those sources shared the same rare disease.
Therefore, the number of documents used will be less than
91,680. We then mixed patient-phenotype association with
literature-phenotype information and randomly permuted
them without any additional treatment. Detailed steps of
this process are shown as case 1 in Textbox 2.

3. EMR and pruned literature (EMR+PL). A similar approach
as EMR+L was followed, but some phenotype-rare disease
associations mined from literature were additionally filtered
out if they did not appear in the EMR. In this case, we tried
to enhance the correlation and coexisting evidence between
phenotypes and rare diseases a bit further to provide a better

prediction output. Case 2 in Textbox 2 demonstrates this
pruned process.

Different phenotype-disease associations with 3 different data
fusion strategies were imported to collaborative filtering model
and the final recommendation outputs based on 3 data inputs
would be given. For example, if a new patient has phenotypes
crystalline retinopathy, optic neuropathy, nephrocalcinosis,
and cysteine stones, 3 different disease recommendations (kidney
stone, calcium oxalate nephrolithiasis, and primary
hyperoxaluria) will be made, and we compared them with such
patient’s true diagnostic results for evaluation purpose.

Evaluation
We evaluated 24 various evaluation groups as: (1) TANI with
KNN on EMR; (2) TANI with KNN on EMR and literature;
(3) TANI with KNN on EMR and pruned literature; (4) TANI
with TPN on EMR; (5) TANI with TPN on EMR and literature;
(6) TANI with TPN on EMR and pruned literature; (7) LL with
KNN on EMR; (8) LL with KNN on EMR and literature; (9)
LL with KNN on EMR and pruned literature; (10) LL with TPN
on EMR; (11) LL with TPN on EMR and literature; (12) LL
with TPN on EMR and pruned literature; (13) OL with KNN
on EMR; (14) OL with KNN on EMR and literature; (15) OL
with KNN on EMR and pruned literature; (16) OL with TPN
on EMR; (17) OL with TPN on EMR and literature; (18) OL
with TPN on EMR and pruned literature; (19) FMG with KNN
on EMR; (20) FMG with KNN on EMR and literature; (21)
FMG with KNN on EMR and pruned literature; (22) FMG with
TPN on EMR; (23) FMG with TPN on EMR and literature; and
(24) FMG with TPN on EMR and pruned literature.

We used the same metrics adopted in our previous work to
evaluate system performance. Specifically, we applied root
mean square error (RMSE) [35] to determine the optimal
thresholds for KNN and TPN. We evaluated performances of
patient recommendations using precision-recall curve and mean
average precision [5]. We also evaluated disease prediction
performance with precision recall and F-measure [5].

Similar to our previous study, we used 3 matching strategies to
measure the similarity between any 2 rare diseases: string
matching, systematized nomenclature of medicine-clinical terms
(SNOMED) matching, and GARD matching to provide different
levels of relaxation on predicting rare diseases [5].

Figure 1. System workflow. EMR: electronic medical record; UMLS: Unified Medical Language System.
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Textbox 2. Algorithm 2-Heterogeneous Data Fusion for electronic medical record and literature.

Input: Map A (PMID, Rare Disease), Map B (PMID, Map(Rare Disease, List(Phenotypes)))

Output for Case 1: Merged literature with same rare disease, stored rare diseases along with their associated phenotypes in Map C

Output for Case 2: Pruned Map C’

Case 1: EMR+L

1. FOR each PMID and Rare Disease RD in A

2.      retrieve all relevant phenotypes {P} for RD and PMID from B

3.      IF C does not contain RD

4.         create new document_ID

5.         add {P} to list L

6.         add (document_ID, (RD, L)) to C

7.      ELSE

8.         List L=A.retrieve(document_ID)

9.         add nonduplicate elements from {P} to list L

10.       add (document_ID, (RD, L)) to C

11. RETURN C

Case 2: EMR+PL

12. C’=C

13. FOR each phenotype-disease pair PD1 in Map E

14.     FOR each phenotype-disease pair PD2 in Map C’

15.         IF (PD1 !=PD2)

16.         remove PD2 from C’

17. RETURN C’

Results

As shown in Table 1, after eliminating rare diseases that affect
only 1 patient, there were 38,607 patients for EMR only, 40,241
patients for EMR and literature, and 39,677 patients for EMR
and pruned literature datasets. Since EMR+L is mixed data
without any refinement, the total number of phenotypes, rare
diseases, and their associations are larger than the other 2
outputs. In addition, of the 32 possible GARD categories, we
found that the number of GARD categories covered for each of
the 3 outputs were 28, 31, and 28, respectively.

Threshold Selection With Root Mean Square Error
For KNN combined with different similarity measurements,
Figure 2 plots the curve to illustrate the change of RMSE
associated with different number of selected neighbors. We
observed that for LL and OL, RMSE was more sensitive to
EMR+L and EMR+PL than to EMR only, which shows that
adding sources of literature might affect the results in either a
positive or negative way. On the other hand, the change of
RMSE for TANI and FMG was minimal among these 3 datasets,
which indicates that literature enrichment did not reflect
markedly on the performance for these 2 algorithms.

Table 1. Statistics for prepared datasets.

EMR and pruned literature (EMR+PL), nEMR and literature (EMR+L), nEMRa only, nDatasets

39,67740,24138,607Patients or literature sources

327138183271Phenotypes

107416341074Rare diseases

141,036154,802141,036Phenotype-disease associations

283128GARDb categories covered

aEMR: electronic medical record.
bGARD: Genetic and Rare Diseases Information Center.
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Figure 2. Root mean square error (RMSE) for k-nearest neighbors (KNN) with four similarity measurements. EMR: electronic medical record; FMG:
Fager and McGowan coefficient similarity; L: literature; LL: log likelihood ratio similarity; OL: overlap coefficient similarity; PL: pruned literature;
TANI: Tanimoto coefficient similarity.

Figure 3 describes how RMSE changes for the tested coefficient
similarities with TPN. We found that TANI is sensitive to a
smaller threshold but tends to be balanced with the threshold
getting larger for all 3 datasets. RMSE for LL remained balanced
until similarity threshold became larger, denoting that LL is not
sensitive to the similarity threshold. All 4 algorithms held a
higher average RMSE with EMR+L but a lower average RMSE
with EMR and EMR+PL, indicating that the random mix of
EMR and literature might not be able to provide a strong scheme
for rare disease prediction and recommendation. Specifically
for OL, EMR only performed better than the other 2 datasets,
which showed that OL is not a very suitable measurement for
heterogeneous datasets. Table 2 summarizes the optimal
threshold selection for different evaluation groups.

Performance for Patient Recommendation
We plotted precision-recall curves for each of the 24
experiments and area under the precision-recall curve (PRAUC)
for each matching criterion. Overall, we observed that GARD
matching contributed to the optimal performance among all
matching criteria, and SNOMED semantic matching was always
a suboptimal strategy. Figure 4 shows the performance of TANI
with KNN and TPN on different datasets and matching criteria.
We observed that there are no considerable differences between
TANI+KNN and TANI+TPN for 3 matching criteria with 3
datasets. Although the difference seems subtle, TANI+TPN
with EMR+PL yielded the optimal PRAUC score for string,
SNOMED, and GARD matching, respectively. Figure 5 shows
the performance of LL. Compared with TANI, LL performed
worse with TPN for all datasets and matching criteria. However,

when using KNN, although LL performed worse with EMR
data only, it outperformed for both EMR+L and EMR+PL. This
result indicates that LL is more suitable for mining knowledge
from heterogeneous datasets than TANI. Figure 6 illustrates the
performance of OL. Compared with TANI and LL, this
measurement produced considerably lower PRAUC for either
neighborhood algorithm. Additionally, OL yielded better
performance with EMR data only but worse performance with
combined datasets, which indicates that OL may be more
suitable for a single dataset, and it suggests that combined
datasets might possess too much noise for OL to make an
accurate judgment. Although OL cannot handle
literature-enriched data well, we observed that pruned literature
still performed better than nonpruned literature. Figure 7 depicts
the reaction of FMG to different neighborhood algorithms and
combinations of datasets. Similar to OL, FMG with EMR data
only outperformed EMR+L and EMR+PL in all 3 matching
criteria. However, unlike OL, although FMG with EMR+L had
the worst performance with both KNN and TPN, pruned
literature slightly increased the performance, and no substantial
difference exists between using FMG with EMR only and
EMR+PL. Tables 3-6 show MAP for all patients’
recommendations, which showed a consistent performance with
PRAUC evaluation, indicating that TANI and LL performed
better and are more suitable for integrated EMR and literature,
whereas OL and FMG performed worse and are not suitable for
fused datasets. In general, optimal performance produced by
LL indicated the potential of combining EMR and literature to
increase patient stratification.
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Figure 3. Root mean square error (RMSE) for threshold patient neighbor (TPN) with four similarity measurements. EMR: electronic medical record;
FMG: Fager and McGowan coefficient similarity; L: literature; LL: log likelihood ratio similarity; OL: overlap coefficient similarity; PL: pruned
literature; TANI: Tanimoto coefficient similarity.

Table 2. Optimal thresholds for different evaluation groups.

FMGdOLcLLbTANIaOptimal parameters

EMR+PLEMR+LEMREMR+PLEMR+LEMREMR+PLEMR+LEMREMR+PLgEMR+LfEMRe

66744444491011Optimal k (KNNh)

0.120.110.120.510.490.510.760.730.720.20.190.19Optimal t (TPNi)

aTANI: Tanimoto coefficient similarity.
bLL: log likelihood ratio similarity.
cOL: overlap coefficient similarity.
dFMG: Fager and McGowan coefficient similarity.
eEMR: electronic medical record.
fL: literature.
gPL: pruned literature.
hKNN: k-nearest neighbors.
iTPN: threshold patient neighbor.
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Figure 4. Precision-recall curves and area under the precision-recall curve (PRAUC) for Tanimoto coefficient similarity (TANI) with k-nearest neighbors
(KNN) and threshold patient neighbors (TPN). EMR: electronic medical record; GARD: Genetic and Rare Diseases Information Center; KNN: k-nearest
neighbors; SNOMED: systematized nomenclature of medicine; TANI: Tanimoto coefficient similarity.

Figure 5. Precision-recall curves and area under the precision-recall curve (PRAUC) for log likelihood ratio similarity with k-nearest neighbors and
threshold patient neighbors. EMR: electronic medical record; GARD: Genetic and Rare Diseases Information Center; KNN: k-nearest neighbors; LL:
log likelihood ratio similarity; SNOMED: systematized nomenclature of medicine; TPN: threshold patient neighbor.
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Figure 6. Precision-recall curves and area under the precision-recall curve (PRAUC) for overlap coefficient similarity with k-nearest neighbors and
threshold patient neighbors. EMR: electronic medical record; GARD: Genetic and Rare Diseases Information Center; KNN: k-nearest neighbors; OL:
overlap coefficient similarity; SNOMED: systematized nomenclature of medicine; TPN: threshold patient neighbor.

Figure 7. Precision-recall curves and area under the precision-recall curve (PRAUC) for Fager and McGowan coefficient similarity with k-nearest
neighbors and threshold patient neighbors. EMR: electronic medical record; FMG: Fager and McGowan coefficient similarity; GARD: Genetic and
Rare Diseases Information Center; KNN: k-nearest neighbors; SNOMED: systematized nomenclature of medicine; TPN: threshold patient neighbor.
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Table 3. Mean average precision for TANIa with EMRb, EMR+Lc, and EMR+PLd (optimal in italics).

EMR+PLEMR+LEMRMatching criterion

TPNKNNTPNKNNTPNfKNNe

0.4480.4460.4450.4360.4410.435String

0.4830.4810.4790.4740.4750.469SNOMEDg

0.7480.7460.7450.7420.7420.739GARDh

aTANI: Tanimoto coefficient similarity.
bEMR: electronic medical record.
cL: literature.
dPL: pruned literature.
eKNN: k-nearest neighbors.
fTPN: threshold patient neighbor.
gSNOMED: systematized nomenclature of medicine.
hGARD: Genetic and Rare Diseases Information Center.

Table 4. Mean average precision for LLa with EMRb, EMR+Lc, and EMR+PLd (optimal in italics).

EMR+PLEMR+LEMRMatching criterion

TPNKNNTPNKNNTPNfKNNe

0.3960.4650.3910.460.3510.368String

0.4310.50.4260.4950.3860.405SNOMEDg

0.7130.7490.710.7450.670.683GARDh

aLL: log likelihood ratio similarity.
bEMR: electronic medical record.
cL: literature.
dPL: pruned literature.
eKNN: k-nearest neighbors.
fTPN: threshold patient neighbor.
gSNOMED: systematized nomenclature of medicine.
hGARD: Genetic and Rare Diseases Information Center.

Table 5. Mean average precision for OLa with EMRb, EMR+Lc, and EMR+PLd (optimal in italics).

EMR+PLEMR+LEMRMatching criterion

TPNKNNTPNKNNTPNfKNNe

0.1480.1670.110.1170.3420.344String

0.1620.1790.1220.1260.3690.365SNOMEDg

0.5090.5050.480.4570.6930.708GARDh

aOL: overlap coefficient similarity.
bEMR: electronic medical record.
cL: literature.
dPL: pruned literature.
eKNN: k-nearest neighbors.
fTPN: threshold patient neighbor.
gSNOMED: systematized nomenclature of medicine.
hGARD: Genetic and Rare Diseases Information Center.

JMIR Med Inform 2018 | vol. 6 | iss. 4 | e11301 | p. 10http://medinform.jmir.org/2018/4/e11301/
(page number not for citation purposes)

Shen et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 6. Mean average precision for FMGa with EMRb, EMR+Lc, and EMR+PLd (optimal in italics).

EMR+PLEMR+LEMRMatching criterion

TPNKNNTPNKNNTPNfKNNe

0.270.2640.2050.180.2750.274String

0.2970.2880.2210.1920.3020.3SNOMEDg

0.6470.6510.5840.5680.6470.653GARDh

aFMG: Fager and McGowan coefficient similarity.
bEMR: electronic medical record.
cL: literature.
dPL: pruned literature.
eKNN: k-nearest neighbors.
fTPN: threshold patient neighbor.
gSNOMED: systematized nomenclature of medicine.
hGARD: Genetic and Rare Diseases Information Center.

Performance on Rare Disease Prediction With Log
Likelihood Ratio Similarity
We selected LL with KNN as the optimal metric, trained it with
EMR+PL, and applied it on 44,060 patients with only 1 rare
disease. We only selected rare diseases with at least 3 affected
patients, which resulted in 702 rare diseases in total. Prediction
performances for different matching criteria are described as
shown in Figure 8. The circle size in two-dimensional scatter
plots is proportional to the number of affected patients.
Three-dimensional plot for precision, recall, and F-measure in
Figure 8 clearly depicts that GARD outperformed SNOMED
matching, and string matching yielded the worst performance.
Macro-average F-measure for string, SNOMED, and GARD
matching for the tested diseases were 0.32, 0.42, and 0.63,
respectively.

In Table 7, we selected 9 diseases for each matching criterion
for LL with KNN. Specifically, we picked 3 with high
F-measures, 3 with medium to high F-measures, and 3 with
relatively low F-measures. For any rare disease affecting no
more than 10 cases, we marked them as <10.

For string matching, holoprosencephaly, Huntington disease,
and juvenile polyposis syndrome contributed to higher
F-measures and do not have a large number of affected patients.
However, since they are unique, performance of
recommendation was promising. Sacrococcygeal teratoma,
frontotemporal dementia, and polycystic liver disease were well
predicted but with some missed cases. Taking sacrococcygeal
teratoma as an example, we found neurogenic bladder,
constipation, and diarrhea to be the most common phenotypes
that also occurred in patients with the rare disease microcephaly.

Figure 8. Prediction performance for rare diseases. GARD: Genetic and Rare Diseases Information Center; SNOMED: systematized nomenclature of
medicine.
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Table 7. Recommendation performance for selected rare diseases (3 high, 3 medium to high, 3 low).

F-measureRecallPrecisionNumber of patients affectedApproaches and top diseases

LLa+KNNb with string matching

0.8610.75<10Holoprosencephaly

0.80.671<10Huntington disease

0.80.710.91<10Juvenile polyposis syndrome

0.740.670.8315Sacrococcygeal teratoma

0.630.580.69202Frontotemporal dementia

0.610.580.6472Polycystic liver disease

0.120.250.0836Hemicrania continua

0.120.220.0894Intrahepatic cholangiocarcinoma

0.120.10.1650Neuromyelitis optica

LL+KNN with SNOMEDc matching

0.910.890.9437Myxoid liposarcoma

0.80.710.9116Linear scleroderma

0.8610.7515Migraine with brainstem aura

0.790.750.83<10Hypophosphatemic rickets

0.750.860.6714Congenital radio ulnar synostosis

0.740.670.83177Spasmodic dysphonia

0.150.50.120Acute graft-versus-host disease

0.150.170.1437Cryptogenic organizing pneumonia

0.150.170.1429Cerebellar degeneration

LL+KNN with GARDd matching

111<10Acrospiroma

111<10Birt-Hogg-Dube syndrome

111<10Dendritic cell tumor

0.950.930.9715Acute promyelocytic leukemia

0.930.88115Migraine with brainstem aura

0.920.86130Thyroid cancer, anaplastic

0.60.450.8834Addison disease

0.480.590.456Encephalocele

0.430.480.478Mixed connective tissue disease

aLL: log likelihood ratio similarity.
bKNN: k-nearest neighbors.
cSNOMED: Systematized Nomenclature of Medicine.
dGARD: Genetic and Rare Diseases Information Center.

In our EMR, sacrococcygeal teratoma patients and
microcephaly patients reported 140 cases of neurogenic bladder,
84 cases of constipation, and 84 cases of diarrhea. In medical
literature, neurogenic bladder, constipation, and diarrhea are
also the 3 top phenotypes found in microcephaly, and they
appeared 34, 32, and 32 times, respectively. Considering
evidence from heterogeneous data sources, sacrococcygeal
teratoma was often predicted as microcephaly. Hemicrania
continua, intrahepatic cholangiocarcinoma, and neuromyelitis
optica are 3 diseases with relatively low F-measures. Although

the number of affected patients for them is not small, they lack
a unique group of phenotypic patterns to differentiate them from
other diseases with similar phenotypes.

For SNOMED matching, the top predicted diseases are myxoid
liposarcoma, linear scleroderma, and microscopic polyangiitis.
Since we used the SNOMED semantic hierarchy to measure
the similarity between 2 diseases, the prediction performance
was slightly better than using string matching only. For example,
in our results, myxoid liposarcoma was semantically the same
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as liposarcoma, linear scleroderma had the same meaning as
morphea, and microscopic polyangiitis was treated equally with
granulomatosis with polyangitis. These 3 diseases are related
to unique phenotypes, and as such, the prediction results were
positive. For example, the phenotypes soft tissue sarcoma and
lymphedema have a tight relationship with myxoid liposarcoma.
In addition, 65 phenotypes from EMRs and literature were
closely related to linear scleroderma, and we found that
headache and hemiatrophy frequently appeared. We also found
that vasculitis and glomerulonephritis often appeared along
with cicatricial pemphigoid. Hypophosphatemic rickets,
congenital radio ulnar synostosis, and spasmodic dysphonia
also contributed to the positive recommendation results but with
some minor prediction errors. For example, hypophosphatemic
rickets was considered to be lung adenocarcinoma in a few
cases, congenital radio ulnar synostosis was misdiagnosed as
esophageal atresia, and spasmodic dysphonia and trigeminal
neuralgia were sometimes mismatched. Finally, patient profiles
from EMRs and literature content regarding acute
graft-versus-host disease, cryptogenic organizing pneumonia,
and cerebellar degeneration were not good enough for our
model to conduct the prediction.

Since GARD matching was able to have a broader
recommendation based on system categories of rare diseases,
it usually yielded a better prediction performance than the other
2 strategies. Acrospiroma, Birt-Hogg-Dube syndrome, and
dendritic cell tumor all had a 100% prediction rate, though the
number of affected patients was small. By using GARD
matching, for example, acrospiroma can be inferred as
fibrosarcoma, Birt-Hogg-Dube syndrome can be recommended
as syndrome adenocarcinoma of the appendix, and dendritic
cell tumor can be predicted as large granular lymphocyte
leukemia. The reason for this is that all of these pairs can be
categorized as rare cancers according to GARD. Similarly, in
acute promyelocytic leukemia, migraine with brainstem aura,
and thyroid cancer, anaplastic disease can also be recommended
to other diseases within the same rare disease system. For some
rare diseases, the GARD matching did not perform well. In the
case of Addison disease, for example, although we found some
recommendations by GARD matching from our datasets, such
as isolated ACTH deficiency (categorized in Endocrine
Diseases), x-linked adrenal hypoplasia congenital (categorized
in Congenital and Genetic Diseases), fibrous dysplasia
(categorized in Congenital and Genetic Diseases), and
syringomyelia (categorized in Congenital and Genetic Diseases),
there are still many nonrelevant results found by our system
caused by general phenotypes that are related to numerous
diseases. In general, the prediction of similar kind of rare
diseases can still provide suggestions and clues for physicians’
decision making.

Discussion

Limitations
This study demonstrates the potential to provide decision support
on rare diseases for differential diagnosis. With more
comprehensive knowledge extracted from clinical notes and
literature, collaborative filtering performed better on both patient

recommendation and rare disease prediction. The current clinical
decision support (CDS) system is limited to a narrow area of
clinical practice due to the inability to utilize information
embedded in clinical narratives and challenges in making good
semantic alignment among precision medicine knowledge and
clinical data stored in various formats and heterogeneous
resources. Therefore, there exists a huge opportunity to integrate
our proposed work into current CDS system for a better rare
disease differential diagnosis in clinical practice.

For homogeneous data, LL performance would be depressed
when compared with TANI (eg, EMR only). On the other hand,
LL is good at dealing with heterogeneous data, and as
phenotype-rare disease associations extracted from EMR and
medical literature share different perspectives, such flexibility
can help us find more patterns compared with TANI. Therefore,
it is not surprising that patient recommendation performance
improved when we combined EMR and literature randomly,
and performance improved further after we used pruned
literature. OL and FMG, however, performed worse than TANI
and LL. We found that OL gives too much weight to patient
similarities even with few shared phenotypes. Such strict
similarity measurements have difficulty finding semantic
relationships and lack the ability to stratify patients well. This
is possibly an explanation for the better performance of OL for
single EMR data with high homogeneity but poor performance
for combined datasets with high heterogeneity. Similar to OL,
FMG is not good at dealing with heterogeneous data;
nevertheless, it yielded a better patient recommendation
performance than OL in the EMR+L and EMR+PL datasets.
Furthermore, we observed that LL is sensitive to the selection
of KNN or TPN, especially for combined datasets, which infers
that making a good balance between KNN and TPN has the
potential ability to optimize overall performance and eliminate
bias with idealized neighbors and similarity at the same time.

The combination of EMR and literature did not always
contribute to optimal performance in patient recommendations.
The reason for this is that some biases exist when physicians
or researchers documented phenotype-disease associations. For
EMRs, each document is recorded based on individual physician
instinct and experiences starting from a clinical perspective,
and for literature, phenotypes and rare diseases with positive
relationships are reported based on a large number of gene tests
from a biomedical experimental perspective, which may increase
the gap between these two sources. Collaborative filtering with
different similarity measurements and neighborhood algorithms
can remedy this problem to some extent. In the future, we plan
to investigate on gene level to reduce miscommunication and
balance the heterogeneity between different datasets. Besides
the use of literature only, it would also be interesting to integrate
cross-institutional EMRs with balanced heterogeneity to acquire
diagnostic experience and knowledge from multiple hospitals
and health care institutions to build a more general system for
rare disease diagnostic decision support.

Conclusion and Future Work
We investigated the application of a patient-based collaborative
filtering model on heterogeneous EMRs and literature with
different similarity measurements and neighborhood algorithms.
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Results demonstrated the potential of combining heterogeneous
datasets to support diagnostic decision making for rare diseases.

In the future, we are going to fully utilize the graph structure
provided by the HPO and leverage its node embeddings
[5,36,37] to provide coefficient similarities from various

perspectives to improve performance of disease
recommendation. We also plan to resolve the heterogeneity
issue and reduce miscommunication between EMR and literature
by mining genotypic information to establish a comprehensive
disease-phenotype-gene network for rare disease diagnosis.
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