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Abstract

Background: Electronic, personalized clinical decision support tools to optimize glycated hemoglobin (HbA1c) screening are
lacking. Current screening guidelines are based on simple, categorical rules developed for populations of patients. Although
personalized diabetes risk calculators have been created, none are designed to predict current glycemic status using structured
data commonly available in electronic health records (EHRs).

Objective: The goal of this project was to create a mathematical equation for predicting the probability of current elevations in
HbA1c (≥5.7%) among patients with no history of hyperglycemia using readily available variables that will allow integration with
EHR systems.

Methods: The reduced model was compared head-to-head with calculators created by Baan and Griffin. Ten-fold cross-validation
was used to calculate the bias-adjusted prediction accuracy of the new model. Statistical analyses were performed in R version
3.2.5 (The R Foundation for Statistical Computing) using the rms (Regression Modeling Strategies) package.

Results: The final model to predict an elevated HbA1c based on 22,635 patient records contained the following variables in
order from most to least importance according to their impact on the discriminating accuracy of the model: age, body mass index,
random glucose, race, serum non–high-density lipoprotein, serum total cholesterol, estimated glomerular filtration rate, and
smoking status. The new model achieved a concordance statistic of 0.77 which was statistically significantly better than prior
models. The model appeared to be well calibrated according to a plot of the predicted probabilities versus the prevalence of the
outcome at different probabilities.

Conclusions: The calculator created for predicting the probability of having an elevated HbA1c significantly outperformed the
existing calculators. The personalized prediction model presented in this paper could improve the efficiency of HbA1c screening
initiatives.
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Introduction

Many prediction tools have been created to assess the risk of
undiagnosed diabetes and related outcomes such as impaired
glucose tolerance, prediabetes, risk of future diabetes, and
hyperinsulinemia. Most of these tools are not practical in the
setting of the electronic health record (EHR) because they
include predictor variables not readily available in structured
formats [1-20]. Examples of impractical variables include waist
circumference, fasting time, physical activity, review of systems,
diet, pregnancy-related variables, and detailed ethnicity. Tools
typically leverage fasting glucose level as a predictor, which is
simple to obtain in practice, but documentation of fasting time
in a structured fashion in EHRs is generally absent. The authors
identified two tools that accurately predict the presence of
diabetes using structured variables routinely present in the EHR
[21,22].

Current guidelines from the United States Preventive Services
Task Force (USPSTF) recommend screening for abnormal blood
glucose in adults aged 40 to 70 years who are overweight or
obese. The USPSTF acknowledges that patients with other
high-risk characteristics (eg, family history of diabetes, personal
history of gestational diabetes) may need to be screened sooner
but this is left up to the physician’s discretion [23]. The
guidelines published by the American Diabetes Association
(ADA) recommend glucose screening of adult patients with an

elevated body mass index (BMI; ≥25 kg/m2) plus another risk
factor (eg, hypertension, physical inactivity, family history of
diabetes) at any age and for all patients beginning at 45 years
of age at 3-year intervals [24].

Current approaches do not take advantage of advanced statistical
modeling. Hyperglycemia risk prediction with simultaneous
consideration of numerous independent variables and nonlinear
effects is statistically ideal in the context of a multifactorial
pathology. Creating strict cutoffs of individual variables or
combinations of a limited number of variables for clinical
guidelines does not take advantage of what can now be
reasonably achieved. The USPSTF and ADA guidelines
encourage physician judgment in the application of glucose
screening but do not provide specific guidance. Simplified
classification methods used in cancer have been notoriously
poor at discriminating between high- and low-risk patients [25].
Moreover, many existing models for predicting hyperglycemia
risk are also likely reducing their prediction accuracy by
categorizing continuous variables, which reduces granularity
and may miss potentially complex associations between a
continuous variable and the outcome. This issue was highlighted
by Kattan [26] when he showed that traditional regression
techniques that incorporated restricted cubic splines to reduce
linearity assumptions were found to produce more accurate risk
prediction models when compared with classification methods
such as classification and regression trees and artificial neural
networks.

Predicting the date of onset of hyperglycemia is difficult due
to the lack of symptoms early in the course of the disease and
inconsistent testing and/or documentation in clinical practice
(particularly in a structured fashion). Previous studies indicate
that the onset of type 2 diabetes frequently occurs more than 5
years before diagnosis [27,28]. In contrast, blood measurements
of glycated hemoglobin (HbA1c) provide an easy and accurate
method for determining current mean glycemia over the previous
8 to 12 weeks without the need for fasting. HbA1c testing is
standardized according to specifications defined by the National
Glycohemoglobin Standardization Program (NGSP). HbA1c

levels are the primary blood marker used for guiding the
management of type 2 diabetes, and the ADA has approved
HbA1c testing for diabetes screening [24]. The increasing use
of HbA1c as a screening tool in patients without prediabetes or
diabetes provides data for prediction modeling from EHR
records.

The authors strongly believe that the identification of patients
with elevated HbA1c is important clinically despite previous
studies that have not shown a mortality benefit from screening
for diabetes [29]. The early detection of elevated blood sugar
can have other significant benefits:

• Behavioral counseling can lead to reductions in
cardiovascular disease risk [30].

• Treatment of prediabetes, which affects approximately 35%
of the adult population in the United States [31], has been
shown to delay progression to diabetes [32].

• Diabetic-specific retinopathy is present in up to 21% of
patients with newly diagnosed type 2 diabetes [33], while
peripheral neuropathy and nephropathy are present in 21.5%
and 26.5%, respectively, of patients with undiagnosed
diabetes [34]. Aggressive blood sugar and blood pressure
control among patients with diabetes reduces the risk of
microvascular complications [35,36].

• Early detection of diabetes allows for the allocation of
proven preventive strategies (eg, fundoscopic screening for
retinopathy, pneumococcal vaccination, screening for
nephropathy, and aggressive prevention of cardiovascular
disease) [37].

• Appropriate documentation of elevated blood sugar and
diabetes allows health systems and payers to improve the
risk stratification of patients and increases the potential
pool of patients available for participation in clinical
research.

Therefore, an accurate tool for predicting the current probability
that a specific patient has an elevation in HbA1c levels would
constitute a major advancement in finding patients with the
most probable need of screening interventions. To address this
gap, we created a calculator for predicting the probability that
a given patient with no history of diabetes or elevated blood
sugar currently has an elevated HbA1c value (≥5.7%). This
cutoff was chosen because it corresponds with the current
guidelines published by the ADA that indicate values <5.7%
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are considered to be normal. Importantly, the calculator
presented in this paper was restricted only to structured variables
typically available in EHRs. This focus on common structured
variables will enable the tool to be integrated into EHRs for
implementation.

Methods

This study was conducted on all adult patients who have
undergone HbA1c testing prior to evidence of hyperglycemia
(random blood sugar ≥200 mg/dL), any diabetes-related
diagnostic code, or prescription for an antihyperglycemic
medication. Data were extracted from the Epicare EHR at Wake
Forest Baptist Medical Center in Winston-Salem, North
Carolina, for the dates between September 2012 and September
2016. The study was approved by the institutional review board
and granted a waiver of informed consent. Data were limited
to structured data located in these areas of the EHR: encounter
diagnoses, problem list, past medical history, procedures,
prescriptions, vital signs, demographics, social history, and
laboratory values. Candidate predictor variables were chosen
based on their theoretical association with hyperglycemia.
Textbox 1 shows a list of the candidate predictor variables
included in the complete statistical model.

Independent variables were defined on the date of the HbA1c

of interest. For missing continuous variables (eg, systolic blood
pressure), the most recent prior value was used instead. Patients
completely lacking values for independent variables were
excluded. The investigators did not impute missing data because
it was felt that imputation would not be appropriate at the point

of implementation. Comorbidities were considered to be present
if the patient had any structured instances of the diagnostic code
on or before the date of the first HbA1c. Medications with start
dates on or before the date of the HbA1c and end dates on or
after the date of HbA1c were considered to be active. Medication
order dates were used when the start dates were missing.
Medications missing both start and order dates were excluded.
Medication categories (eg, antihyperglycemics) were provided
by First Databank Inc. Multiple logistic regression was used to
model the association between the independent variables and
the outcome of HbA1c ≥5.7%. Continuous variables were fit
using restricted cubic splines with 3-knots. Due to collinearity,
the model could not be fit with the simultaneous inclusion of
serum non–high-density lipoprotein and high-density
lipoprotein. Therefore, high-density lipoprotein was removed
from the complete model. The model was reduced using
Harrell’s model approximation method [39]. For parsimony,
the diagnosis of obesity variable was removed after variable
selection. The diagnosis had little impact on the prediction
accuracy and was redundant since BMI is also in the model.
The reduced model was compared head-to-head with the
calculators created by Baan and Griffin [21,22]. The
head-to-head comparisons were performed using 10-fold
cross-validation in order to calculate the bias-adjusted prediction
accuracy of the new model. Prediction model metrics included
measures of discrimination (concordance statistic), calibration
(calibration curves), and decision curves [40]. Statistical
analyses were performed in R version 3.2.5 (R Foundation for
Statistical Computing) using the rms (Regression Modeling
Strategies) package.
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Textbox 1. Candidate variables in the complete model prior to variable selection.

Laboratory measurements:

• Serum triglycerides

• Random blood glucose

• Serum non–high-density lipoprotein

• Serum high-density lipoprotein (dropped due to an inability to fit model)

• Serum total cholesterol

• Estimated glomerular filtration rate (estimated from serum creatinine using the modified Chronic Kidney Disease Epidemiology Collaboration
formula [38])

Active prescription medication categories:

• Antihypertensive

• First generation antipsychotic

• Second generation antipsychotic

• 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase inhibitor (statin)

• Fibrate

• Valproic acid

• Beta-blocker

• Thiazide diuretic

• Niacin

• Oral glucocorticoid

• Protease inhibitor

• Nucleoside reverse transcriptase inhibitor

• Oral contraceptive

• Injectable medroxyprogesterone acetate

• Cyclosporine

• Sirolimus

• Tacrolimus

Diagnosis codes (see Multimedia Appendix 1):

• Hypertension

• Ischemic heart disease

• Peripheral vascular disease

• Neuropathy

• Obesity

• Hyperlipidemia

Vital signs:

• Systolic blood pressure

• Diastolic blood pressure

• Body mass index

Demographics:

• Race

• Age

• Gender
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Family history:

• Number of first degree relatives with diabetes

Social history:

• Smoking status

Results

The record search identified 22,635 patients for model building
and validation of which 26% were found to have an elevated
HbA1c (≥5.7%). Figure 1 shows the number of patients included
and excluded from the model building.

The final model included the following 8 variables ordered from
most important to least important: age, BMI, random glucose,
race, serum non–high-density lipoprotein, serum total
cholesterol, estimated glomerular filtration rate (eGFR), and
smoking status. Table 1 shows descriptive statistics for the
variables included in the final model by HbA1c results. As
expected, patients found to have elevated HbA1c levels were
older, had higher BMI, lower eGFR, and higher random glucose
values.

The coefficients along with instructions for calculating the
probability of an elevated HbA1c (≥5.7%) and sample
calculations for 2 patient scenarios are shown in Multimedia
Appendix 2.

The 3 models were compared in their ability to accurately rank
patients according to risk as measured by the concordance
statistic (c-stat) and bias-adjusted using 10-fold cross-validation.
The current model (c-stat 0.765, 95% CI 0.762 to 0.769)
demonstrated statistically significant improvements in
discrimination when compared to the models created by Baan
(c-stat 0.637, 95% CI 0.633 to 0.641) and Griffin (c-stat 0.668,
95% CI 0.665 to 0.672).

The calibration curve shown in Figure 2 reveals that the current
model is well calibrated. The predicted probabilities tend to
overestimate risk at the right tail of the distribution, but the wide
confidence intervals allude to the scarcity of the data at these
extreme high levels of risk. Error bars represent the 95%
confidence interval around the point estimate.

Decision curves are displayed in Figure 3 and also demonstrate
the superiority of this model. Our model shows a net benefit up
to a probability of 0.73 for an elevated HbA1c (≥5.7%) without
significant net harms above this threshold. This model confers
a net benefit that is equal to or greater than the net benefit
offered by the other models at all probability thresholds.

Figure 1. Data flowsheet. HbA1c: glycated hemoglobin.
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Table 1. Descriptive statistics by glycated hemoglobin outcome.

P valueHbA1c ≥5.7% (n=5892)HbA1c
a <5.7% (n=16,743)Characteristics

<.00154.8 (14.0)48.1 (15.4)Age (years) mean (SD)

<.001Race, n (%)

2183 (37.05)3692 (22.05)Black

487 (8.30)1178 (7.00)Other

3222 (54.68)11873 (70.91)White

<.00133.0 (8.41)30.1 (7.44)BMIb (kg/m2), mean (SD)

<.001Smoking status, n (%)

1393 (23.64)2747 (16.41)Current smoker

1480 (25.11)3867 (23.10)Former smoker

3019 (51.23)10129 (60.50)Never smoker

<.00187.9 (30.8)92.0 (33.0)eGFRc (mL/min/1.73 m2), mean (SD)

<.00196.1 (16.0)88.4 (12.7)Random blood glucose (mg/dL), mean (SD)

<.001144 (41.7)135 (37.4)Non-HDLd cholesterol (mg/dL), mean (SD)

<.001192 (43.1)186 (39.4)Total cholesterol (mg/dL), mean (SD)

aHbA1c: glycated hemoglobin.
bBMI: body mass index.
ceGFR: estimated glomerular filtration rate, calculated using the Chronic Kidney Disease Epidemiology Collaboration formula (CKD-EPI) [38].
dHDL: high-density lipoprotein.

Figure 2. Calibration curve of the new model for predicting glycated hemoglobin ≥5.7%.
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Figure 3. Decision curve analysis.

Discussion

Principal Findings
The calculator created for predicting the probability of having
an elevated HbA1c significantly outperformed the existing
calculators. It should be noted that the calculators created by
Baan and Griffin were designed for predicting current glucose
tolerance test results and were not specifically calibrated to
predict HbA1c values. However, any potential issues with
calibration should not impact the ability to discriminate patients
according to risk. The authors chose not to develop a simple
risk score, which would be easier to calculate without a
computer but would be less accurate and would not provide an
absolute probability. One of the benefits of using multivariable
regression over many machine learning methods is that the
mathematical output of this model can be integrated into an
EHR using common mathematical operations. In contrast,
classification-based methods like random forest, artificial neural
networks, and classification and regression trees would increase
the complexity of implementation by requiring separate software
outside the EHR to calculate probabilities. The movement of
data into and out of the EHR also raises concerns about security
and privacy.

Limitations and Strengths
Limitations of the study include the lack of external validation.
The model was validated internally using resampling and may
not reflect the prediction accuracy that would be achieved in a
prospective fashion at the current institution or when validated
in a different health system. However, the authors used 10-fold
cross-validation in which patients in the test data for each fold
were not used to build the model. Another limitation pertains
to the lack of data from outside health systems. Patients may

have additional medication or laboratory results outside of the
health system that could alter the predicted risk or change the
patient’s status in terms of hyperglycemia. In order to ensure
that patients have a minimal amount of data to guide the
calculator’s creation, the investigators required that patients had
at least one value for each of the independent variables. Future
research and quality improvement projects may need to query
patients about health history prior to implementation.

A relatively small proportion of historical HbA1c tests were
appropriate for use in model building. Some of the tests were
obtained before the installation of a comprehensive EHR and,
therefore, accompanying information like vital signs were not
available. Many of the tests were obtained in patients who
already had evidence of possible hyperglycemia, some of whom
were already being treated with antidiabetic medication. These
patients would be inappropriate to use for the creation of a model
aimed at patients with unknown glucose status. Limiting the
model building and validation dataset to patients with complete
data further reduced the sample size from 32,872 to 22,635. The
authors chose not to impute the missing values given the
adequate number of patients with complete data. In addition,
the authors are not convinced that imputation would be
acceptable to patients and providers when the model is
implemented into practice. Patients lacking common variables
used in the model such as BMI and blood pressure values are
probably very new to the health system or are seeking their
usual care elsewhere. Serum creatinine and lipid measurements
are routinely obtained in clinical practice, especially among
older adults. Patients without any creatinine or lipid
measurements are likely to be younger and less likely to be at
risk for diabetes. The authors felt it was important to identify a
population for model building that matches the future population
where the model will be implemented. Despite the restrictions
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on data inclusion, the dataset contained >5000 patients with the
outcome of interest. The size of this dataset is large compared
to most similar studies conducted prior to the adoption of EHRs
and is more than adequate for regression modeling. Harrel [39]
has proposed that 7 to 10 outcomes for each degree of freedom
are necessary to prevent overfitting when building a regression
equation. The model created in this study contains 28 degrees
of freedom, which could have safely been built from a dataset
containing only 196 to 280 outcomes according to the
aforementioned heuristic. A feasibility analysis was conducted
among patients in the Department of Family and Community
Medicine, and it was determined that approximately 20% of the
adult patients seen in the past 3 years would be appropriate for
application of the tool.

Imprecision in the measurement of HbA1c levels could have
negatively impacted the model building and could decrease the
prediction accuracy of the model upon implementation. Wake
Forest Baptist Medical Center is not a certified member of the
NGSP but maintains accreditation by the Clinical Laboratory
Improvement Amendments Program (identification number
34D0664386). The Wake Forest Baptist Medical Center’s core
laboratory performs HbA1c testing using ion exchange high
performance liquid chromatography, which is highly precise
and constituted the vast majority of HbA1c measurements used
to create the data for this study. However, the investigators did
not exclude HbA1c measurements obtained using different
methods at other locations in the health system (eg, point-of-care
testing), which likely introduced variability in the HbA1c

measurements. Comorbid conditions such as iron deficiency

anemia can lead to HbA1c measurements that do not accurately
reflect average blood glucose levels [41]. Despite the potential
negative impact of imprecise or inaccurate HbA1c measurements,
the prediction model performed very well.

Conclusions
Improving the efficiency of diabetes screening should be of
great interest in the United States given the increased use of
value-based care contracts. Health systems could use our model
for diabetes screening initiatives in a variety of ways. The
decision curves suggest that using the new algorithm to guide
HbA1c testing would provide a net benefit between probabilities
of 0.01 to 0.71. The authors will conduct a targeted screening
study in which patients with a predicted risk of an elevated
HbA1c ≥50% will be notified directly regarding their elevated
risk. Coupled with standing laboratory orders, this
direct-to-patient design would enable patients to undergo HbA1c

testing prior to a physician visit. This is particularly important
for patients with infrequent in-person visits. The hope is that
patients with subsequent elevations in HbA1c would be more
likely to re-engage with the health system.

In summary, the risk equation created in this study is optimized
for integration within an EHR and outperforms other similar
models. Future research will attempt to integrate the risk
calculator into clinical workflows, examine the ability of the
calculator to predict risk in other health systems, and evaluate
the potential economic savings of using this model for diabetes
screening.
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Multimedia Appendix 1
Diagnostic codes.

[PDF File (Adobe PDF File), 35KB-Multimedia Appendix 1]
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Multimedia Appendix 2
Instructions for calculating the probability of an elevated glycated hemoglobin and sample calculations.

[PDF File (Adobe PDF File), 70KB-Multimedia Appendix 2]
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