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Abstract

Background: Free-text clinical records provide a source of information that complements traditional disease surveillance. To
electronically harness these records, they need to be transformed into codified fields by natural language processing algorithms.

Objective: The aim of this study was to develop, train, and validate Clinical History Extractor for Syndromic Surveillance
(CHESS), an natural language processing algorithm to extract clinical information from free-text primary care records.

Methods: CHESS is a keyword-based natural language processing algorithm to extract 48 signs and symptoms suggesting
respiratory infections, gastrointestinal infections, constitutional, as well as other signs and symptoms potentially associated with
infectious diseases. The algorithm also captured the assertion status (affirmed, negated, or suspected) and symptom duration.
Electronic medical records from the National Healthcare Group Polyclinics, a major public sector primary care provider in
Singapore, were randomly extracted and manually reviewed by 2 human reviewers, with a third reviewer as the adjudicator. The
algorithm was evaluated based on 1680 notes against the human-coded result as the reference standard, with half of the data used
for training and the other half for validation.

Results: The symptoms most commonly present within the 1680 clinical records at the episode level were those typically present
in respiratory infections such as cough (744/7703, 9.66%), sore throat (591/7703, 7.67%), rhinorrhea (552/7703, 7.17%), and
fever (928/7703, 12.04%). At the episode level, CHESS had an overall performance of 96.7% precision and 97.6% recall on the
training dataset and 96.0% precision and 93.1% recall on the validation dataset. Symptoms suggesting respiratory and gastrointestinal
infections were all detected with more than 90% precision and recall. CHESS correctly assigned the assertion status in 97.3%,
97.9%, and 89.8% of affirmed, negated, and suspected signs and symptoms, respectively (97.6% overall accuracy). Symptom
episode duration was correctly identified in 81.2% of records with known duration status.

Conclusions: We have developed an natural language processing algorithm dubbed CHESS that achieves good performance
in extracting signs and symptoms from primary care free-text clinical records. In addition to the presence of symptoms, our
algorithm can also accurately distinguish affirmed, negated, and suspected assertion statuses and extract symptom durations.
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Introduction

Study Background and Rationale
The world continues to be vulnerable to the threat from
infectious diseases. This includes novel emerging infections,
changes in the incidence or severity of common circulating
pathogens, as well as the potential use of infectious agents in
bioterrorism. There is thus an interest in developing infectious
disease surveillance systems that can detect outbreaks, as well
as provide adequate advanced warning of possible surges in
incidence or hospitalization burden so as to enlist appropriate
public health response efficiently [1].

At present, surveillance of infectious diseases in Singapore,
such as in many jurisdictions, is largely passive in nature. In
Singapore, this occurs through a central agency, Ministry of
Health, which collates information via notifications of key
infectious diseases by clinicians and laboratories and also
performs weekly retrospective analysis of health care data using
broad diagnostic groups [2]. The existing surveillance system
with its traditional reliance on physician and laboratory
diagnoses and reports has several limitations that may lead to
delays in the recognition and notification of an outbreak. These
include a dependence on timely recognition and reporting by
clinicians, challenges faced by clinicians in recognizing the
unexpected presentations of novel pathogens, and delays in
obtaining laboratory results for agent identification [3-5]. For
novel infections, in particular, the failure to suspect a case, order
a laboratory test, or in some instances the unavailability of an
accurate diagnostic laboratory assay may all contribute to delays
in detection. Moreover, the retrospective nature and coarse
grouping of conditions by diagnoses codes with use of only
simple thresholds on counts of cases can miss more subtle but
important signals that take into account the spatial and
contextual relationships between clusters of infectious cases
and possible changes in incidence, clinical presentation, or
severity, even for commonly circulating pathogens. Singapore
currently has universal uptake of electronic health records
among its public sector health care providers, and syndromic
surveillance systems leveraging on electronic medical records
(EMRs) to identify syndromes may help to overcome some of
these limitations by providing surveillance data that complement
our existing methods for surveillance [5,6]. By grouping
symptoms identified into specific syndromes based on the
presentation of the illness, we may potentially identify illness
clusters that would not otherwise be suspected [7,8], particularly
when leveraging off other routinely available information in
electronic health records, such as demographic and geolocation
data [9]. However, to capture clinical presentation as syndromes
requires additional intervention. We could request that doctors
remember to and comply with the burden of entering additional
data alongside their clinical duties as predefined syndromes (as
is currently done for monitoring of influenza-like illness [10]).

However, this has several drawbacks, including a need to
predefine syndromes with consequent practical limits to the
number of case definitions that could be in use, the need to
educate all reporting parties on the case definitions, variations
in interpretations of these case definitions, and potentially poor
compliance. Approaches have also been developed to map
diagnoses into syndromes for surveillance [11,12], but these
have in some instances been found to be inadequate to detect
outbreaks on their own. For instance, Lusigna and colleagues
[13] found that an ontological approach to define gastrointestinal
disease using all the terms and codes was better than using
International Statistical Classification of Diseases and Related
Health Problems-10th revision (ICD-10) alone. Another
alternative to these approaches would be to rely on natural
language processing (NLP) algorithms to extract from free-text
information what would be routinely documented by practicing
clinicians and transform such data into codified information
[8]. However, free-text clinical narratives are rife with
abbreviations or shorthand forms, misspellings, synonyms, and
contextual information, which poses a challenge to accurately
extract clinical information [8,14]. As such, NLP algorithms
need to be trained and validated to achieve optimal performance.

Aims and Objectives of the Study
The aim of the study was to describe in detail the process of
creating a rule-based NLP algorithm called Clinical History
Extractor for Syndromic Surveillance (CHESS) that extracts
signs and symptoms associated with infectious diseases
outbreaks. We also trained and validated CHESS’s performance
against a manually coded reference standard and present the
results in this paper.

Methods

Study Setting and Algorithm Development
We developed CHESS that adopts concept extraction using a
rule-based approach. The tool uses part of speech tagging,
prefixes, and regular expressions and incorporates ontology and
grammar-based analysis to extract signs and symptoms from
free-text notes. We chose the rule-based approach as it was
simpler to operate and easier to create and understand than other
systems based on machine learning. We felt this would thus
also be an appropriate benchmark for the development of
iterations of algorithms based on machine learning, which are
likely to be developed in the future. Furthermore, with a good
keyword dictionary adapted to local context, this tool can be
easily updated to incorporate various new features and adapted
to other clinical contexts. CHESS targets 48 signs and symptoms
of interest from four different syndrome categories: (1)
gastrointestinal infection syndromes, (2) respiratory infection
syndromes, (3) constitutional signs and symptoms typically
present during infectious diseases, and (4) other signs and
symptoms not belonging to the former three groups (with the

JMIR Med Inform 2018 | vol. 6 | iss. 2 | e36 | p. 2http://medinform.jmir.org/2018/2/e36/
(page number not for citation purposes)

Hardjojo et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://dx.doi.org/10.2196/medinform.8204
http://www.w3.org/Style/XSL
http://www.renderx.com/


full categorization displayed in Multimedia Appendix 1). The
choice of symptoms were based on infectious disease diagnoses
categories currently monitored in Singapore [2] and were
sufficiently detailed to give a flexibility to combine symptoms
to construct case definitions for detecting possible future
outbreaks. The mapping of symptoms to syndromes was
modeled after the Centers for Disease Control and Prevention
Electronic Surveillance System for the Early Notification of
Community-Based Epidemics II framework [11,15].

The process began by constructing a library of keywords
associated with the signs and symptoms of interest. We
downloaded the 2014AB version of United Medical Language
System (UMLS) [16] and identified key medical concepts. We
started with the UMLS metathesaurus as it was free to use and
had a comprehensive database of over 3 million medical
concepts from over 150 libraries including Systematized
Nomenclature of Medicine-Clinical Terms and ICD-10-clinical
modification, the latter being commonly used in Singapore. The
NLP module was built with ANother Tool for Language
Recognition (ANTLR), which is an open source Java-based
parser generator. This has been modified to include various
components as per our requirements. In the first iteration of
CHESS, the tool had an overall recall value of 65.4% when
tested with a random dataset, indicating that a huge number of
terms went undetected (false negatives). This was attributed to
shorthand forms, which were common locally and misspellings
within free-text notes [14,17] that were not accounted for in the
UMLS metathesaurus. To broaden the dictionary and include
these terms, CHESS was trained ad-hoc with two small pilot
local health care datasets made available to us for preliminary
developmental work before further training and validating the
process on National Healthcare Group Polyclinics (NHGP)
datasets as described in this paper. Training included manual
addition of possible terms based on clinical notes.

In Singapore, clinical free-text information is usually short, with
each new finding separated by line breaks. In the ontology

analysis, the clinical visit free text is separated into phrases by
line breaks. Phrases are recursively parsed into tokens for easier
categorization according to a set of lexer rules for patterns.
These tokens are broadly categorized as symptoms, assertion
status, and duration (Figure 1, top portion). Each symptom that
is identified from the dictionary has a relational database to
incorporate common misspellings, abbreviations, and synonyms.
Assertion status is identified by specific terms that determined
if there is a negation modifier (eg, no, denies, and nil). In
addition, we used another set of terms indicating suspected
status (eg, claims and ?<symptom>). If these terms were present
in the phrase, they will change the assertion status of symptoms
in that phrase to negated or suspected, respectively. Otherwise,
symptoms are identified to be affirmed. Negation modifiers
reverse assertion status of symptom; for example not afebrile
will be fever affirmed. Conjunction terms such as and, or,
commas (ie,) and slash (ie/) are used to chain a list of signs and
symptoms together in the same phrase. A stopword dictionary
was built to remove nonessential words (eg, over, on, and
before) that will interfere with exact string matches. In the
grammar-based analysis phase, relationships between tokens
produced in the ontology analysis are built up to make sense of
the sentence (Figure 1, top portion). Patterns and grammar rules
were initially built up from the UMLS and modified with inputs
from domain experts. In addition, duration tokens were
normalized by comparing with a duration dictionary. Temporal
attributes are identified by rules that are set to associate duration
to appropriate symptoms in proximity to the duration token and
by taking into consideration conjunction terms. Instances where
a specific onset date was given (either a calendar date or with
reference to the date of consultation, for example, today and
yesterday) were converted to duration terms, with onset on the
day of consultation counted as 0 day and onset yesterday as 1
day. The algorithm was implemented in the ANTLR, which
generates a Java implementation from a grammar file.
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Figure 1. Ontology and grammar-based analysis of the rule-based natural language processing (NLP) algorithm. Signs and symptoms and information
on assertion status and duration are captured and tokenized in the ontology analysis. Relationships between tokens are built up in the grammar-based
analysis. C/o: complain of; ST; sore throat.

Symptoms were then manually coded at the phrase level, and
this information was used to create episode level symptom
coding (Figure 2). The purpose of episode level output was to
identify unique symptoms, with useful information on presence
and duration from multiple entries of the same symptom in each
clinical record. After phrase level symptoms were accurately
identified, we utilized a set of rules to achieve episode level
output. In infectious disease surveillance, the presence of a
symptom (affirmed) in a patient is likely more important
information than the similar symptom noted as not being present
(negated) during the documentation of the same episode. Thus,
the affirmation of a particular symptom was given priority over
negation of that symptom recorded elsewhere in the same record.

In instances where the presence of a symptom is suspected, this
symptom is made void when the same symptom is negated or
affirmed elsewhere in the clinical record of that episode, as we
considered to this to be less certain than affirmation or negation.
For symptom duration, both the manual coding and the NLP
tool would identify multiple instances of symptom duration
occurring at the phrase level within the same episode. Symptoms
specified to have lasted for “few days” were considered to be
unspecified but acute symptoms. Symptoms lasting more than
7 days, or indicated as beginning “last week” are grouped
together as chronic (>1 week) symptoms. To simplify the
analysis, we chose to summarize the data using the symptom
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with the earliest onset (ie, the longest duration) at the episode
level, which we then compared against the reference standard.

Dataset Used and Training and Validation Process
Our data was obtained from the NHGP, a major public sector
chain of clinics estimated to provide about 10% of the primary
care in Singapore. To facilitate batch extraction, we chose three
clinics (one each from the West, North, and Central regions),
then performed a stepwise random sampling of the records
across the period from which EMR was available from the
middle of 2009 to June 2014. For each clinic, we randomly
selected 10 dates that did not fall on a Sunday or public holiday;
these dates were evenly divided into 10 half-yearly periods from

across the 5-year period for which the EMR was available.
Subsequently, for each selected date, 56 records with at least
three lines of free-text notes were randomly selected, thus giving
a total of 560 records of consultation clinical records from each
of the three clinics across the 5-year period. As free-text notes
could potentially contain identifiable information, to comply
with personal data protection regulations, every record was
vetted (and where necessary redacted) by an internal staff
member of NHGP before it was shared with the wider
collaborative research team (including those from other
institutions) for further analysis, and this process limited the
total number of records that could be extracted and shared.

Figure 2. Sample set of clinical notes and transformation following phrase-level manual coding and episode-level coding. Abd: abdominal; NA: not
applicable; NKDA: no known drug allergy; PMHX: past medical history; RIF: right iliac fossa.
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Figure 3. Flowchart of process for creating reference standard.

Figure 3 describes the process by which we used manual review
by human coders on all extracted records to create a reference
standard to train and validate CHESS’s algorithm. A Java-based
annotator interface tool was created to improve manual coding
methodology and prevent mistakes. Two independent human

reviewers, who were health care workers with substantial
experience in clinical research and interpreting medical case
notes, read through the clinical records and then annotated each
line of the record for the presence of signs and symptoms, the
assertion status, and duration of symptoms experienced; this
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allowed us to capture multiple instances where a sign or
symptom appeared within each record. Then a third reviewer,
a clinician who has practiced in the primary care setting, served
as the adjudicator in instances where the two reviewers were
not in agreement.

Training of the algorithm was conducted with 840 manually
annotated records to improve CHESS’s performance by
identifying new terms, misspellings, and shorthand forms to be
updated into the pattern and grammar library, or removing
keywords that caused significant false detections. We repeated
several rounds of training until we achieved satisfactory
performance with the training dataset. Following training,
CHESS’s performance was validated on the remaining 840
notes that were independent from the training set to test the
algorithm’s robustness in correctly identifying signs and
symptoms.

Analysis of Natural Language Processing Performance
Compared With Manual Coding Performance and
Reference Standard
CHESS’s performance was assessed by its precision, recall, and
F-measure for detecting signs and symptoms in comparison
with the adjudicated reference standard. This was performed at
both the phrase level and episode level. The precision, recall,
and F-measure were defined by the following formulae, where
true positive refers to signs and symptoms that were accurately
identified by CHESS, false positive refers to signs and
symptoms incorrectly identified, and false negatives refers to
signs and symptoms missed:

• Precision = (True Positive) / (True Positive + False Positive)
• Recall = (True Positive) / (True Positive + False Negative)
• F–measure = (2 × [Precision × Recall]) / (Precision +

Recall)

Precision is the frequency with which symptoms identified by
the tool are relevant (positive predictive value). Recall is the
frequency with which relevant symptoms are identified
(sensitivity). We used F-measure, which is a weighted harmonic
mean of precision and recall to give an overall picture of the
tool’s performance. F-measure is applicable for our situation
as we do not have true negatives, yet had a reference standard
to compare with [18]. Again, because we do not have a true
negative, we could not use Cohen Kappa statistic to review
interrater reliability, and so the same metrics were also used to
assess each manual coder’s performance against the final
reference standard.

To assess the performance of CHESS for symptom
identification, assertion status, and duration, we utilized the
dictionary after it was trained with 840 records on the validation
set. The performance of CHESS in capturing specific symptoms
was assessed for all symptoms and also stratified by individual
symptoms and visualized in a bubble chart. Performance in
assigning the correct assertion status to symptoms was assessed
on all true positive symptoms that were identified by both NLP
and reference standard. A matrix plot was created to see where
the capacity to identify assertion status was lacking.

Finally, in syndromic surveillance, an episode level onset date
is helpful in characterizing the temporality of an infection, and
this can be imputed if the duration of symptoms is known at the
time of consultation. We present the proportion of episodes in
the reference standard with a valid episode level duration (based
on the earliest symptom) that were correctly identified, with
additional stratification by episode duration for acute symptoms.

We also conducted a qualitative review of instances where the
NLP algorithm failed to correctly identify symptoms, assertion
statuses, and symptom duration and describe the potential areas
for improvement.

Results

Description of Data Source and Common Symptoms
Identified
For the 1680 primary care clinical records extracted, there were
no significant differences on the genders of the patients across
the North, West, and Central clinics. However, a significantly
higher proportion of Chinese ethnicity (compared with Malay
and Indian) and significantly older population was observed in
the clinic from the North. This was in concordance with the
overall population distribution within the three districts based
on national demographic surveys [19]. Consequent to the older
case mix, the clinic from the North also had more consultations
for chronic diseases than the other two clinics.

Table 1 shows the frequencies of the 10 most commonly
detected signs and symptoms from the 1680 records reviewed
by human coders (full list of signs and symptoms displayed in
Multimedia Appendix 1). Overall, fever was detected most
frequently (12.05% [928/7703] of all instances of symptoms
detection) but was in the large majority of instances “negated.”
Other common signs and symptoms detected within the clinical
records were those associated with upper respiratory tract
infections such as cough, sore throat, rhinorrhea, and sputum,
and these were in the majority of instances affirmed (between
70.38% and up to 86.82%).

Comparison of Natural Language Processing Against
Human Coders in Identifying Signs and Symptoms in
Free Text
Table 2 shows that for phrase level output, both human coders
have good agreement with the final adjudicated output used as
the reference standard other than for a slightly lower recall for
coder 2 (because of differences in interpretation of clinical
examination findings and abbreviations). The final round of
training led to sufficient performance, with CHESS having a
precision of 95.3% and recall of 96.2% with the training set;
levels which were fairly similar to those of the human clinical
coders. CHESS also achieved a precision and recall of 94.2%
and 90.4% with the validation set, with the lower performance
because of our limitations in identifying (through the training
dataset) all relevant phrase-level terms present in the validation
dataset. Results for episode-level analysis (Table 3) were better,
with the performance again being comparable with the human
coders, with a precision and recall of 96.7% and 97.6% in the
training dataset and 96.0% and 93.1% in the validation dataset,
respectively.
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Table 1. Frequency of the 10 most commonly detected signs and symptoms within 1680 primary care clinical records by human coders.

Instance of symptom affirmation, n (%)bAll instances (N=7703), n (%)aSymptoms sorted by frequency of symptom mention in episode level

228 (24.6)928 (12.04)Fever

646 (86.8)744 (9.66)Cough

416 (70.4)591 (7.67)Sore throat

435 (78.8)552 (7.17)Rhinorrhea

7 (1.9)376 (4.88)Altered state of consciousness

75 (21.6)347 (4.50)Vomiting

72 (20.7)345 (4.48)Rash

31 (10.8)286 (3.71)Dyspnea

137 (50.6)271 (3.52)Diarrhea

212 (82.8)256 (3.32)Sputum

aColumn percentages, with the denominator being all instances (N=7703).
bRow percentages, with the denominator being the instances where the symptom in that row appears (eg, for Fever, n=928).

Table 2. Phrase level precision, recall, and F-measure of human coders and Clinical History Extractor for Syndromic Surveillance (CHESS) outputs
compared against instances of symptom occurrences in reference standard.

CHESS performance for validation set (after
training of dictionary, N=4578 instances)

CHESS performance for training set (after
training of dictionary, N=4282 instances)

Comparison of coder 1 versus
coder 2 (N=8861 instances)

Performance against
reference standard

Coder 2Coder 1

94.1595.2496.0698.52Precision, %

90.3996.1784.3096.93Recall, %

92.2395.7089.8097.72F-measure, %

aCHESS: Clinical History Extractor for Syndromic Surveillance.

Table 3. Episode level precision, recall, and F-measure of human coders and Clinical History Extractor for Syndromic Surveillance (CHESS) outputs
compared against instances of symptom occurrences in reference standard.

CHESS performance for validation set (after
training of dictionary, N=3965 instances)

CHESSa performance for training set (after
training of dictionary, N=3738 instances)

Comparison of coder 1 versus
coder 2 (N=7703 instances)

Performance against
reference standard

Coder 2Coder 1

95.9796.7497.1398.91Precision, %

93.0697.6588.4797.46Recall, %

94.4997.1992.5898.18F-measure, %

Figure 4 gives CHESS’s performance for specific signs and
symptoms that occur in more than 1% of the medical records
(see supplementary table E2 and E3 for detailed breakdown)
using the validation dataset. High precision and recall of >90%
were achieved for most signs and symptoms associated with
respiratory and gastrointestinal syndromes. “Diarrhea” and
“abdominal pain” had slightly lower recall (<90%) in the
validation set, but this was limited to records where these were
“negated”; recall was 97.7% and 90.6%, respectively, when
diarrhea and abdominal pain was “affirmed” vs only 71.0% and
85.0% when “negated.” This was because of clinicians entering
misspelled words (eg, “supropubic” pain) and new terminologies
(eg, RIF) that CHESS was not able to identify resulting in high
false negatives. Bleeding had the poorest recall of the symptoms

with only 60.8%. This is because the word “blood” was
intentionally omitted from CHESS’s list of keywords because
of the generic use of the word for unrelated tests and
measurements (eg, blood test and blood pressure). As such,
adding “blood” into the list would have generated many false
positives leading to an even worse precision for bleeding. On
the other hand, fatigue was found to have a poor precision of
45.5%. This was because of the word “weakness,” also
commonly used to describe limb weakness. This resulted in
false positives for fatigue and false negatives for limb weakness.
However, the overall recall for limb weakness was still above
80% because of the large number of true positive instances
(n=175).
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Figure 4. Bubble chart of the Clinical History Extractor for Syndromic Surveillance’s (CHESS’s) precision and recall for each sign and symptom in
episode level analysis for the validation dataset. Each bubble denotes a single symptom categorized into symptom types: respiratory, gastrointestinal,
constitutional, and others. Bubble size is proportional to the number of cases identified by humans (true positive + false negative). Symptoms present
in less than 1% of records are not presented.

Accuracy of Natural Language Processing in
Identifying Assertion Status and Duration of Symptoms
CHESS also performed well in assigning the correct assertion
status to the signs and symptoms correctly identified (ie, true
positives). Of 3690 instances of true positives in the validation

dataset, 1728 (46.83%), 1937 (52.49%), and 25 (0.68%) were
determined as affirmed, negated, and suspected, respectively,
in the reference standard (Figure 5). CHESS correctly assigned
the assertion status of signs and symptoms for 96.9% of
instances when they were affirmed, 97.5% when they were
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negated, and 92.0% when they were suspected, with an overall
accuracy of 97.2%. Sources of error mainly arose in three ways.
First, as our tool relied on using line breaks to separate out
phrases, when the whole visit was entered without any
appropriate conjunction keywords in one line instead of multiple
lines, the assertion status would be deemed by the NLP to apply
to the all the symptoms in that line. Although this was rare given
the prevailing styles of clinical text data entry, it did result in a
few instances of misclassification for assertion statuses. Second,
misclassification by CHESS of a symptom as affirmed
occasionally occurred when doctors advised a patient of future
symptoms to watch out for. Third, the keywords learned from
our training dataset to identify instances where a symptom as

“suspected” were not exhaustive for all the instances found in
the validation dataset.

Of 778 records with at least one sign or symptom detected in
the validation dataset, 583 (75.0%) included information on the
duration of the episode (Figure 6). The majority (53.3%) of
these had acute onset within the past 2 days. In terms of
accuracy, CHESS had an overall accuracy of 83% for detecting
and assigning the correct duration. Performance was degraded
largely because the rules devised based on the training dataset
were not exhaustive. There were many abbreviations such as
“y” for years and instances such as “2days” where the words
and numbers occurred together (without an intervening space),
as well as misspellings, most of which were apparent only on
reviewing classification errors for the validation dataset.

Figure 5. Clinical History Extractor for Syndromic Surveillance’s (CHESS’s) accuracy in identifying assertion status of symptoms within episode
level analysis based on the validation dataset.

Figure 6. Episode level analysis on the distribution of symptom episode duration in instances detected by human coders (blue) among all the National
Healthcare Group Polyclinics (NHGP) records and the distribution of durations detected by Clinical History Extractor for Syndromic Surveillance
(CHESS; red) based on the validation dataset. Diamonds give the proportion of records where CHESS correctly identifies and assigns the duration
information stratified by episode duration (based on the reference standard), with the horizontal line giving the aggregated accuracy for detection of
symptom duration for all records analyzed.
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Discussion

Principal Findings
In this work, we have described the design and performance of
CHESS, a rule-based NLP algorithm that we showed is
reasonably accurate in extracting information on symptoms,
assertion status, and the duration of symptoms from free-text
clinical notes in a set of EMR from a large primary care
provider.

The performance of CHESS is comparable with results from
other systems in the extant literature. For instance, a system
developed by McRae et al [20] to identify influenza-like-illness
from unstructured primary care notes reported a precision of
87.8% and recall of 90.2% on their validation set relative to a
human reference standard. Another system, the Multi-Threaded
Clinical Vocabulary Server (MCVS), was used by Matheny et
al to identify specific symptoms suggestive of tuberculosis,
hepatitis, and influenza from clinical notes [21]. That
MCVS-based system, which can also identify assertion status,
had an overall performance of 91.2% precision and 83.5% recall
for detecting symptoms. The system was able to correctly
identify 84.7% of positive assertions, 75.1% of negative
assertions, and 0.7% of uncertain assertions. Elkin and
colleagues also reported that the MCVS achieved a sensitivity
of 92.9% and a specificity of 34.6% in identifying influenza
infection in patients [22]. MCVS uses medical concepts from
SNOMED-CT terminology, and it was noted in one study that
ontology based on SNOMED-CT have a precision of 99.8%
and recall of 99.7% in identifying medical problems [23].

The ability of CHESS to accurately discern whether the signs
and symptoms were affirmed, negated, or suspected with very
high accuracy (97.2% for validation set) is an important feature
when monitoring primary care records for specific case
definitions associated with particular infections. In our study,
we noted that a large portion of the symptoms identified in the
clinical notes were of negated status as the clinician was
eliminating symptoms of the key differential diagnoses. For
example, “fever” was the most frequently detected symptom,
but it was far more often negated than affirmed. Failure to
distinguish negation from affirmation could potentially lead to
significant background noise that may mask the signal from a
real outbreak.

The other key novel capability of CHESS compared with other
NLP systems worth highlighting is the extraction of symptom
duration in addition to the assertion status. This is particularly
critical in primary care data, given that consultations for
infectious disease conditions such as upper respiratory tract
infections would be more common on Monday than on other
days of the week and be the lowest during weekends when not
all clinics are open [24]. This day-of-week variation in visitation
rates potentially necessitates setting of higher daily thresholds
for signaling an outbreak that again may reduce our sensitivity
to detect outbreak signals [25]. Extracting symptom duration
allows us to impute an estimated day of onset instead of relying
only on the day of consultation. This potentially reduces
day-of-week effects, with consequent improvements in temporal
resolution for EMR-based surveillance.

Application of Clinical History Extractor for
Syndromic Surveillance (CHESS) to Infectious Disease
Surveillance
We intentionally designed CHESS to extract individual signs
and symptoms rather than predefined syndromes. Such a design
facilitates the use of specific case definitions involving
combinations of individual symptoms. For instance, in 2016,
an outbreak of Zika virus infections in Singapore was detected
when an astute primary care physician reported a cluster of
patients presenting with fever, rash, and joint pains [26]. Our
system would have the flexibility of including additional
symptoms for a Zika virus case definition, such as conjunctivitis,
which was also associated with Zika virus infections. We can
also tailor case definitions to new emerging infections of
concern, then monitor for unexpected clusters of such cases
anywhere within the reach of our EMR systems. Other
applications could include surveillance for changes in incidence
or severity of commonly circulating infections of concern, such
as influenza. In such an application, we could track incidence
of a syndrome comprising acute onset of fever, cough (for which
our algorithm performed fairly well), and a body temperature
≥38 C (which is a coded field in NHGP EMR) that has
reasonable discriminatory value for influenza in primary care
[24,27]. Combining this with hospital admissions for influenza
can potentially allow us to assess age-stratified incidence and
severity, which has been known to differ between influenza
epidemic as well as influenza pandemic strains [28].
Applications in these areas will require further validation for
specific syndromes of interest, such as by comparing disease
incidence estimated from primary care data, in this case through
EMR, to other independent methods [29]. Such validation work
should also look into approaches that combine free text based
with codified information such as diagnosis codes and
incorporating other sources of information such as laboratory
data and procedural data to see if this adds value to detection
and monitoring of infectious disease epidemics beyond what is
currently possible through our current surveillance modalities.

Future Work and Limitations
Other future work on CHESS to consider would include
incorporating qualitative descriptions of severity. Such terms,
either at the overall episode level, or in association with specific
symptoms, could potentially add value to surveillance or even
diagnosis of infectious (and possibly noninfectious) conditions.
The current tool had components such as general condition
(well, good, fair, poor, and alert) and appearance (toxic and
nontoxic), but the primary care records available for analysis
did not have sufficient data to allow us to validate this function.
Validation would require implementing CHESS on a larger set
of records and a more diverse set of free-text notes from primary
care as well as emergency departments. Such expanded coverage
would likely enhance our ability to discern signals from
infectious disease outbreaks. It occurs to us that, having
validated the algorithm at the level of phrases containing various
symptoms, the work also sets the foundation for NLP tools to
be used outside the confines of syndromic surveillance. For
instance, new symptoms can easily be added to the dictionary
to expand the application of the tool to noncommunicable
disease–related conditions, to attempt what has been done using
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other systems, for instance, to classify clinical problem lists and
detect postoperative complications [23,30]. However, such
applications may need recognition of symptoms described by
anatomy and be able to interpret other terms expressing
uncertainty in the assertion status. This would require
improvements to our current tool, including contextual learning
modules that identifies terms based on where they are placed
in the clinical record.

Furthermore, several limitations in our work should be
acknowledged. First, we have described some of the weaknesses
in CHESS’s algorithms from our qualitative review of those
instances where misclassification occurred. We have already
added keywords and misspellings identified in the validation
set to the current version of CHESS, although a more
generalizable way of dealing with misspellings would be ideal.
Other improvements needed include an algorithm to identify
different sentences within a single line of text (which we have
since implemented) and a module to distinguish instances when
the doctor advises the patient of future symptoms from currently
reported symptoms (that we are now building). There were
insufficient instances of these occurrences in primary care notes
to allow us to validate these enhancements, but such advice
upon discharge is likely to occur at much higher frequencies in
emergency department as compared with primary care EMR.

Furthermore, it must be noted that although NHGP is a major
primary care provider in Singapore and currently has the
information systems to allow near-time access to their EMR for
the NLP algorithm to be viably implemented in their context,
it is unclear if the infrastructure for other primary care providers
and emergency departments can support real-time surveillance.
Singapore currently has a National Electronic Health Record
system that receives contributions several times daily from
various providers, including both primary care providers and
emergency departments, and we are currently exploring the
feasibility of using that as a platform to implement CHESS.
However, in doing so, we must also recognize that CHESS was
trained and validated only on NHGP notes. We expect additional
shorthand forms, misspellings, and terminologies should our
system be extended to other primary care systems, or to records
from emergency departments (though preliminary testing of
CHESS on a set of emergency department notes showed a good
albeit slightly lower performance for our primary care notes
with 93.2% precision and 86.3% recall). Even for use within
NHGP, we acknowledge that the introduction of additional
words and terms because of factors such as staff turnover or
new methods of documentation may cause degradation of
performance. Prospective implementation would hence require
periodic revalidation, with retraining instituted should the
performance drop below a satisfactory standard. These
weaknesses are inherent in the keyword-based approach we
adopted, where an exact match for a specific string of characters
is required for detection by the parser; any new terms thus has
to be manually added into the algorithm dictionary to be
detected.

Currently there is a trend toward using automated approaches
to NLP to identify new ontology and improve detection
sensitivity, and this would be an alternative to manually adding
keywords. However, there are several potential issues with such

approaches. Topic modeling, for instance, requires large
numbers of medical notes to come up with concept similarities
within unstructured data. Although at a glance, this method of
building the ontology may appear to be simple, it still needs to
be verified and manually supervised. Moreover, in a study by
Arnold et al [31], it was noted that the Latent Dirichlet allocation
method of identifying topics resulted in lesser number of
interpretable topics than a primary physician could identify.
This was attributed to the fact that the Latent Dirichlet allocation
method needs to identify topics from a highly specialized
collection with a large vocabulary of related medical
terminologies, which is not feasible without supervision. In
another study, it was noted that the corpus for training NLP had
almost 30% redundancy, where the doctor copies and pastes
previous medical histories of a single patient. Redundancy can
also occur when doctors at a hospital use a template for data
entry (or in some cases for standard advice given to patients
with a particular set of diagnoses). In such cases, as the NLP is
trained using topic modeling, an inherent bias is created because
of the increased probability of the co-occurrence of specific
words [32]. Other automated NLP systems such as SimStat also
require manual input to create an inclusion and exclusion
dictionary from the list of words most frequently found and
may thus also not be time-efficient [33]. Furthermore, clinical
notes are full of spelling mistakes, abbreviations, and multi-word
phrases, which makes it harder for automated NLP tools to
identify patterns of occurrence. In this particular instance, the
NHGP clinical notes were mostly short with an average of 4.7
words per phrase (maximum of 35 words per phrase), and each
record had an average of 10 phrases. This was likely because
of the high workload in the primary care setting, where clinicians
had less time for more extensive documentation. Notes were
hence to the point but rife with abbreviations and misspellings,
and it is hence uncertain how an automated NLP technique
might have performed. Therefore, although our method of
manual coding to identify keywords was time-consuming, it
proved to have sufficient performance, and we see it as a
necessary step to serve as a benchmark algorithm for future
work using automated NLP techniques. Moreover, the dictionary
of terms used in local clinical practice that we compiled, though
certainly not exhaustive, is an invaluable resource that can be
exported into other systems to improve detection rates. For
instance, IDEAL-X, an online machine-learning tool, requires
a list of control vocabulary terms to improve on its statistical
models of automated NLP [34].

Conclusions
In conclusion, we have described the process of developing and
validating CHESS, an NLP algorithm to extract information on
signs and symptoms, along with information on assertion status
and symptom duration from free-text primary care notes that
we intend to make available for free download for researchers
to access and build on. This simple rule-based concept extraction
NLP tool could achieve good precision and recall approaching
that for manual identification of symptoms and accurately
identified most of the common infectious disease-related
symptoms. Problems with performance were mainly because
of the instances where we wanted to reduce false positives while
improving sensitivity for a small proportion of situations where
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the documentation style was unusual or not found in our training
dataset. Future steps would be to implement CHESS on a larger
set of records and develop approaches to combine free text based
with codified information such as diagnosis codes while
comparing the outputs of such approaches with those from
existing surveillance systems. There is also a need to test CHESS
on a more diverse set of free-text notes from primary care as

well as emergency departments, as expanded coverage would
likely enhance our ability to discern signals from infectious
disease outbreaks. We should also simultaneously test if newer
approaches based on machine learning can serve as a more
efficient and similarly effective way of updating our NLP
algorithms.
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EMR: electronic medical record
ICD-10: International Statistical Classification of Diseases and Related Health Problems-10th revision
MCVS: Multi-Threaded Clinical Vocabulary Server
NHGP: National Healthcare Group Polyclinics
NLP: natural language processing
UMLS: United Medical Language System
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