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Abstract

Background: Datasharing hasbeen abig challengein biomedical informatics because of privacy concerns. Contextual embedding
models have demonstrated a very strong representative capability to describe medical concepts (and their context), and they have
shown promise as an alternative way to support deep-learning applications without the need to disclose original data. However,
contextual embedding models acquired from individual hospitals cannot be directly combined because their embedding spaces
are different, and naive pooling renders combined embeddings useless.

Objective: Theaim of this study wasto present a novel approach to address these issues and to promote sharing representation
without sharing data. Without sacrificing privacy, we also aimed to build aglobal model from representations learned from local
private data and synchronize information from multiple sources.

Methods: We propose a methodology that harmonizes different local contextual embeddings into a global model. We used
Word2Vec to generate contextual embeddings from each source and Procrustes to fuse different vector modelsinto one common
space by using alist of corresponding pairs as anchor points. We performed prediction analysis with harmonized embeddings.

Results:  We used sequential medical events extracted from the Medical Information Mart for Intensive Care |11 database to
evaluate the proposed methodology in predicting the next likely diagnosis of a new patient using either structured data or
unstructured data. Under different experimental scenarios, we confirmed that the global model built from harmonized local models
achieves amore accurate prediction than local models and global models built from naive pooling.

Conclusions:  Such aggregation of local models using our unique harmonization can serve as the proxy for a global model,
combining information from awide range of institutions and information sources. It allowsinformation uniqueto acertain hospital
to become available to other sites, increasing the fluidity of information flow in health care.

(JMIR Med Inform 2018;6(2):e33) doi: 10.2196/medinform.9455
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Introduction

Motivation

As large datasets from different areas ranging from genetics,
microbiomes, nutrients, medicine, medical devices to the
environment are being collected from large populations, it is
believed that more efforts should be spent on reshaping the
wealth of dataand utilizing them to promote precision medicine
[1]. The characterization of each person on amultidimensional
level might lead to far more intricate diagnostic and prognostic
groupings of populations and labeling of individuals [2].
Pertinent studies include finding relevant biomarkers,
distinguishing patterns for rare diseases, discovering the
combined effects of multiple genetic variants or epistasis, and
researching the unique phenotype of diseasesthat only appears
in certain demographics or ethnicities. All of them require a
large sample sizeto avoid false positives and insignificant results
[3.4].

To gather such large samples, there have been some efforts to
sharedeidentified data such asclinical notesin compliancewith
the Health Insurance Portability and Accountability Act
(HIPAA) [5]. However, permissions to access other’s datain a
central warehouse are dill cumbersome to obtain, and
deidentification efforts are either costly, error prone, or
ineffective [6]. Human-based deidentification efforts cost over
5000 hours and US $500,000 on the Medical Information Mart
for Intensive Care-I1l (MIMIC-I11) dataset [7] which contains
only about 50,000 patient visits and 100 million words [8] and
produces error recall ranging from 0.63 to 0.94 [9].
Machine-assisted deidentification shows varying results from
time savings of 13.85% to 21.5% to results showing no
improvement in either quality or time saved [10]. Machine
learning, algorithm-based, automated deidentification can be
very useful, but state-of-the-art deep learning—based
deidentification models for unstructured data is still incapable
of reaching the level of privacy protection set by HIPAA safe
harbor, which hasroughly a0.013% reidentification rate [8,11].
In the biomedica community, there is an urgent need for
developing a new method to share information learned from
local sourcesto generalize and scale up research effort.
Objective

Our objective to address the above challenges is to create a
federated clinical analysis framework through the aggregation
of local representations and models. Related studies have been
published, focusing on not only simple analyses such asdatabase
gueries with very specific inclusion or exclusion criteria, but
also sophisticated algorithmsfor prediction analysis, including
logistic regression [12,13], support vector machine [14,15],
k-nearest neighborhood [16], Cox regression [17], and tensor
factorization [18]. However, most studies involve restrictive
assumptions originating from the requirement that data should
be integrated in amatrix format, either common feature events
assumption for horizontally partitioned data.or common patient
records assumption for vertically partitioned data. Both
assumptions have limitations to reflect the situations in reality.
For horizontally partitioned data, having common feature events
is an unreasonable assumption as different hospitals may have
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different attributes because of different speciaties. These
attributes are often structured data such as International
Classification of Diseases (ICD) code used for hilling, or custom
assigned code for prescriptions, lab tests, procedures, etc.
Furthermore, different hospitals might have their own annotation
systems for the same medical events because of the lack of a
consistent and unambiguousterminology system. Similarly, for
verticaly partitioned data, having common patient records in
different institutions is somewhat another unreasonable
assumption as we might not expect all patientsto be accurately
linked together for the hospitals they visit. There is a need to
develop anew model that is more redlistic.

Recently, there has been considerable attention in the application
of neural networks to represent medical concepts as
multidimensional and continuous vectors [19,20]. A process
called contextual embedding, commonly used in natural
language processing, maps each word from a corpus of text to
a hyperdimensional space where similar words in terms of
meaning or distributed usage would belocated nearby (eg, short
cosine distance). In the realm of health care, given a corpus of
patients history in a structured form, where medical events
such as diagnoses, prescriptions, and lab tests are ordered
chronologically for each patient, contextual embedding can
embed each of these medical events so that similar events are
closer inthefinal acquired space. Unlike one-hot representation,
which may not be able to make distinction between related
concepts such as congestive heart failure and myocardial
infarction, contextual embedding producesacloser distancefor
these two concepts than other unrelated concepts (ie, kidney
failure). Models that utilize such representation have shown
higher prediction performance than previous modelsthat do not
[19,20]. Furthermore, research into identifying named entity
recognition [21], abbreviation expansion [22], predicting
unplanned hospital readmission [23], and predicting disease
risk that incorporates long- or short-term dependencies in the
electronic health record (EHR) [24] are examples of areas that
have improved results with the application of word embedding
as the first step [25]. As more deep-learning models dive into
the realm of clinical text, instead of just using structured data
to make predictions, word embeddings is becoming the
paramount prerequisite for these studies.

Existing contextual embedding models are often built upon
EHR datafrom asingleingtitution. Each of these separate sites
may contain information that other siteslack. It would be ideal
if a model was built on raw data aggregated from different
hospital sites to compensate for the missing or sparse
information each site may have, but because of privacy concerns
and the current state of interoperability in health care, such
aggregation is often infeasible. To address these problems, we
propose that each hospital buildsits own contextual embedding
model, after which no patient-level information would remain
inthe acquired representations (ie, embeddings). Then, hospitals
can share their own local models and subsequently, the wealth
of information from their hospitals without violating patient
privacy. Such aggregation of local models can serve asthe proxy
for aglobal model, combining information from a wide range
of institutions and information sources.
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As each model is trained separately and lies in different
embedding spaces, it isdifficult to analyze eventsfrom different
hospitals together even though some events might be
semantically related or evenidentical. In this paper, we propose
amethodol ogy that harmonizes different contextual embeddings
into a global model. Code can be found in [26].

Methods

Temporal Clinical Pathway

For this paper, we will explore structured data such as|ab tests,
prescriptions, symptoms, conditions, and diagnoses. We will
also explore unstructured data or clinical notes. For structured
data, each code was given a prefix added to differentiate them
according to their type: “I_” for lab tests, “c_" for conditions,
“s ™ for symptoms, “d” for diagnoses, and “p " for
prescriptions. Each of these medical events in each patient’s
history was then put in chronological order to form his or her
clinical pathway. An example is shown in Figure 1.

For unstructured data, Metamap [27] was used to first identify
themedical conceptsfrom free texts. Multiple wordsidentified
asasingle medical concept were concatenated to form asingle
word. All words not mapped were omitted from the notes. No
wordswere excluded with acutoff score or selected for specific
functionality. Aslong as Metamap was able to identify aword
as aconcept in the Metamap database, the word or words were
kept. As done with the structured data, each of these medical
conceptsin each patient’s history were then put in chronological
order to form hisor her clinical pathway.

Contextual Embedding

Given the clinical pathways of structured or unstructured data,
we used contextual embedding to create continuous vectorsfor
each medical event or concept, respectively. An example is
shown for structured datain Figure 2 (The detailed information
about the figure will be described in the following
“Harmonization” section). For contextual embedding technique
of this paper, we chose Word2Vec [28], which uses a neural
network architecture to represent words of a large corpus as
vectors. Unlike classical representation techniques such as
one-hot representation, Word2Vec can effectively model words
by considering the context in which the words are contained.
Two architectures exist in this regard [28]—the continuous
skip-gram model and the continuous bag-of-words (CBOW)
model—depending on how the neural network is configured.
Both architectures are essentially a three-layer network
consisting of input, projection, and output layers. Providing the
input as a sequence of a 1-of-M coding, where M is the
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vocabulary size, Word2Vec is capable of projecting them into
a lower dimensional space while extracting their context. For
this paper, we chose the skip-gram model for its accuracy.
Experimental resultsfor CBOW and GloVe (another embedding
method) are shown in Multimedia Appendices 1-8, but
skip-gram showed the best overall results. The model requires
two parameters, size and window, defining the dimensionality
of the final vector representation and maximum distance for
contextual consideration, respectively [19,28].

There is one limitation to contextual embedding techniques
such as Word2Vec and GloVe [29]. That is, because of random
sampling in the training process, even repetitions on the same
dataset result in embeddings of different orientations. This
means that even if embeddings trained from the same dataset
are pooled together naively, the medical events or conceptsin
one embedding would have an unreasonabl e relationship with
events or concepts in the other embedding (eg, heart attack in
one embedding would have the closest distanceto elephantiasis
in the other embedding).

Har monization

Dueto the limitation of contextual embeddings, two embeddings
learned from two hospital sites would lie in different
hyperdimensiona spaces, which makesthem difficult to be used
together. Therefore, there is a need to harmonize them. Thisis
regarded as a space alignment problem [30], and it can be solved
by manifold learning with or without dimensionality reduction.
Manifold learning can be classified into linear and nonlinear
approaches based on the assumption of data structure. Here we
adopt Procrustes [31], alinear method that composes of three
affine operations (transformation, rotation, and scaling) for its
simplicity and generalizability. The basic idea is very similar
to automatic image alignment based on scale-invariant feature
transform in computer vision, although in this case, we were
dealing with high dimensiona attributes in this contextual
embedding harmonization.

Using Procrustes to fuse different vector models into one
common space requiresalist of corresponding pairs[30]. These
are pairs of words that are the same events but may or may not
be labeled differently in different institutions. With most
hospital s using standardized terminology systemssuch as1CD,
Ninth Revision (ICD-9) and ICD-10 for billing purposes, we
can reasonably identify a list of codes referring to the same
events in different hospital sites to serve as our “anchor pairs’
for alignment. Using these common events, we derived an
orthogonal matrix that transforms one contextual embedding
into the space of another.

Figurel. Example of aclinica pathway created from a patient’s structured data.

1st admission (n-1)th admission nth admission
1_509021_50912 ... ... 1_509701_50971 ...d_486 c_V420... ..d_250d_272 ...
Chloride Creatinine Phosphate Potassium Pneumoniqep,g:gzwrt?::::,am D’-"’I’Iites Dis:gf;ls’:ﬁ s’:ﬁo’.d
meilitus
»
Time
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Figure 2. Example of two contextual embeddings created from two hospitals' structured data.

Clinical Pathways of Hospital 1

1. p_ACET325 p_ACET650R p_AMBIS p_ASA325 p_ASAEC325 p_CALG1l p_CARA1 p_CLOP75
p_CLOP75 p_DSW250 p_DSW250 p_DOCU100 p_GLYC1l p_INHRIV p_KCL20PM
p_KCLBASE2 p_KETO15! p_KETR30! p_MAGS1l p_MEPESOI p_METO10l p_MIDA2I
p_MORP4I p_NEOSI

2. p_CITA20 p_.COMP10l p_COMP10l p_DULO30 p_GABA300 p_HEPAS! p_INHRIV p_INHRIV
p_KCL20/1000DSNS p_KCL20/1000DSNS p_KCL20/1000NS p_MAAL30L p_METOS!
p_NACLFLUSH p_NS100

3. 150912151221 151222 1 51248 151275 | 51279 p_ACET325 p_AMBIS p_AMLO25
p_ASA81 p_ATOR40 p_COZAAS0 p_DOCU100 p_HEPAPREMIX p_HEPBASE p_ISOS20
p_NACLFLUSH

4. 1.50893 150912 150931 1_50971 |_51003 1_51006 151221 | 51222 1 51237 |_51244
151248 151249 1_51256 |_51274 151277 |_51279 p_CALG1l p_CALG1l p_CALG1I
p_DSW250 p_DDAV4I p_DDAV4I

Word2Vec
m
4 N
Y Ve
A
p_ACET325 (0.092 -0.084 0.087 -0.842 -0.138
p_ACET650R |-0.116 -0.140 -0.366 -0.029 0.138
nA p_AMBI5 |0.156 -0.085 0.064 -0.191 -0.101
p_ASAEC325 |-0.333 0.124 -0.183 -0.164 -0.015
p_CALG1l |0.551 -0.316 0.092 0.318 -0.469
\ 4

Taking the two contextual embeddings in Figure 2 as an
example, the embeddings are shown in equation 1 where n,
and ng are the number of contextual embeddings from two
hospital sites, respectively, and m is the dimensionality of
embeddings. Taking the corresponding anchor pairs X and Y,
where X is a subset of A and Y is a subset of B, we can solve
for orthogonal matrix Q and scalar k from the corresponding
anchor pairsin equation 1. Applying Q and the scalar k, we can

solve for Aland B, which are the harmonized vector
representation of A and B.

Al RnAxm
B[ Ranm
(1) Ming i I (X=1, k") =kQ(Y =L, 1y " [l ¢)

Ly "and py "represent column-wise mean vectors of X and Y: n

is the number of corresponding anchor pairs. Q is solved as
shown in equation 2 using singular value decomposition:

(X=1o") T(Y=1uy") = UZV'
Q=uv'
(2) k= trace(Z) / trace(Y T Y)
With the orthogonal matrix and scaling factor, Q and k, we can

apply them onto one of the contextual embeddingsto transform
one into the space of the other as shown in equation 3:

A=A-1 nAI-1><T
(3) B'=kQ( B -1 gy ")
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Clinical Pathways of Hospital 2
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1.51277 1.51279 1.51301 |_50806 |_50822 | 50910 p_ALPR25 p_ASA81
p_D545NS1000 p_D545NS1000 p_DIVAS00

Word2Vec
m
pra N
Y 7z
A
p_VANCOBASE | 0.092 -0.084 0.087 -0.842 -0.138
p_PAPA300 |-0.116 -0.140 -0.366 -0.029 0.138
c_Va581 0.156 -0.085 0.064 -0.191 -0.101
ng
d_250 -0.333 0.124 -0.183 -0.164 -0.015
d_272 0.551 -0.316 0.092 0.318 -0.469
d_357 -0.073 -0.214 -0.044 -0.061 -0.274
7

An example is illustrated in Figure 3. We can see that
“hepatitis ¢, “cirrhosis” “lungs” “myocardial,” and
“renal_failure” in the upper left and upper right part of Figure
3 arecommon in both local models. Using them as anchor pairs
to derive the orthogonal matrix, we harmonized the two local
models into a common one shown as the bottom part of Figure
3.

Patient Diagnosis Projection Similarity

To predict the next likely diagnosis of a new patient for
structured data experiments, we used the patient-diagnosis
projection similarity (PDPS) method [19]. To calculate PDPS,
we first create a patient vector. In short, we normalize the
summation of each vector representation of eventsintheclinical
pathway of a patient, with each event vector multiplied by a
time decay function (ie, e™with atime decay factor A; see Figure
4). To calculate the probability of each diagnosis occurring as
the next event, we calculate the cosine similarity between the
patient vector and a diagnosis vector. The equation explaining
this process is shown in equation 5, where the V, is the
contextual vector representation of diagnosis d i n the vector
space, V, is the vector contextual representation of a medical
event in the clinical pathway of a patient, S and thus equation
4 isthe patient vector. The number of eventsfrom the last event
of theclinical pathway ist..

(4) )X cEISV c e_MC
(5) V(S d) = cosine( Vg, Z gV € ™)
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Figure 3. Example of Procrustes harmonization. Upper left: local embeddings of site 1. Upper right: local embeddings of site 2. Bottom: combined
embeddings of two sites after harmonization.
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Figure 4. Example of creating a patient vector from event-level vector representation. The patient vector is alinear combination of the event vectors,
weighted by atime decay function (e —At with atime decay factor A).
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Results

Data Processing

The dataset we used was from MIMIC-I11, afreely accessible
critical care database [7]. We had two sets of experiments. One
was conducted on structure data such as codes for diagnoses,
prescriptions, lab tests, symptoms, and conditions. In
MIMIC-lII, these structured parts of the datainclude everything
coded that were billable. ICD-9 code was used for symptoms,
diagnoses, and conditions. Custom local codes were used for
lab tests and prescriptions. Another experiment was conducted
on unstructured data (ie, clinical notes). For structured data,
ICD-9 codes for diagnoses in MIMIC-111 were generalized to
level 3. For example, apatient with “ diabetes with ketoacidosis,
type | (juvenile type) uncontrolled” (250.13) was generalized
to diabetes mellitus (250) by reducing al 1CD-9 code to three
digits. Because our evaluation was based on the prediction
accuracy, we excluded patients who only have one admission.
Wealso excluded rare medical eventsthat happenedin lessthan
50 admissions for the structured data. In the end, we kept 5639
patient records for the experiment. From these records, we
constructed the temporal clinical pathway for both structured
and unstructured data. Ten-fold cross validation was
implemented for al experiments, which randomly splits the
dataset into ten folds with equal sizes, using nine folds for
training and one fold for testing.

In each replicate, to simulate two different hospital sites, we
divided the training patient records into two groups of patients
randomly; we call these “local” sites. Experiments done on all
training patients were used as a gold standard for comparison;
we call this “global.” From the training set, we created the
“global” contextual embedding model using all patient records
and the two “local” embedding models each using half of all
patient records. The size and window parameters used to learn
word embedding for structured data were 350 and 30,
respectively. For unstructured data, the parameters were 350
and 100, respectively.

Thesetwo “local” embeddingswere harmonized into acommon
model using Procrustes. As our two “local” hospital sites both
came from splitting MIMIC-I11 [7], technically, the number of
corresponding anchor pairs can account for almost the entirety
of all the medical events. To create more realistic simulations,
wetried different smaller fractions of al possible corresponding
anchor pairs and changed the rest of the pairs artificialy to be
labeled differently so no events could be recogni zed by the other
site except for the corresponding events. This was done to
simulate the difference hospitals might have in their own
terminology and the possibility that only a fraction of all their
medical events codes are in common.

Structured Data Results

For structured data, the harmonization of the two “local”
embeddings required common eventsto serve as corresponding
anchor pairs. There were a total of approximately 2700 total
unique events between the two sites, of which there were
approximately 2500 common events. We used different
percentages of all possible common events as corresponding
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pairs for different experimental scenarios, and the rest of the
pairswere artificially 1abeled differently, where theword in the
pair from one site was appended with suffix “m1,” and theword
from the other site was appended with “_m2.”

For all scenarios, we used PDPS to predict test patients
diagnoses in the final admission given all their records before
thefinal admission. Asan evaluation measure, we used the area
under the receiver operating characteristic curve (AUC), for
which 1 represents a perfect model, and 0.5 represents a
worthless model. The average AUCs of a variety of diagnoses
of different models were compared, and the benefit of
harmonization is shown in the following three scenarios.

I ncomplete I nformation

To evaluate the performance of the Procrustes harmonization,
we first looked at how well missing medical eventsin one site
can be compensated with the event vectors from another site.
Oftentimes, small clinics or hospitals might not have
encountered all medical events. In terms of PDPS prediction,
missing eventswith no embeddings cannot be incorporated into
themaking of the patient vector, making prediction less accurate.
Moreover, prediction simply cannot be made with PDPS for
certain diagnosesif there are no embeddingsfor those diagnoses.

To resolve such a problem, we compensated the missing
information using diagnosis vectors from another hospital. To
test whether diagnosis vectors from another hospital can be used
accurately to predict in another site, we first took the 40 most
common diagnosesin MIMIC-I11 and randomly separated them
into two sets of 20 diagnoses. The two “local” sites both
originally had all 40 diagnoses, but we took one“local” siteand
deleted al instances of one set of 20 diagnoses (Multimedia
Appendix 9, colored blue) and took the other “local” site and
deleted the other set of 20 diagnoses (Multimedia Appendix 9,
colored red). We trained and contextually embedded these two
raw datasets separately, making two embedding models where
each was missing a different set of 20 diagnoses. Figure 5,
Global 1, showsthat the average AUC of the 20 diagnoses that
were missing from site 1 predicted using the global embedding
model; Figure 5, Global 2, shows that the average AUC of the
20 diagnoses that were missing from site 2 predicted using the
global model. These two act asthe baselines. Then we explored
what vectors added to the“local” embeddings could compensate
for the missing diagnoses vectors. When we simply added
random vectors for the 20 missing diagnoses to the respective
sites and predicted using the “local” models, the average AUC
for those missing diagnoses for both sites was close to 0.5
(Figure 5, Random). If we compensated vectorsfor the missing
diagnoses with vectors in the other site without Procrustes
harmonizing the embeddings of two sitesfirst, theaverage AUC
only improved to approximately 0.55 (Figure 5, Local). However
with harmonization, compensating the missing diagnoses vectors
with vectors from the other site returned the AUC to the level
of the global model (Figure 5 Procrustes Transformed, ProT).
We also tested whether using different percentage of
corresponding anchor pairsfor Procrusteswould alter the AUC.
Figure 5 showsthat increasing the percentage of corresponding
pairs increases the AUC in a very negligible manner.
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Figure 5. Average area under the receiver operating characteristic curve (AUC) of several different scenarios. Sitel had no vectors for a set of 20
diagnoses, whereas site 2 had no vectors for another set of 20 diagnoses. Using global model, we predicted on the 20 diagnoses missing from site 1
(Global 1) and the 20 diagnoses missing from site 2 (Global 2). The missing vectorswere compensated with either random vectors (random), untransformed
vectorsfrom the other site (local), or Procrustes harmonized vectors from the other site that were harmonized using different percentage of corresponding

pairs (ProT 10%, 40%, and 70%).
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Split Patient History

In another scenario, it is conceivable that patients may go to
different hospitals, leaving parts of their patient history in one
hospital while other parts in other hospitals. One can simply
predict future events of these patientsusing part of their clinical
pathway at each site, but amore accurate prediction can be made
from his or her entire clinical pathway. However, obtaining the
entire clinica pathway is not easy. Firdt, it might be
time-consuming or even infeasible to release patient history
across hospital sites. Second, even if the entire patient history
isin one site, the eventsin a patient’s clinical pathway may be
coded differently from siteto site, leading to some eventsbeing
unrecognizable by amodel built solely on onesite and unusable
for prediction. To solve these two problems, hospitals can first
share their own contextual embeddings and combine theminto
a common space using Procrustes. Then, for al the patients
who have history in multiple hospitals, each local clinical
pathway can be made into a local patient vector, effectively
rendering the history unidentifiable. Finally, every local patient
vector can be summed and normalized to obtain an
approximation of the global patient vector. Then prediction can
be conducted using the approximated global patient vectorsand
diagnoses vectors in each “local” hospital. The following
experiment showsthat theinitial harmonization stepisrequired
to obtain significant prediction resullts.

For this task, we divided the raw MIMIC-I1I training set into
three“local” sitesthen trained three“local” embedding models.
For medical events in each “local” site 1, 2, and 3, suffixes
“ml”“ m2”and“_m3” wereadded to the end, respectively,
simulating that each “local” site used their own coding system.
To simulatetest patientswho haverecordsin three“loca” sites,
we divided the clinical pathway of each test patient into three
sections, where each section was appended with suffix “_m1,”
“ m2” or*_m3" to designate which section belonged to which
site. The average AUC of the 80 most common diagnoses from
MIMIC-I1I (Multimedia Appendix 9) was evaluated based on
PDPS for different models and is shown in Figure 6. The

http://medinform.jmir.org/2018/2/€33/

Local ProT 10%ProT 40%ProT 70%

Global 2 Random Local ProT 10%ProT 40%ProT 70%
Site 2

average AUCs calculated with “local” site 1, 2, and 3 embedding
models (Original of Local 1, 2, and 3) dropped significantly
compared with the global model (Global). This was because
each “local” model could only use one-third of the information
of each test patient for prediction. If we summed and normalized
thethreelocal test patient vectorstogether without harmonizing
the embeddings first, the AUC did not improve (Original of
Combined 1, 2, and 3). However, when the three contextual
embeddings were harmonized with Procrustes (ProT) first,
summing and normalizing the local test patient vector together
improved the AUC closer to the AUC of prediction made by
the global model (ProT of Combined 1, 2, and 3). Figure 6
shows three “combined” results because each local site had its
own diagnosis vectors that PDPS and subsequent AUC were
calculated based on. We tested different percentages of
corresponding pairs of 10%, 40%, and 70% for Procrustes
harmonization. Similar to the previous experiment, Figure 6
showsthat increasing the percentage of corresponding pairs had
positive but negligible effect.

Hospitals With Different Sizes

Another possible scenario isthat hospitals have different sizes.
One hospital might be much smaller than the other. The smaller
hospital might not be able to predict diseases of new patients
accurately based on its existing patient history because small
hospitals have limited or skewed data. Inthiscase, our alignment
can help the small hospital overcome such a limitation by
incorporating information from the larger hospital. To test this
scenario, we split MIMIC-III raw data into two sites with
imbalanced ratios of hospital sizes that varied from 80% and
20%, 90% and 10%, to 95% and 5%. We also used different
ratios of corresponding anchor pairs from 40%, 70%, to 100%
of all possible corresponding pairs. After harmonization, we
introduced one more simple task called fusion to boost the
prediction performance in the small hospital. If an event was
included in the anchor pairs, we took the weighted average
depending on the size of the hospital to combine the two event
vectorsinto one vector. If the event was not included, we found
the nearest neighborhood (ie, k=1 where k is the number of
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nearest neighborhoods) from the other site and averaged itself
and the nearest neighborhood. After harmonization and fusion,
the average AUC of the most common 80 diagnoses for each
combination was calculated. Figure 7 shows AUC results of
large and small hospitals with or without harmonization and
different ratios of corresponding pairs. A larger difference in
hospital sizeresultsin alarger differencein AUC, meaning the
more information there is, the more accurate the model is.
Furthermore, Figure 7 shows that a small hospital can improve
its prediction performance without compromising the integrity
of the larger hospitals through harmonization and fusion with
data from large hospitals, which is an amenable feature.

Unstructured Data Results

Our harmonization method can be extended to unstructured
clinical notes. Using the same method as structured data, we
built a clinical pathway for unstructured data, except we used
medical concepts extracted from Metamap [27]. Then we built
aglobal embedding model and two “local” embedding models.
Finally, we harmonized the two “local” model with Procrustes.
There were approximately 150,000 unique medical concepts
extracted with Metamap, of which approximately 72,000 were
common in both sites that could be used as anchor pairs. For
anchor pairs, we used the top 10% most common occurring
corresponding pairs. These were common concepts such as
“admission,” “ater,” “recalls,” etc. The most common occurring
anchor pairs were chosen because they were the most likely to
have a similar neighborhood and structure relative to other
conceptsin each “local” hyperdimensional space, giving usthe
most reliable transformation matrix Q for equation 1. For some
of the experiments, we had to create patient vectors. We used
the same method as the method for structured data, but we
omitted the time decay factor (A). The following experiments

Huang et a

were conducted to demonstrate the benefit of harmonized local
embedding models.

Concept Unique I dentifier Group Distances

For unstructured data, the clinical pathways used to train
Word2Vec model consist of Metamap concepts [27]. Each for
these concepts belongs to a concept unique identifier (CUI)
created by the Unified Medical Language System, and each
CUI may contain many concepts. For example, inthetopimage
of Figure 8, there are many words that belong to the CUI
C0392747, which is about “changing.” We calculated the
average pairwise cosine similarity among all members within
a CUI group using concept vectors from the global model and
found the average similarity for al CUIl groups to be
approximately 0.42. For the local models, within each CUI
group, some words were learned from sitel loca model
(designated with the suffix “_m1"), whereas some words were
learned from site 2 local model (designated with the suffix
“ m2"). For common words that appeared in both sites, we
randomly assigned them with either vectors from site 1 “local”
model or vectorsfromsite 2 “local” model. Again, we calculated
the average pairwise cosine similarity among al memberswithin
each CUI group. If site 1 and site 2 model swere not harmonized
with Procrustes, the average similarity dropped to approximately
0.23, but the average similarity returned to approximately 0.42
if the local models were harmonized. Furthermore, if we limit
the words in both sites to only include top 10% of the most
common words, the average similarity after harmonization
further increase to approximately 0.62, whereas the similarity
without harmonization remains approximately 0.24. In addition,
experiment was repeated with two real datasets. We used the
MIMIC-I11 dataset to build site 1 “local” model and i12b2 dataset
[32-36] tobuild site 2 “local” model. The results showed similar
pairwise cosine similarity asthe artificial datasets resullts.

Figure 6. Average area under the receiver operating characteristic curve (AUC) of the 80 most common diagnoses. Local 1, 2, and 3 show local sites
using local embedding models either unharmonized (Original) or harmonized (Procrustes Transformed, ProT) and using only the part of the clinical
pathway of test patients in the respective hospital. Combined 1, 2, and 3 show all three local test patient vectors combined, where each local vector is
made with locally learned event vectors either unharmonized (Original) or harmonized (ProT).
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Figure7. Average areaunder the receiver operating characteristic curve (AUC) of 80 most common diseasesin Medical Information Mart for Intensive
Care lll (MIMIC-111) for hospital of different sizes harmonized using different percentage of corresponding pairs: upper left: 80% versus 20%, upper

right: 90% versus 10%, bottom: 95% versus 5%.
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Figure8. (a) Example of medical concepts belonging to aconcept unique identifier (CUI) groupsfrom aglobal model. (b) Red words were found from

site 1 “local” model, magenta words were found from site 2 “local” model.

C0392747 (changing)

'‘changed’, 'changing’, 'alter’, 'alters’, 'altered’,
['modify_m1', 'modified_m1’,
'altering_m1', 'modifying_m2',

'changes_m2’', 'alter_m2’', 'alters_m2']

['modify’, 'modified’, 'modifying’, 'modification’, 'modifications’, ‘change’, 'changes’,

'modifications_m1’,
'modification_m?2’,

'altering']
‘changed_m1’, 'altered_m1’,

'change_m?2', 'changing_m?2’,

This demonstrates that words that are part of the same CUI
group but learned from separate local sites can be combined
and have distances restored to the global level with
harmonization at a concept embedding level. Next, we will
explore harmonization at the patient level.

Patient Similarity

For the following experiments, we attempted to explore patient
similarity. We created patient vectors with the “global”
embedding model and found pairs of patients who were the
most similar interms of the cosine similarity. We then separated
these patientsinto two local sitesand trained embedding models
separately to evaluate most similar patients' retrieval from the
other site. After making patient vectorsfor thetwo “local” sites,
we took all patients from one site and calculated the rank of
their most similar patients previously found using the global
model, which was then in the other “local” site. Without
Procrustes harmonizing the embedding models, the average
rank of the most similar patient previously found in the global

http://medinform.jmir.org/2018/2/€33/
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model dropped to approximately 1035.89 in the other site.
However, with harmonization, the average rank for the most
similar patient previously found rose back to approximately
1.35intheother site. Thisdemonstratesthat it’s difficult to find
the most similar patient across site without harmonizing the
embeddings of the sitesfirst.

Even though we were able to restore the most similar patients
that were found in the global model, we still needed to
demonstrate that the most similar patients found after
harmonization is relevant in terms of prediction. Therefore, we
designed the following experiment to seeif missing information
can be compensated with information from other sites that is
harmonized. To predict for future diagnosisin this experiment,
PDPSwas not used becauseit required diagnoses vectors, which,
for the structured data, were ICD-9 diagnosis codes learned
during contextual embedding. However, contextual embedding
for unstructured data was done on clinical notes that did not
contain any 1CD-9 codes.
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Figure 9. Average area under the receiver operating characteristic curve (AUC) over 80 most common diagnoses with each taking turn acting as the
diagnosis of interest. Site 1 contained patients with diagnosis of interest, whereas site 2 did not. (a) Patient vectors of new test patients were created
with embeddings 1, and training patients vectors of site 1 were used to find most similar patients for new test patients and to predict the diagnosis of
interest. (b) Patient vectors of new test patients were created with embeddings 2, and training patients vectors of site 2 were used. (c) Patient vectors of
new test patients were created with embeddings 2, and training patients vectors of site 1 were used. (d) Embeddings of site 1 and site 2 were harmonized
before creating patient vectors. Then, patient vectors of new test patients were created with embeddings 2, and training patients vectors of site 1 were
used to find most similar patients for new test patients.

Instead, we used the most similar training patientsto each test  training patients and their true 1CD-9 diagnoses from the
patient to predict test a patient’s future diagnosis. To find the  structured data as labels.

most similar patients for each test patient, we calculated the
average cosine similarity between atest patient to the training
patients. Then, we used the training patients whose cosine
similarities were one SD above the average as the most similar
patients. Finally, prediction and subsequent AUC were
calculated by probabilities from voting using the most similar

After learning contextual embeddings for the two “local” sites,
we again created training patient vectorsfor thetwo sites. Then,
in site 2, we deleted al patients with a certain diagnosis of
interest but retained patients with this diagnosisin site 1. This
experiment was done for the 80 most common diagnoses in
MIMIC-I1I, with each taking turn acting as the diagnosis of
interest. The average AUC over these 80 diagnoses is shown
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in Figure 9. Given a set of test patients, their patient vectors
were created using either embeddingsfrom site 1 or embeddings
from site 2 depending on which hospital they were admitted to.
The first column of Figure 9 shows the result where new test
patients were admitted to site 1, and their patient vectors were
created with site 1 embeddings. We predicted whether these
new patients would devel op the diagnosis of interest based on
the most similar training patients in site 1 and obtained
reasonable results. However, when new test patients were
admitted to site 2, and we used the most similar training patients
in site 2 to predict the probability of developing the diagnosis
of interest, the result was no better than guessing as shown in
the second column of Figure 9, because site 2 did not contain
patients with the diagnosis of interest. Similarly, when new test
patients were admitted to site 2, and we used the most similar
patients found from site 1 to form a prediction, the result was
no better than guessing as shown in the third column of Figure
9 because the embedding space was not harmonized, and not
enough relevant similar patients were found. Finaly, we
harmonized the “local” embeddings between site 1 and site 2
first and created training patients vectors from them. When new
test patients were admitted to site 2 and created their patient
vectors with the harmonized “local” embedding of site 2, we
could then use site 1 to find reasonable most similar patients
and obtain significant AUC as shown in the fourth column of
Figure 9. This shows that if new patients were admitted to a
hospital and found a lack of relevant most similar patients to
reasonably make accurate predictions on adiagnosis of interest,
patient record from another hospital could compensate and
provide relevant most similar patients. However, such
compensation could only be achieved if contextual embeddings
were harmonized between the hospitals.

Discussion

Principal Findings

This paper serves as a proof-of-concept that contextual
embedding models, which are becoming bedrocks to deep
learning analysis in place of one-hot representations, can be
harmonized and subsequently synchronize information from
different hospital sites for better prediction capability without
sacrificing privacy. However, one limitation of our work is that
all experimentswere conducted onasingleMIMIC-I11 database.
The underlying structure of the simulated local models may be
similar, making it easy to approximate the global model from
combining harmonized models. However, we argue that every
hospital will have similar structures and relationships for
medical eventsor conceptsrelated to diagnosesthat are common
and widespread. Using events related to these common
diagnoses, we can nevertheless derive a reasonable
transformation matrix to apply to the rest of the data even if we
extend the method beyond the MIMIC-111 database. Ultimately,
harmoni zation can bring knowledge specialized in each hospital
into the same space. This is a major benefit because once
embeddings are created for each medical event or concept, itis
difficult to add new event or conceptsin relation to the existing
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embeddings without training the model again. With
harmonization, we can leverage embeddings learned from
another source and add new vectors. At the moment, what this
process fails to address are instances when two hospitals have
conflicting embeddings regarding an event or concept. This
method does not alleviate the issue but simply leaves both
embeddings. The fusion method mentioned in the experiment
conducted on hospitals with different sizes somewhat explored
the issue. However, to truly create a global model where these
two embeddings harmonize into one, further work is required.
The current method works best to incorporate new information
that hospitals are missing, whether it is missing diagnoses or
parts of patient’s clinical pathway.

The portability of event and patient vectors is another major
strength of the harmonization method. With event and patient
vectors rendered to vectors of numbers, privacy is preserved,
yet information is still conveyed to hospitals involved in the
harmonization. Instead of preserving privacy through
deidentification and encryption, we take more of a
machine-learning approach, where wetackle privacy protection
and the sharing of data simultaneoudly. Currently, the way
patient vectors are created is relatively naive, especially for
unstructured data. However, the explosion of deep neural
networks, such as recurrent and convolutional neural networks,
can create more sophisticated patient vectors. What we have
shown isthe need of harmonization to analyze patients vectors
learned at different sitestogether. It would be interesting to see
if harmonization can be applied to deep learning in adistributed
manner.

Finally, we have shown in a limited way the extension of the
harmoni zation method onto three sites, but we al so seethat even
with harmonization, the predi ction results do not reach the global
level. Future work can explore the possibility of harmonizing
more sites, where the number of corresponding pairs diminishes
as the number of sitesincreases.

Conclusions

Contextual embedding models are extremely useful in health
care modeling because of their representativeness and
applicability to downstream machine-learning models. With
patient privacy being a paramount concern, it is nontrivial to
directly share medical records in both structured and
unstructured form. The emergence of contextual embedding in
health care allows for a new way to share models without
sharing data. We proposed an innovative framework to combine
locally trained embeddings into embeddings in a global sense.
Utilizing our unique harmoni zation, more accurate analyses can
be made with the accumulated knowledge acquired from local
sources. Such atechnique can alow for information unique to
a certain hospital to become available to other sites, increasing
the fluidity of information flow in headth care. Our
demonstration is on Word2Vec, but it is widely applicable to
other contextual embedding models, including the most recent
Med2Vec [20] and Graph2Vec [37].
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