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Abstract

Background: Machine learning is an effective data-driven tool that is being widely used to extract valuable patterns and insights
from data. Specifically, predictive machine learning models are very important in health care for clinical data analysis. The
machine learning algorithms that generate predictive models often require pooling data from different sources to discover statistical
patterns or correlations among different attributes of the input data. The primary challenge is to fulfill one major objective:
preserving the privacy of individuals while discovering knowledge from data.

Objective: Our objective was to develop a hybrid cryptographic framework for performing regression analysis over distributed
data in a secure and efficient way.

Methods: Existing secure computation schemes are not suitable for processing the large-scale data that are used in cutting-edge
machine learning applications. We designed, developed, and evaluated a hybrid cryptographic framework, which can securely
perform regression analysis, a fundamental machine learning algorithm using somewhat homomorphic encryption and a newly
introduced secure hardware component of Intel Software Guard Extensions (Intel SGX) to ensure both privacy and efficiency at
the same time.

Results: Experimental results demonstrate that our proposed method provides a better trade-off in terms of security and efficiency
than solely secure hardware-based methods. Besides, there is no approximation error. Computed model parameters are exactly
similar to plaintext results.

Conclusions: To the best of our knowledge, this kind of secure computation model using a hybrid cryptographic framework,
which leverages both somewhat homomorphic encryption and Intel SGX, is not proposed or evaluated to this date. Our proposed
framework ensures data security and computational efficiency at the same time.

(JMIR Med Inform 2018;6(1):e14) doi: 10.2196/medinform.8286
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Introduction

Machine learning algorithms are now being widely used in
many applications to uncover deep and predictive insights from
datasets that are large scale and diverse. For instance, building
predictive models from biomedical data is very important in
biomedical science. Such predictive models can identify genetic

risk factors for a specific disease under study and can guide
medical treatment. For instance, Tabaei and Hermana formulated
a predictive equation to screen for diabetes [1].

Machine learning thrives on growing datasets. In most of the
cases, the more data fed into a machine learning system, the
more it can learn and offer the potential to make more accurate
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prediction. It is often known as “data never hurt in machine
learning,” as insufficient information cannot lead to powerful
learning systems. In the context of health care, building an
accurate predictive model depends on the quality and quantity
of aggregate clinical data, which come from different hospitals
or health care institutions. Consequently, in a real-world
scenario, machine learning applications use data from several
sources, including genetic and genomic, clinical, and sensor
data. Day by day, many new sources of data are becoming
available—for instance, data from cell phones [2], wearable
sensors [3], and participatory sensing applications [4]. For
instance, there are wearable sensing frameworks that collect
sensing information regarding heart rate, body temperature,
caloric expenditure, etc, to train machine learning models. These
models are then used for predictive analysis [4].

Data collection, storage, and processing power of a single
institution is not always adequate to handle the large-scale data
used in cutting-edge machine learning applications. For rare
diseases, individual institutions oftentimes do not have sufficient
data to calculate a model to achieve sufficient statistical power.
Therefore, data sharing among multiple institutions is required.
However, sharing sensitive biomedical data (clinical or genomic)
exposes many security and privacy threats [5]. In case of data
breach, there is a risk of sensitive personal information leakage.
Therefore, in addition to addressing the fundamental goal of
information retrieval, privacy-preserving learning also requires
the learning algorithm to protect the confidentiality of the
sensitive records of individuals. Along with obtaining the
approval from an institutional review board, collaborative
research on shared biomedical data often needs to satisfy 2
criteria at the same time: (1) permitting access to biomedical
data for collaborative research, and (2) maintaining participants’
privacy and protecting the confidentiality of their genomic and
clinical profile [6]. For this reason, strict policies regarding
biomedical data sharing have been enforced and, generally,
these policies are different in different regions of the world. For
instance, there are several key differences between the US
Health Insurance Portability and Accountability Act (HIPAA)
and the Canadian Personal Information Protection and Electronic
Documents Act (PIPEDA). This difference in the policies and
regulations of cross-border biomedical data sharing impedes
international research projects greatly [7]. It is imperative to
address this problem with practical solutions to promote health
science discoveries.

In this paper, we concentrate on secure and efficient computation
for a fundamental technique used in numerous learning
algorithms called regression (see Methods). Regression analysis
identifies the correlation among different attributes based on
input data. Given a number of high-dimensional data points,
regression analysis generates a best-fit line or curve through
these points. To evaluate the fit, the value of a target attribute
is predicted, which is associated with the given values of input.
For instance, the input variables can be an individual’s age,
weight, sex, body mass index, and glucose level, while the
output can be the likelihood to develop diabetes. Although
regression analysis is widely used in practice, little work has
been done in privacy-preserving regression analysis over a
distributed dataset. Our objective was to perform the required

computation for regression analysis without exposing any other
information of user data.

Prior Works
To ensure the security and privacy of the sensitive data used in
learning algorithm, different techniques (eg, garbled circuit [8],
homomorphic encryption [9], differential privacy [10], and
secure hardware [11]) have been adopted (Multimedia Appendix
1 discusses prior works targeting regression). But each of these
techniques has certain shortcomings (eg, computational
overhead, communication overhead, storage overhead, reduced
data utility, and approximation error), which make these
techniques difficult to use in real-world applications.

Wu et al developed a framework, grid binary logistic regression
(GLORE) [12], for developing a binary logistic regression model
where data are distributed across different data owners. In their
proposed approach, instead of sharing patient records, data
owners send intermediary results to a central entity. These
intermediary results are then used to build a prediction model
without sharing patient-level data. However, in their approach,
the intermediary results are exchanged in plaintext. If the data
size of a data owner is small, then sharing the intermediary
results might compromise privacy.

Later, Shi et al incorporated secure multiparty computation in
GLORE. Their proposed framework, secure multiparty
computation framework for grid logistic regression
(SMAC-GLORE) [13], protects the confidentiality of
intermediary results beside the patient data. However,
SMAC-GLORE cannot handle numbers outside of a predefined
range, and it does not scale well (eg, it cannot efficiently handle
data with more than 10 covariates). In addition, it uses a Taylor
series approximation approach to evaluate the logit function.
This approximation causes precision loss in the final output.

Why Hybrid?
There are two obvious but suboptimal solutions in terms of
security and efficiency. Existing fully homomorphic encryption
(FHE) techniques [14] provide rigorous security, but these
solutions are not efficient. In existing homomorphic encryption
schemes, with subsequent homomorphic operations, the noise
(and size) of the ciphertext grows substantially, which increases
computational and storage overheads to a great extent (see
Methods, Homomorphic Encryption for details). There are some
operations to reduce the size and noise of the ciphertext:
bootstrapping [9] and relinearization [15]. However, these
operations are very expensive from the computational point of
view. Our proposed framework does not use these expensive
operations at all, which enhances the efficiency of the
framework greatly.

On the contrary, Software Guard Extensions (SGX; Intel)-based
solutions are very efficient but have some security concerns
resulting from the recent discovery of side-channel attacks
against SGX [16]. We developed our method so that only
intermediary results, not individual records, are decrypted inside
the secure hardware. Hence, a successful adversary would be
unable to compromise the privacy of an individual.
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Our proposed hybrid framework uses both techniques and
provides a good trade-off in terms of security and efficiency.

Contributions
In this paper, we propose a hybrid cryptographic framework for
secure and efficient regression analysis (both linear and logistic).
Our proposed framework leverages the best features of two
secure computation schemes: somewhat homomorphic
encryption (SWHE) and secure hardware (Intel SGX). In this
framework, data reside at the data owner’s end. We assumed
that data are horizontally partitioned, where all the records share
same attributes. Inspired by GLORE [12], we formulated the
regression problem as decomposable parts. Data owners
compute these decomposable intermediary results locally. Then,
after encrypting these local results using homomorphic
encryption, they send the encrypted intermediary results to an
SGX-enabled central server. The central server now combines
the intermediary results using a homomorphic addition
operation. Then, these aggregate encrypted intermediary results
are passed to the secure hardware hosted at the central server.
Here, the aggregate intermediary results are decrypted and
further computation is performed on plaintext. These
computations involve matrix inversion and division, which are
hard to handle in existing homomorphic encryption schemes.
Finally, model coefficients are computed inside the secure
hardware.

We summarize our contributions as follows: (1) We address
the limitations of existing secure computation schemes and
propose a hybrid secure computation model for performing
regression analysis over distributed data, which is more efficient
and robust. (2) We designed the framework in such a way that
no homomorphic multiplication is necessary, which is an
expensive operation. In addition, we do not need any
bootstrapping or relinearization operation. (3) In our proposed
approach, a significant portion of computation is performed at
the data owner’s end on plaintext. In computation at a central
server, after homomorphic addition operations, further
computation is performed inside secure hardware on plaintext.
Since most of the operations are performed on plaintext, our
proposed approach is very efficient. In addition, due to avoiding
any kind of approximation technique, our proposed method
does not introduce any precision loss in the final output.

In Multimedia Appendix 1 we introduce major existing secure
computation techniques, application of these techniques in
regression analysis, and their shortcomings.

Methods

Security Background

Homomorphic Encryption
The idea of an encryption scheme that is capable of performing
arbitrary computation on encrypted data was first proposed by
Rivest et al [17] in 1978. Since then, several cryptosystems
were invented that are homomorphic with respect to either
addition or multiplication. Finally, Boneh et al [18] proposed
a partially homomorphic cryptosystem that is able to perform
1 multiplication and any number of additions. Table 1 shows a
partial list of homomorphic encryption schemes [18-22].

Developing an encryption scheme that supports an arbitrary
number of additions and multiplications was an open problem
until 2009. Since addition and multiplication operations over
integer ring Z2 form a complete set of operations, this type of
encryption scheme supports any polynomial time computation
on ciphertext. In 2009, Gentry showed the first construction of
an FHE scheme [9] that can do any number of addition and
multiplication operations on encrypted data.

To explain FHE, say ciphertext ci is the encrypted form of
plaintext mi, where mi and ci are elements of a ring (the
operations of the ring are addition and multiplication). In FHE,
if a function f consists of addition and multiplication in the ring,
then decryption (f (c1,c2,...,cn)) = f (m1,m2,...,mn). Generally, f
is expressed by an arithmetic circuit over Gallois field(2). This
is equivalent to a Boolean circuit with exclusive OR and AND
gates.

In the existing FHE schemes, a certain amount of noise needs
to be introduced in the ciphertexts to ensure data confidentiality.
This noise grows while performing homomorphic operations
on ciphertexts. In particular, a homomorphic multiplication
operation increases the size of the ciphertext abruptly. For
instance, if 2 input ciphertexts have size M and N, then the
output ciphertext will be of size M+N−1. If the amount of noise
becomes too high, then the ciphertext cannot be decrypted
correctly. To perform any number of homomorphic operations,
the noise of the ciphertexts needs to be reduced. As mentioned
before, this can be done using a method known as bootstrapping
[9], which is computationally expensive.

In use cases where only a predetermined number of
computational operations needs to be done, the costly
bootstrapping process can be avoided by using an SWHE
scheme [23]. This scheme is often more efficient than using an
FHE scheme with bootstrapping. SWHE schemes use a method
called relinearization [15,24] to reduce the size of the ciphertext.

Table 1. Partial list of homomorphic encryption schemes.

HomomorphismCryptosystem

AdditiveGoldwasser and Micali [19], Paillier [20]

MultiplicativeRivest et al [21], ElGamal [22]

BothBoneh et al [18]
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Intel Software Guard Extensions
Intel SGX is a collection of extensions to the Intel architecture
that mostly concentrates on the issue of running applications
on a remote machine managed by an untrusted party. SGX
enables parts of an application to run within secure portions of
the central processing unit called enclaves. Untrusted entities,
including system software, cannot access the enclave. SGX
guarantees that the code and information inside an enclave
cannot be manipulated from outside the enclave. Two SGX
features facilitate provisioning of sensitive data to an enclave:
attestation and sealing.

SGX enclaves are generated without privacy-sensitive
information. Privacy-sensitive information is provisioned after
the enclave has been appropriately instantiated. This process of
demonstrating that an application has been correctly instantiated
within an enclave is called attestation [25].

At the point when an enclave is instantiated, SGX protects its
data until they are kept within the enclave. In any case, when
the enclave procedure terminates, the enclave will be destroyed
and all related data will be lost. So, for later use, data should
be stored outside the enclave. Sealing is the procedure that is
used to store encrypted data to ensure that only the same enclave
would be capable of unsealing them back to their previous form.

System Architecture
Our proposed framework has three main entities (Figure 1).

Data Owners
These parties are geographically distributed and possess
databases. Data can come from a variety of sources, including
cell phones, wearable sensors, and relational databases. Data
owners send encrypted intermediary results to the central server
so that it can analyze the combined dataset.

Key Manager
This generates and distributes the cryptographic keys that will
be used for data encryption and decryption in different stages
of our proposed framework. Each data owner gets a public key
from the key manager and uses it for encrypting data.

Central Server
The central server maintains communication with all the other
entities of the framework. It receives data from the data owners
and computes the final result using SWHE and secure hardware.

Threat Model
In proposing this framework, our goal was to guarantee the
confidentiality of data provided by different data owners. We
assume that the central server is a semihonest party (also referred
to as honest-but-curious), where it obeys the system protocol
but may try to infer sensitive information by analyzing the
system logs or received information [26].

We assume that the computation runs in an SGX-enabled central
server. SGX architecture enables the central server to perform
any computation securely on data provided by different data
owners. We assume that the processor of the central server
works properly and is not compromised. We trust the design
and implementation of SGX and all cryptographic operations
performed by it.

In general, side-channel attacks against SGX can be classified
into two categories: physical attacks (where the attacker has
physical access to the machine) and software attacks (these are
launched by any malicious software running in the same
machine) [27]. There has been no known successful physical
attack against SGX. However, it is possible to exploit a type of
software attack known as a synchronization bug [28].
Synchronization bugs are possible to exploit because an
untrusted operating system can manipulate the thread scheduling
of enclaves. However, it is only applicable for multithreaded
applications, whereas our application is single threaded.

Figure 1. Block diagram of the system architecture. SGX: Software Guard Extensions.
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There is another type of well-known software attack, which is
called a page-fault attack [16]. As the page tables are maintained
in the operating system kernel and operated by the untrusted
system software, page table entries can be manipulated to attack
enclaves. But, since enclave pages are permission protected,
malicious system software cannot compromise their integrity
by manipulating them. However, Xu et al [16] showed that, by
clearing the present flag in the corresponding page table entries,
the malicious software can generate traces of page access from
the enclave. Although an adversary can observe access to
different enclave pages, enclave memory can be treated as
private at page-level granularity (4 kB) [29]. In other words, a
different access to an enclave page is indistinguishable to an
adversary. Further research is required to better understand the
gap between the potential vulnerabilities of SGX and proposed
defense mechanisms. Most of the existing defense mechanism
have been developed to address the page-fault side-channel
attacks [29-31]. However, these mechanisms may not be
effective for future attacks. Keeping these attacks in mind, we
developed our framework to protect institutional privacy by
combining the local inputs of participating institutions without

decrypting them, therefore providing a higher layer of protection
without introducing too much computational overhead.

We did not consider the aspects of adversarial machine learning
through obtained outputs. Adversarial parties may try to infer
sensitive attributes of data by model inversion attacks [32,33].

Linear Regression
Suppose we are given a set of paired observations (xi, yi) for
i=1,2,...,n, and we want to generate the best-fit straight line for
these points. This straight line is given by y=β1+β2x, for some
β1,β2. The purpose is to explain the correlation between variable
y and x. To evaluate the fit, the value of y is predicted that is
associated with a given value of x. In the literature, y is called
the variable to be explained (or the dependent variable) and x
is called the explanatory variable (the regressor, the covariate,
or the independent variable) [34] (pg 79). Consider the following
simple linear regression model: y=β1+β2x +ε. Here, ε is the error
we make in predicting y. For i=1,...,n, we obtain n equations:
y1=β1+β2x1+ε1, y2=β1+β2x2+ε2, and yn=β1+β2xn+εn.

We can formulate this regression model using the matrix in
Figure 2 (a).

Figure 2. Equations used in developing the framework.
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In this way, the simple linear regression function can be
represented by a short and simple equation:

The linear regression model with several explanatory variables
is known as multiple linear regression. This is given by

Here, x1i=1, for i=1,...,n. The function of Equation 2 can also
be expressed in matrix form, which is more convenient, as in
Figure 2 (b).

It is noteworthy that Equation 1 is also applicable for multiple
linear regression.

Using the ordinary least squares estimate technique we can show

that β=(XTX)–1XTY (for details, see Heij et al [34], pg 79).

For secure linear regression over distributed data, each data

owner Di computes XT
iXi and XT

iYi locally on plaintext. Di then

encrypts XT
iXi and XT

iYi using homomorphic encryption. After
receiving these intermediary results from all of the data owners,
the central server then adds these using homomorphic addition

operations to construct XTY and XTX (equation from Figure 2
[c]). Further computation is performed inside the enclave after
decryption. Textbox 1 shows our secure linear regression
algorithm.

Figure 3 illustrates the sequence diagram of our proposed
method. At first, the key manager establishes the public key
and the private key. The private key is sent to the central server
securely using remote attestation. The data owners then encrypt
their data with the public key and send the encrypted data to
the central server. Finally, the central server computes the model
parameters.

Textbox 1. Algorithm 1: secure linear regression.

Input: Each data owner Di provides encrypted XT
iXi and XT

iYi.

Output: Model parameters (β)

1. Perform homomorphic addition over XT
iXi for each data owner i.

2. Perform homomorphic addition over XT
iYi for each data owner i.

3. Send XTY and XTX to enclave.

4. Inside enclave, decrypt encrypted XTY and XTX.

5. Inside enclave, compute (XTX)–1.

6. Finally, compute β inside enclave.

Figure 3. Sequence diagram of our proposed framework. Ack: acknowledge; SGX: Software Guard Extensions.
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Logistic Regression
Logistic regression extends the principles of multiple linear
regression to the case where the dependent variable y is binary
(either 0 or 1). Like in multiple linear regression, the
independent variables can be categorical or continuous.

Instead of modeling the dependent variable directly, logistic
regression models the probability of the dependent variable.
Logistic regression uses the equation of linear regression
equation (2). But, in that equation, the value of the dependent
variable can fall outside [0, 1]. Therefore, a nonlinear
transformation is used, which is called logit transformation.
The logit function takes any value x and maps it onto a value
between 0 and 1. Logit function is given by logit(x)=log[p
/(1–p)] as in Figure 2 (d). Therefore, probability=(y=1| x1,
x2,...,xk) = [exp(β1+β2x2+...+βkxk)]/[1+exp(β1+β2x2+...+βkxk)]
where β1, β2,...,Bk are unknown constants analogous to the
multiple linear regression model. Probability=(y=1| x1, x2,...,xk)
denotes the probability that input (x1, x2,...,xk) belongs to default
class (y=1).

Logistic regression models are generally fit by maximum
likelihood by using the conditional probability of y given x.
Here, the Newton-Raphson method is used to solve the
coefficients.

Let X represent the matrix of xi values, Y represent the vector
of yi values, P be the vector of fitted probabilities with the ith

element p (xi;β
old), and W be an n × n diagonal matrix of weights

with ith diagonal element p (xi;β
old)(1– p [xi;β

old]). Then a
Newton step is as follows:

In the second and third steps, the Newton step is expressed as
a weighted least squares step, with the response z= X

βold+W-1(Y–P). This method is also known as iteratively
reweighted least squares, since each iteration solves the weighted

least squares problem (see Friedman et al [35] for details), as
in Figure 2 (e).

In practice, the W matrix is not computed explicitly because its
size could be huge. If we have 1000 rows of training data, matrix
W would have 1,000,000 cells. For this reason, direct matrix
operations with W may be very inefficient. Notice the beta
update equation (Equation 3) has a term, WX, which means the
matrix product of W and X. Because most of the values in W
are zero, most of the matrix multiplication terms are also zero.
This allows W times X to be computed directly from P and X,
without explicitly constructing W. Several of the mathematical
references that describe iteratively reweighted least squares with
the Newton-Raphson algorithm for logistic regression use the
symbol [X tilde] for the product of W and X. It is generally
written as in Figure 2 (f).

For secure logistic regression over distributed data, each data

owner Di computes XT
i[X tilde]i and XT

i(Yi– Pi) locally on

plaintext. Di then encrypts XT
i[X tilde]i and XT

i(Yi– Pi) using
homomorphic encryption. After receiving these intermediary
results from all the data owners, the central server then adds

these using homomorphic addition operations to construct XT[X

tilde] and XT(Y– P) (equation from Figure 2 [g]). Further
computation is performed inside the enclave after decryption.
After computing β, the central server sends β to all of the data

owners. For the next iteration, data owner i computes XT
i[X

tilde]i and XT
i(Yi– Pi) using new β (received from the central

server) and sends these intermediary results to the central server.

The central server then updates β using newly received XT
i[X

tilde]i and XT
i(Yi– Pi). In this way, iterations continue until

parameters converge. Textbox 2 shows our secure logistic
regression algorithm.

Implementation
We developed our proposed framework using C++. For SWHE,
we used the Simple Encrypted Arithmetic Library (SEAL) [24].
SEAL is an easy-to-use homomorphic encryption library, with
no external dependencies. There is another homomorphic
encryption framework called HElib [36], but we chose to use
SEAL for its simplicity.

Textbox 2. Algorithm 2: secure logistic regression.

Input: Each data owner Di provides encrypted XT
i[X tilde]i and XT

i(Yi– Pi), and β is initialized to an all-zero vector.

Output: Model parameters

1. Receive encrypted XT
i[X tilde]i and XT

i(Yi– Pi) from each data owner Di.

2. Perform homomorphic addition over XT
i[X tilde]i for each data owner Di.

3. Perform homomorphic addition over XT
i(Yi– Pi) for each data owner Di.

4. Send encrypted XT[X tilde] and XT(Y– P) to enclave.

5. Inside enclave, decrypt XT[X tilde] and XT(Y– P).

6. Update βnew=βold+(XT[X tilde])–1XT(Y– P).

7. If the stopping criteria are satisfied, then stop; otherwise, send β to each data owner and go to step 1.
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Table 2. Parameters used for the Simple Encrypted Arithmetic Library.

ValueParameters

x1024+1Polynomial modulus

1<<8Plaintext modulus

32Decomposition bit count

64No. of coefficients reserved for fractional part

Table 3. Size of datasets used for experiments.

DatasetRecords

Low Birth Weight StudyHaberman

488270No. of instances

83No. of features

Experimental Settings and Dataset
We performed experiments in a machine with an Intel Core
i7-6700 (3.40 GHz) processor and 8 GB memory (Intel
Corporation, Santa Clara, CA, USA). We used Intel SGX
software development kit version 1.7. We simulated 2 data
owners and the central server in this machine. Table 2 shows
the SEAL parameters.

We performed experiments using Haberman’s survival dataset
from the University of California, Irvine, Machine Learning
Repository [37] and the Longitudinal Low Birth Weight Study
dataset from Hosmer and Lemeshow [38]. The records of the
datasets were evenly distributed between the 2 data owners.

Table 3 lists the datasets we used with their sizes.

Results

Table 4 shows the experimental results. For SWHE, most of
the computation time was due to homomorphic operations. Our
proposed framework avoided expensive homomorphic
multiplication by transferring the later phase of computation to
the secure hardware. In addition, we needed to decrypt only the
intermediary results, not every individual attribute value.
Consequently, our proposed framework was more efficient than
the solely secure hardware (SWHE)-based technique (where
every individual attribute needs to be decrypted) and the
SWHE-based technique (which involves many expensive
homomorphic multiplication and relinearization operations).
Table 4 does not report the results for the SWHE-based
technique. However, according to our empirical results, it took
more than 2 hours for the Haberman dataset and more than 17
hours for the Low Birth Weight Study dataset for both kinds of
regression analyses.

Table 4. Experimental results for computation time.

DatasetRegression analyses

Low Birth Weight StudyHaberman

Linear regression

256Plaintext (ms)

39.3828.991Proposed method (s)

880.228259.908Secure hardware (SWHEa) (s)

8.544.30Secure hardware (AESb) (s)

Logistic regression

886171Plaintext (ms)

162.54427.037Proposed method (s)

904.718264.669Secure hardware (SWHE) (s)

8.644.65Secure hardware (AES) (s)

aSWHE: somewhat homomorphic encryption.
bAES: Advanced Encryption Standard.
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Table 5. Storage overhead for the secure hardware approach.

DatasetOverhead before and after encryption

Low Birth Weight StudyHaberman

283.8Before encryption (kB)

12330.3After encryption (SWHEa) (MB)

14336After encryption (AESb) (kB)

aSWHE: somewhat homomorphic encryption.
bAES: Advanced Encryption Standard.

We want to emphasize that, although the secure hardware
(Advanced Encryption Standard [AES]) method is faster,
state-of-the-art attack models targeting SGX show that solely
secure hardware-based approaches might expose data from
participating institutions to potential attackers (as explained
above). Our method, although a little bit slower, preserves such
institutional privacy by combining the local inputs without
decrypting them; therefore, it offers a stronger security guarantee
without imposing too much computation or storage cost. In this
way, our proposed hybrid model provides a good trade-off in
terms of security and efficiency.

Table 5 shows the storage overhead of the solely secure
hardware-based approach. For SWHE, times required to encrypt
the datasets were 4.37 minutes for the Haberman dataset and
18.46 minutes for the Low Birth Weight Study dataset. For
AES, times required to encrypt the datasets were 14 milliseconds
for the Haberman dataset and 38 milliseconds for the Low Birth
Weight Study dataset.

Discussion

Comparison With Prior Work
There is a homomorphic encryption-based implementation of
linear regression [14], which required 2 days to compute on a
dataset containing 51,000 input vectors of 22 features with a
key size of 1024 bits. That matrix inversion procedure took 1
day to complete because matrix inversion is a very expensive
computational task in homomorphic encryption. In our proposed
method, we performed matrix inversion on plaintext in secure
hardware, which is much more efficient.

Hall et al [14] proposed an iterative matrix inversion algorithm,
which introduces approximation errors when a fixed number of

iterations is used. Their method offers a low accuracy of 10–3.
Precision can be slightly improved by choosing greater values
for the 2 constants used by their method. However, this would
require a larger public key, which would introduce significant
computation overhead. In contrast, in our proposed method,
there is no approximation error: the regression coefficients are
completely identical to the plaintext results.

Security Discussions
In the Methods (Threat Model subsection), we discussed the
security of SGX, specifically different side-channel attacks on
SGX, and how we treat those attacks in our proposed
framework. Addressing these attacks, we developed our
framework in such a way that it can protect institutional privacy

by combining the local inputs of participating institutions
without decrypting them. This approach provides a higher layer
of security without imposing too much computational cost.

In our proposed method, only intermediate values (eg, XTY,

XTX) are decrypted inside secure hardware. Even if the hardware
is compromised (or, in case of a side-channel attack), it is not
possible to retrieve any sensitive attribute from those
intermediary results. Hence, our proposed hybrid model not
only achieves good performance but also guarantees stronger
security than the solely SGX-based techniques. Dowlin et al
[24] and Pass et al [25] discussed the security of SEAL and
Intel SGX further.

A symmetric cryptosystem like AES requires n remote
attestations to distribute the key to n data owners, which results
in much more network communication, which might be prone
to attack. In contrast, our proposed framework relies on
public-key cryptography, where the data owners use a public
key to encrypt their data published by the key manager. In this
way, our proposed method reduces the attack surface of the
system model, makes key distribution much simpler, and avoids
additional communication overhead.

Limitations
There are some limitations of our proposed framework.

First, we did not consider the issue of model privacy. Several
works based on differential privacy have addressed inference
attacks (eg, model privacy [39]). These solutions are
complementary to our proposed method and can be readily
incorporated into a single framework.

Second, the central server of our proposed method must be SGX
enabled; that is, it must use an Intel processor of sixth generation
or later.

Third, since computing coefficients for logistic regression
require multiple iterations, all parties must be synchronized
until coefficients converge. However, linear regression does
not require multiple iterations. So, in this case, parties can be
offline just after sending their intermediary results.

Generalizability
Others have addressed training machine learning models (eg,
support vector machines [40]) over distributed data [41,42].
Our proposed method can be easily applied to this kind of
technique.
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Cost of Deployment
The Intel SGX feature is available in all Intel Skylake and Kaby
Lake processors. The price of an Intel Skylake or Kaby Lake
processor is identical to that of processors from other vendors
(having similar configuration). Price ranges from US $42 to US
$1207 depending on configuration [43]. Recently, Microsoft
started using SGX-capable servers in their Azure confidential
computing service [44]. Azure confidential computing is
offering the developers the ability to develop applications on
top of Intel SGX software development kit. Apparently, there
will be no significant additional charge for using this service.

Conclusion
In this age of big data, data need to be analyzed to uncover
valuable insights and patterns. But this kind of analysis poses
a threat to individual privacy, since data often contain sensitive
information. In this paper, we address this data security and
privacy issue and propose a hybrid cryptographic framework
to overcome the limitations of the existing cryptographic
techniques. We think that secure hardware–assisted predictive
analysis of biomedical data is very promising for health care
and medical research.

In future work, we will investigate the applicability of our
proposed method to other learning algorithms such as neural
networks, support vector machines, and decision trees.
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