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Abstract

Background: Biomedical semantic indexing is avery useful support tool for human curatorsin their efforts for indexing and
cataloging the biomedical literature.

Objective: The aim of this study was to describe a system to automatically assign Medical Subject Headings (MeSH) to
biomedical articlesfrom MEDLINE.

Methods: Our approach relies on the assumption that similar documents should be classified by similar MeSH terms. Although
previous work has aready exploited the document similarity by using a k-nearest neighbors algorithm, we represent documents
as document vectors by search engine indexing and then compute the similarity between documents using cosine similarity. Once
the most similar documents for a given input document are retrieved, we rank their MeSH terms to choose the most suitable set
for the input document. To do this, we define a scoring function that takes into account the frequency of the term into the set of
retrieved documents and the similarity between the input document and each retrieved document. In addition, we implement
guidelines proposed by human curators to annotate MEDLINE articles; in particular, the heuristic that saysif 3 MeSH terms are
proposed to classify an article and they share the same ancestor, they should be replaced by this ancestor. The representation of
the MeSH thesaurus as a graph database allows us to employ graph search algorithms to quickly and easily capture hierarchical
relationships such as the lowest common ancestor between terms.

Results:  Our experiments show promising results with an F1 of 69% on the test dataset.

Conclusions: To the best of our knowledge, thisis the first work that combines search and graph database technologies for the
task of biomedical semantic indexing. Due to its horizontal scalability, ElasticSearch becomes a real solution to index large
collections of documents (such as the bibliographic database MEDLINE). Moreover, the use of graph search algorithms for
accessing MeSH information could provide a support tool for cataloging MEDLINE abstractsin real time.

(JMIR Med Inform 2017;5(4):e48) doi: 10.2196/medinform.7059
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: several biomedical bibliographic databases such as EMBASE,
Introduction OVID, Ebsco Host Research databases, Scielo, Cochrane, and
Biomedical Semantic Indexing the largest one, with 5600 journals and over 26 million articles,

] ) MEDLINE. In 2015, more than 806,000 citations were added
The last two decades have witnessed tremendous advancesin - 14 \EDL INE with aload of 2000 to 4000 documents per day.

our knowledge of life sciences and medicine, leading 0 an g quickly growing volume of articles is an overwhelming
exponential growth of the biomedical literature. There are
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challenge that requires a very specialized knowledge for
organizing this bibliographic database.

To support the classification and indexing of the content of the
MEDLINE database, the US National Library of Medicine
(NLM) produces and maintains athesaurus of medical concepts,
MeSH (Medical Subject Headings), which is reviewed and
updated continually (eg, 310 new headingswere added to MeSH
in 2015). Each document in MEDLINE is represented with a
set of MeSH terms that describe its subject topic. This task,
which is generally known as biomedical semantic indexing, is
acrucial task to facilitate literature search because MeSH terms
can be used in search queries to retrieve references that were
annotated with these terms or with their hierarchically related
termsin MeSH (ie, their synonyms, hypernyms, or hyponyms).
The task of identifying the MeSH terms that best represent a
MEDLINE article is manually performed by human experts
(so-called curators). NLM also provides some basic principles
[1] to assign MeSH termsthat curators should follow when they
catalog articles.

Biomedical semantic indexing is wusually a costly,
time-consuming, and laborious task [2]. Therefore, there is an
urgent need to explore semiautomatic methods to support
semantic indexing.

Several challenges such as Critical Assessment of Information
Extraction in Biology (BioCreative) [3], Workshop on
Biomedical Natural Language Processing (BioNLP) shared
tasks [4,5], Informatics for Integrating Biology & the Bedside
(i2b2) [6], and DDIExtraction [7,8] have significantly
contributed to improve and advance the state of the art in Natural
Language Processing for biomedicine, especially in the
information extraction task. Similarly, the biomedical semantic
indexing and question answering challenge (BioASQ) is being
organized since 2013 to encourage and promote research in
these fields and provide a common framework for assessment.
The objective of the task isto tag an article with a set of terms
(also known as headings or descriptors) from the MeSH
thesaurus. In this task, the training data consist of a vast
collection of MEDLINE abstracts. Each article includes the
MeSH termsthat the curators used to classify it. It also contains
additional metadata such as its unique identifier number
(PubMed unique identifier, PMID) used in PubMed (a free
search enginefor the MEDLINE database), title, journal name,
and publication year (see Figure 1). The test data consist of
recently published articles that have not been labeled by the
curators yet. The participating systems have to find the best
MeSH terms and report their answers for the test data.

Biomedical semantic indexing can be defined as a multilabel
hierarchical classification problem because each document has
to be classified with one or more concepts from ataxonomy. If
the taxonomy has a significant number of concepts (more than
hundreds), the main challengeisto work with thislarge number
of classes in the classification problem. In the case of the
BioASQ challenge, MeSH has a hierarchy with 16 main
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branches and contains more than 27,000 terms. Some works
restrict the scope of MeSH hierarchy using only a particular
branch in the MeSH tree (eg, heart diseases) [9] or a subset of
terms (generally those appearing in the training collection) [10]
to reduce the difficulty of the multilabel classification problem.

General Architecture

The general architecture of the most state-of-the-art systems
comprises 2 differentiated phases. a first phase in which an
initial set of MeSH terms is obtained and a second phase that
ranks these terms to select the top K that better fit the input
document. Several machine-learning techniques have been used
such as Support Vector Machines (SVM) [11,12], logistic
regression [13], k-nearest neighbors (k-NN) [11,13,14], or a
combination of them.

Most previous systems employ either flat classifiersor cascades
of classifiers [15]. Flat classifiers [11,16-18] do not take into
account the hierarchical relations between the MeSH terms,
whereas cascades approaches[19,20] apply aseparate classifier
top-down for each term. In each term, the method must decide
whether to assign the current term to the article being classified
or continue descending by the taxonomy and selecting which
branches (children) to continue exploring. However, both
approaches, flat and cascades, use the BoW (bag-of-words)
model to represent the documents. One of the notorious
disadvantages of BoW models is that they generate a large
number of features (as many as the vocabulary size of the
training set), which usually requires prohibitive computation
timefor practical applications. A possible solution could bethe
use of feature selection techniquesto reduce the number of Bow
features. However, these techniques have proved to be
inefficient because of the large number of classes (as many as
existing terms in MeSH) that must be represented. In other
words, as mentioned above, this multilabel classification
problem implies more than 20,000 classes (which are the terms
stored in MeSH), and it would need to keep at least a few
features to represent each class for the classification. Indeed,
classifiersused in this problem usually obtain better performance
without feature selection [15]. More recently, some works
[21,22] use word embedding techniques as an attractive
aternative of BoW-based approaches, leading to very large
dimensionality reduction and promising results.

Some previous works have implemented different strategies
based on the guidelines proposed by human curators to select
the most appropriate set of MeSH terms for a given document.
However, itisdifficult to assesstheir real utility because human
curators, paradoxically, do not aways follow their own rules
[23].

Table 1 summarizes some of the main systems for the task of
biomedical semantic indexing. The underlying characteristics
(such asthetype of approach: flat vshierarchical, if the system
is based on a search engine, and a brief description of themain
techniques used) of these works are presented.
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Figure 1. JSON-based format for the training data in the biomedical semantic indexing and question answering challenge BioASQ task 4a.
"articles": @[
(=P

"abstractText":"The addition of FMNH(2), to Vibrio harveyi luciferase at 2°C in the
presence of tetradecanal results in the formation of a highly fluorescent transient species
with a spectral distribution indistinguishable from that of the bioluminescence. The
bioluminescence reaches maximum intensity in 1.5 s and decays in a complex manner with
exponential components of 10(-1) s(-1) , 7 x 18(-3)5(-1). and 7 x18(4)s(-1). The
fluorescent transient rises exponentially at 7 x 18(-2)s(-1) and decays at 3 x 10 (4)s(-1)
. The slowest bioluminescence component. comprising the bulk of the bicluminescence. decays
at twice the rate of the fluorescent transient under all variations of reaction conditions:
concentration of reactants.temperature 2 - 20°C. and aldehyde chain length - decanal,
dodecanal and tetradecanal. The activation energy for both the slowest bioluminescence
decay and the transient fluorescence decay is 80 kJ-mol(-1). An energy transfer scheme is
proposed to explain the results where two distinct chemically energized species utilize the
fluorescent transient as emitter for the slower bioluminescences, and for the faster
process a fluorophore present in the protein preparation. Kinetic observations suggest that
typical preparations of V. harveyi luciferase comprise 15% active protein.",
"journal":"Photochemistry and photobiology",
"meshMajor": @[

"Flavin Mononucleotide”,

"Fluorescence",

"Kinetics",

"Luciferases",

"Luminescence",

"Time Factors",

"Vibrio®
1.
“pmid":"23479819",
"title":"Kinetics of bacterial bioluminescence and the fluorescent transient.",
"year":"1983"

Table 1. Main works for biomedical semantic indexing.

System Type Guidelines Search engine Approach F1
MTIZ Mork et al [14] Hierarchical Yes PubMed MetaMap, k-NNP 0.548
AUTH-Atypon, Papanikolaou et al [12]  Flat No No SVME with NLPY features 0.578
NCBI®, Mao et a [11] Flat No No SVM +k-NN 0.605
Antinomyra, Liu et al [13] Flat No No k-NN + logistic regression 0.619
Ribadas et a [18] Hierarchical No No Bayesian network 0.615
Kosmopoulos et al [21] Flat No No k-NN + word embeddings 0.57
Peng et a [22] Flat No No k-NN + word embeddings 0.632

M TI: Medical Text Indexer.

Bi-NIN: k-nearest nei ghbors.

€SVM: Support Vector Machine.

dNLP: Natural Language Processing.

eNCBI: National Center for Biotechnology Information.

Thisstudy isan extension of our earlier work [24] that described
our participation on the BioASQ 2016 biomedical semantic
indexing (Task 4d). Our main hypothesis is that similar
documents should be classified by similar MeSH terms.
Although this hypothesisis not new, and whereas most previous
works [11,21,22,25] use document similarity by clustering
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methods such as k-NN algorithm, our approach exploits
document similarity computed by an open source search engine,
the ElasticSearch tool [26], one of the most efficient document
store databases [27]. To the best of our knowledge, very few
works have exploited search engines [14,18]. In particular, the
work by Ribadas et al [18] used the search engine tool Indri
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[28], with the drawback of the high computational time needed
for its searches.

Although some works [29,30] have applied the semantic
similarity between conceptsto the biomedical semanticindexing
task, very few works have exploited the curators guidelines
defined by NLM to assign MeSH terms. Our work proposesthe
implementation of one of the most important annotation rules
[1], named “ Specific Headings vs Broader Headings,” which
had not been considered by any of the previous automatic
systems. Thisrule claimsthat if 3 MeSH terms are proposed to
classify an article and share the same ancestor, then the curator
should replace these terms by their lowest common ancestor.
To do this, the MeSH thesaurus is represented as a graph
database. This model based on graph theory leads to query the
thesaurus much faster than using a relation database. It enables
to swiftly and effortlessly capture hierarchical relationships
such as the shortest path between 2 terms or their lowest
common ancestor, which are features very useful to decrease
the unnecessary overlapping of MeSH terms when an abstract
isclassified.

The rest of the paper is organized as follows: first, in the
Methods section, we give a description of the datasets used in
this study and explain our approach. Then, we report and discuss
the results of our method in the Results section. Finaly,
conclusions and future work are presented.

Methods

Objective

The goal of the task was to automatically predict the most
descriptive MeSH terms for a given article. The predictions
should be compared with MeSH terms that were assigned by
human curators. This section describes the MeSH resource, the
data, and approach used in this study.

MeSH

MeSH is a thesaurus of medical concepts, which was created
to assist human curatorsin the task of cataloging the articlesin

Figure 2. Medical Subject Headings (MeSH) descriptor data for the term

Segura Bedmar et al

the MEDLINE database. Thus, each MEDLINE document
should be represented with a set of MeSH terms that describe
its subject topic. MeSH is an annually updated document (eg,
310 new headings were added to MeSH in 2015). The MeSH
2016 version contains atotal of 27,883 main terms (also known
as headings or descriptors), 82 qualifiers (subheadings), and
more than 232,000 supplementary concept records, which
represent specific examples of chemicals, diseases, and drug
protocols.

In MeSH, most terms contain a short definition, linksto related
descriptors, a list of synonyms or very similar terms, and a
unique alphanumerical ID. Figure 2 shows the content for the
term “Lymphoma.” The terms are organized in a hierarchy in
which each child can have more than one parent. Therefore,
any MeSH term can appear at different branches of the
hierarchical structure of MeSH. For example, the term
“Lymphoma’ belongs to 3 different branches: “Neoplasms
[CO4]” “Hemic and Lymphatic Diseases [C15]," and
“Immunologic Diseases [C20].” The field “Tree Number”
represents each possible location of aterm in MeSH. Thus, the
term “Lymphoma’ has 3 tree numbers. C04.557.386,
C15.604.515.569, and C20.683.515.761; C standsfor Diseases,
C04 for Neoplasms, and C04.557 for Neoplasms by Histologic
Type; C15 for Hemic and Lymphatic Diseases, C15.604 for
Lymphatic Diseases, and C15.604.515 for Lymphoproliferative
Disorders, C20 for Immune System Diseases, C20.683 for
Immunoproliferative Disorders, and C20.683.515 for
Lymphoproliferative Disorders.

Data

The training data for the BioASQ Task 4a consisted of
MEDLINE articles that were manually annotated with MeSH
terms by human curators. During the BioASQ 2016 challenge,
a test dataset was published each week for the assessment of
the participating systems. A total of 15 test datasets were
published, which were grouped into 3 different periods
(batches). Although the BioASQ challenge ended last May 15,
2016, the test datasets with gold annotations were not released
because many articles have not been manually annotated yet.

"Lymphoma".

MeSH

Heading Lymphoma

Tree

T C04.557.386

Tree

Number  |[C13:004.515.569

Tree

2 7
Naaber C20.683.515.761

GEN only or unspecified: prefer specific; do not confuse X ref LYMPHOMA., MALIGNANT with LYMPHOGRANULOMA, MALIGNANT

Annotation

see HODGKIN DISEASE: for lymphoma with AIDS, use LYMPHOMA. AIDS-RELATED

Scope Note

A general term for various neoplastic diseases of the lymphoid tissue.

Entry Term ||Germinoblastoma

Entry Term | Lymphoma, Malignant

Entry Term ||Reticulolymphosarcoma

Entry Term ||Sarcoma, Germinoblastic

Allowable

BLCFCHCICLCNCODHDIDTEC EH EM EN EP ET GE HI IM ME MI MO NU PA PC PP PS PX RA RH RIRT SU TH UL UR US VE

Qualifiers ||VI

Date of

Entry 19990101

Unique ID |DO08223
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Two different versions of the training data were provided: (1)
Training v.2016awith more than 12 million documents and (2)
Training v.2016b with almost 5 million documents from the
pool of journals that the BioASQ organizers used to select the
articles for the test data. In both datasets, the average number
of MeSH terms assigned to an articlewas 12 to 13.

In our previous work [24], we performed several experiments
using each of the 2 training datasets, which led to the conclusion
that they did not make a significant difference on the
performance of our system. For thisreason, we decided to only
use the largest dataset (Training v.2016a) to perform all of the
experiments described in this new work (seethe Results section).
Moreover, to optimize the best setting of our approach, we
randomly chose 1099 documents from the training dataset and
separated them for development set.

Segura Bedmar et al

As mentioned before, no test datasets with gold standard
annotations were released. However, to perform a transparent
and consistent evaluation of our work, we developed a script
that obtains the MeSH termsfor all abstractsin the test batches
of the 2016 BioA SQ. For each test document, the script obtains
itsPMID and then generatesaquery for searching it in PubMed.
If the PMID existsin MEDLINE, PubMed returns a structured
document contai ning the metadata for this abstract, among them
its MeSH labels (see Figure 3), collected by the script using a
regular expression. Finally, the labels are also searched in the
MeSH resourceto obtain their corresponding MeSH identifiers.
In this way, we obtained the same 15 test datasets used in the
2016 BioASQ edition. Table 2 shows the size of the different
datasets used in this study.

Figure 3. MeSH terms for the abstract with Pubmed unique identifier (PM1D)=26852276.

MH - Adolescent

MH - Adult

MH - Aged

MH - Aged, 80 and over

MH - Antineoplastic Combined Chemotherapy Protocols/*therapeutic use
MH - Combined Modality Therapy

MH - Datasets as Topic

MH - Female

MH - Follow-Up Studies

MH - Humans

MH - Immunotherapy

MH - Insurance Coverage/statistics & numerical data
MH - Kaplan-Meier Estimate

MH - Lymphoma, B-Cell/drug therapy/*radiotherapy

MH - Male

MH - Mediastinal MNeoplasms/drug therapy/*radiotherapy
MH - Middle Aged

MH - Neoplasm Staging

MH - Prognosis

MH - Propensity Score

MH - Proportional Hazards Models

MH - Registries

MH - Risk Factors

MH - Rituximab/administration & dosage

MH - Treatment Outcome

MH - United States

MH - Younag Adult

Table 2. Size of datasets (number of documents).

Dataset Documents, n
Training 10,099,281
Development 1099

Test 13,936
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Indexing Documentsand Query (Test Document) Using
ElasticSearch

Our approach relies on the assumption that similar documents
should be classified by similar MeSH terms. Previous research
has generally used document clustering techniques, such asthe
k-NN agorithm, to obtain the similar documents for a given
test document. Instead of using k-NN, we proposed the use of
an open source search engine, ElasticSearch, to retrieve a set
of similar documents for each test document.

Figure 4 shows the main steps of our approach. ElasticSearch
was used to index all the documents of the training dataset
(Training v.20164). Each training document was stored along
with its corresponding MeSH terms. Each test document was
also represented as a query, which was fired against the index
built from thetraining dataset. Then, ElasticSearch should return
the most relevant (similar) documents to the query (the test
document). Finaly, our systeminitially assignsit all the MeSH
terms of the similar documents retrieved by ElasticSearch for
this document.

Below we explain in detail how the index was constructed and
how a query (atest document) could be compared against this
index to recover the most relevant (similar) documents.

The core of ElasticSearch is Apache Lucene, afree, open-source,
and de facto standard retrieval softwarelibrary (by The Apache
Software Foundation). The efficiency of Lucene is because it
searches on index instead of searching the text directly.
Moreover, the index is stored in the main memory.

Luceneis based on the well-known and commonly used vector
space model (VSM) for information retrieval. Thismodel allows
us to represent documents as vectors, where each position in
the vector represents a specific term (typically termsare single
words), and the value at that position denotes the weight of that
term. There are severa different ways of computing these
values, being the most known term frequency-inverse document
frequency (tf-idf) weighting. In this model, a given document
dis represented as a vector Vg=[Wy g, Wo g,..., Wy o], Where w; 4
represents the frequency of the termi in the document d, D is
the set of al documents, and |[{d'C D|I € d'}| is the number of
documents containing theterm | (see Figure 5).

In short, VSM represents documents and queries as weighted
vectors, where each dimension refers to an index term and its
valueisits tf-idf value. To assess the relevance of a document
d for agiven query g, VSM caculates the cosine similarity of
their vectors (see Figure 6). Therefore, the basic idea behind
VMSisthat the more frequent aterm isin a document relative
to itsfrequency in the whole collection of documents, the more
relevant that document is to the query.
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Another important advantage of ElasticSearch isits capacity to
create distributed and scalable systems by specifying only the
configuration of the hierarchy of nodes. Thus, ElasticSearch is
self-managed to maintain better fault tolerance and load
distribution. In 2014, an empirical evaluation study about the
effectiveness of the current databases demonstrated that
ElasticSearch achieved the best performance compared with
other document store databases [27]. This is because
ElasticSearch usesthe main memory and compresses documents,
thereby improving retrieval time. Moreover, another main
challenge of the task is to manage the great amount of
documents that have to be indexed. Thanks to its horizontal
scalability (ie, the possibility of adding more storage and
processing power), ElasticSearch is able to index large
collections of documents such asthe MEDLINE database.

In this study, ElasticSearch (version 5.0) was installed on an
Ubuntu 16.04 server with 24 GB of RAM and 500 GB of disk
space. It took 10,264.07 secondsto index all the training dataset
(ie, an average of 1.02 milliseconds per document). Thetraining
dataset (Training v.2016a) consists of a total of 10,100,380
documents, with an average size of 2.1 KB per document.

MTI Processing

The Medical Text Indexer (MTI) [14] is a tool developed by
NLM and isconsidered as abaseline system for the task, which
provides a preliminary annotation of the articles. MTI is based
on a combination of MetaMap- [31] and PubMed-related
citations to recognize MeSH terms that are then clustered and
ranked by a k-NN algorithm. Given a document, MTI uses
MetaMap to find its concepts. The UMLS (Unified Medical
Language System) concepts found by MetaMap are restricted
to MeSH by a combination of synonym and interconcept
relations, and mappings. M T also obtainsasecond list of MeSH
terms by obtaining similar documents for the input document.
To do this, MTI uses the list of PubMed-related citations
provided by the PubMed system. Then, the MeSH terms of
these similar documents are also extracted. Finally, MTI clusters
both lists of MeSH termsinto asinglelist. Terms are clustered
by a k-NN algorithm and ranked according to the product of
the frequency and the MeSH tree depth of each term. MTI also
includes a postprocessing phase that implementsaset of filtering
rules from the NLM guidelines. For instance, it contains a list
of triggersthat activate one or more MeSH tags and that comes
mainly from the NLM guidelines, in the way of rules such as
“if XXXX appearsin the text then you should tag as AAAA”

Asit was mentioned before, our system initially considered the
set of MeSH terms from the relevant documents retrieved by
ElasticSearch for a given test document. Then, that set was
further extended with those terms provided by the MTI tool.
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Figure 4. Architecture of our system.
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Test document
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Query indexing by

ElasticSearch

v
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MeSH labels
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MeSH

MeSH labels
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Selecting MeSH terms ———p» Lo

Figure5. The element wi,d is the frequency of the term i in the document d.

D]

wida=tfia *log

|{d’eD|iedr}|

and tfiq

Figure 6. Cosine similarity between a document d and a query w, where V(q).V(d) is the dot product of their vectors, and |V(q)| and |V (d)| are their

Euclidean norms.

cosine — similarity(q,d) =

MeSH Labels Scoring Process

In the previous two sections, we described how an initial set of
MeSH terms is proposed by ElasticSearch and later extended
by the MTI tool, for a given test document. In this section, we
introduce a new scoring function to rank the MeSH terms for
agiven test document (represented asaquery ). Thebasicidea
behind this scoring function is the more number of times a
MeSH term appears in the set of more relevant documents for
agiven test document (query), the more significant that termis
to thistest document. The scoring function (see Figure 7) for a
MeSH term | and a test document g considers the following
parameters:

http://medinform.jmir.org/2017/4/e48/
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tf(1): the frequency of the MeSH term | in the set of retrieved
documents by ElasticSearch for the document g (query).

> q1eqScore (d, ) is the sum of all scores of the relevant
documents to the query g, which also contain the MeSH term
I. Asmentioned before, ElasticSearch usesthe cosine similarity
function to obtain the score between a document and a query.
We normalized the sum of al scores because some documents
may present a large number of MeSH terms, whereas others
very few. To do that, we divided it by the maximum score of
the relevant documents containing the term |.

Tisared positive value that represents the minimum threshold
for the scores of the MeSH terms. That is, only the MeSH terms
whose scores are greater than T finally will be selected for
cataloging the test document q.
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Figure 7. Scoring function to rank Medical Subject Headings (MeSH) term.

rank_score(l,q)n = tf{(1) *

Selecting MeSH Terms by Exploiting a Graph Database

In this point, we already have a set of ranked MeSH terms for
agiven test document.

In the last phase, we implemented a heuristic based on the
guidelines of human annotators [1] to classify MEDLINE
articles. In particular, the implemented rule claimed that if an
abstract had 3 or more MeSH terms sharing some ancestor, then
the curators should replace these 3 terms by their lowest
common ancestor.

Our hypothesis here was that representing the MeSH thesaurus
as agraph would let to query the MeSH thesaurus much faster
than when using its original format. By using well-known graph
search algorithms such as depth-first search, the model graph
enabled to rapidly and easily capture hierarchical relationships
such as the shortest path between 2 terms or their lowest
common ancestor. Knowing these hierarchical relationships
allowed usto find the most appropriate MeSH termsfor agiven
abstract, decreasing the possible overlapping among them, as
the NLM recommends.

BlazeGraph [32] isagraph database with support for Java APls
(Application Program Interface) and standardized query
languages for graphs, such as SPARQL (Protocol and RDF
Query Language). An important advantage of BlazeGraph is
that it processes large graphs in near-real time by its GPU
(Graphical Processor Unit) acceleration achieving better
processing time than CPU (Central Processing Unit)
technologies or other graph databases based on key values.

NLM provides a beta version of the MeSH thesaurus in RDF
(Resource Description Framework), astandard format for linked
open data. This RDF version of MeSH can be loaded into
BlazeGraph using the dotNetRDF API, afree and open-source

Laleq_score(dq)
max{score(a,q): 1€}

project for working with RDF, SPARQL, and the Semantic
Web.

We al so devel oped an algorithm that, given an input document,
traverses each of the MeSH terms proposed in the previous step
and searches its ancestors by querying the graph database of
MeSH with the depth-first search algorithm. Finally, when our
algorithm finds out that 3 or more of its MeSH terms share the
same ancestor, it replaces them by their lowest common
ancestor.

Initially, we restricted the search to a given depth of ancestors,
that is, pruning the search subtree below to a given height.
However, because the maximum depth is relatively small
(consisting only of 9 levels, with an average depth of
approximately 4.5 levels), we decided to explore the complete
tree of ancestors for each term. Figure 8 shows the query used
by ElasticSearch to retrieve all ancestors of the term
“Lymphoma.” The output of this query is shown in Figure 9
where the term “Lymphoma’ is in 3 different branches of the
MeSH thesaurus: C04-Neoplasms, C15-Hemic and Lymphatic
Diseases, and C20-Immune System Diseases. M

Table 3 shows the list of MeSH terms proposed by our system
for thearticlewith PMID=25676421. Thefirst column contains
the MeSH terms after applying our script to replace the terms
(3 or more) sharing the same ancestor, whereas the second one
containsthe MeSH terms proposed by using only ElasticSearch
and the score function. For example, the terms “Lymphoma,
B-Cell,” “Ataxia Telangiectasia” and “Lymphoma’ were
substituted by their lowest common ancestor “Immune System
Diseases”

Table 4 shows the comparison of search times for 3 different
MeSH terms. The reader can see that the 3 searches on the
MeSH thesaurus stored into a graph database are significantly
faster than the same searches on the RDF format.

Figure 8. BlazeGraph query to obtain the ancestors of the term "Lymphoma".

PREFIX mesh2016: <http://id.nlm.nih.gov/mesh/2016/>
PREFIX meshv: <http://id.nlm.nih.gov/mesh/vocab#>

SELECT ?treeMNum ?ancestorTreeNum ?ancestor 7alabel

WHERE {

7nodo rdfs:label "Lymphoma"@en

nodo meshv:treeNumber 7treeNum

7treeNum meshv:parentTreeNumber+ ?ancestorTreeNum
fancestor meshv:treeNumber 7ancestorTreeNum
?ancestor rdfs:label ?alabel

}

ORDER. BY 7treeNum ?7ancestorTreeNum
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Figure9. List of ancestors for the term "Lymphoma" provided by BlazeGraph.
treeNum ancestorTreeNum ancestor alabel

MeSH20816:C84.557.386 MeSH2016:CO4 MeSH2016:DBE9369 | Neoplasms
MeSH2016:C04.557.386 MeSH2016:C04.557 MeSH20816:D809378 | Neoplasms by Histologic Type
MeSH2016:C15.6084.515.569 | MeSH2816:C15 MeSH2016: DBO6425 | Hemic and Lymphatic Diseases
MeSH2016:C15.684.515.569 | MeSH2016:C15.604 MeSH2016:D088286 | Lymphatic Diseases
MeSH2016:C15.684.515.569 | MeSH2816:C15.684.515 | MeSH20816:D888232 | Lymphoproliferative Disorders
MeSH2016:C20.683.515.761 | MeSH2016: C20 MeSH2016:D807154 | Immune System Diseases
MeSH2016:C20.683.515.761 | MeSH2016:C20.683 MeSH2016:D807168 | Immunoproliferative Disorders
MeSH2016:C20.683.515.761 | MeSH2016:C20.683.515 | MeSH2016:D0808232 | Lymphoproliferative Disorders

Table 3. MeSH (Medical Subject Headings) terms proposed by our system for the article with PMID (PubMed unique identifier)=25676421.

MeSH? explaiting the hierarchy of MeSH MeSH terms

Ataxia Telangiectasia Mutated Proteins Ataxia
Telangiectasia Mutated
Proteins

B-Lymphocytes

Cell Cycle Proteins
DNA-Binding Proteins
Humans

Protein-Serine-Threonine Kinases

Animals
Genomic Instability
Mice, Knockout

Cyclin D1 Mice In Situ Hybridization, Fluorescence

Immune System Diseases

B-Lymphocytes
Cell Cycle Proteins
DNA-Binding Proteins

Humans

Protein-Serine-Threonine

Kinases

Animals

Genomic Instability

Mice, Knockout
CyclinD1 In Situ

Hybridization, Fluorescence

Lymphoma, B-Cell

Ataxia Telangiectasia

Lymphoma

3\eSH: Medical Subject Headings.

Table 4. Comparison of search times on the Resource Description Framework (RDF) format and the graph database of the MeSH (Medical Subject

Headings) thesaurus.

MeSH? terms RDF? in ms® Graph database in ms
Lymphoma, B-Cell 193.39 112
Cyclin D1 210.44 100
Mice, Knockout 239.86 130

3\leSH: Medical Subject Headings.
PRDF: Resource Description Framework.
ms: milliseconds.
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Results

Design of the Experiments

This section conducts an exhaustive set of experiments, where
different parameters and options are evaluated on the
devel opment dataset to determine the best setting for our system,
which will finally be evaluated on the test datasets.

In BioASQ, the performance of the participating systems is
evaluated using standard | R measures (eg, precision, recall, and
F1), aswell ashierarchical variants of them, such asthe lowest
common ancestor Precision (LCA_P), Recal (LCA_R) and
F-measure (LCA-F). Thereader can find a detailed explication
of these measures in the article [33]. The HEMKit software
[34], atool that implements these measures and lets to easily
evauate the results of different experiments, was used to provide
the scores.

Our experiments aimed to answer the following questions:

What isthe effect of the number of relevant documentsretrieved
by ElasticSearch? It is expected that the more documents the
search engine obtains, the higher the recall and the lower the
precision of our system. We experimented with different number
of relevant documents to obtain the best balance between
precision and recall, that is, the best F1. In particular, we tried
with 10, 20, 30, 40, and 50 documents.

What is the best threshold T that we should consider in our
scoring function? Higher values of thisthreshold should provide
a high precision but with a significant decrease of recall. Our
objective was to determine the optimum value of this parameter
T, that is, that value that obtains the highest F1.

Doesthe use of the hierarchical structure of MeSH improvethe
performance of our system? In particular, we assess whether
the strategy of replacing terms sharing the same ancestor by
their lowest common ancestor helped to improve the
performance.

http://medinform.jmir.org/2017/4/e48/
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Experiment With/Without exploiting M eSH
Hierarchical Structure

Tables 5 and 6 show the results exploiting the hierarchical
structure of MeSH and without it, respectively. Each experiment
isrepresented with the label Elastic-X-T, where X refersto the
number of relevant documents retrieved by ElasticSearch and
T to the threshold for our scoring function.

Wetried with different number of retrieved relevant documents;
in particular, the parameter X could take the following values:
10, 20, 30, 40, and 50. Although increasing the number of
retrieved relevant documents achieves to improve the recall, it
hasavery negative effect on the precision of our system. Indeed,
the best F1 (if we do not use the structure of MeSH, we obtain
F1=0.70) is obtained with the lowest number of retrieved
relevant documents regardless the value of the threshold T (see
Tables5 and 6). Therefore, we can conclude that the best value
of X is 10. For vaues less than 10, the recall decreases
significantly. In other words, the system achieves better
performance if the search engine is set up to return at least 10
documents.

To assess the effect of the threshold T on the performance of
our system, we tried with different values. Tables 5 and 6 show
the results for values of T in range (0,9). The reader can see
that, in general, the greater the value of the parameter T, the
higher the precision, and also the maximum F1. However, the
recall decreases when increasing the value of T. Any value
lower than 1 achieves a very high recall but very low precision
because the system would return all MeSH terms obtained by
ElasticSearch along with those provided by the MTI tooal,
without applying any filter. That is, if the value of T is lower
than 1, the scoring function does not rule out any term from the
initial set of MeSH terms proposed by ElasticSearch and MTI.
On the other hand, for values of T up to 5, the performance
beginsto drop. In general, best results are obtained for T equal
to 5.
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Table 5. Experimental results on our development dataset exploiting the hierarchical structure of Medical Subject Headings (MeSH).

Elastic-X-T Precision Recall F1 LCA-P? LCA-R? LCA-F°
Elastic-10-0 0.3021 0.8784 0.4386 0.2061 0.6046 0.3006
Elastic-10-1.5 0.6290 0.6213 0.6039 0.4146 0.3979 0.3880
Elastic-10-2.5 0.6599 0.6214 0.6179 0.4376 0.3981 0.3982
Elastic-10-4 0.7371 0.6130 0.6466 0.4936 0.3927 0.4179
Elastic-10-5 0.7898 0.5987 0.6576 0.5316 0.3843 0.4256
Elastic-10-6 0.7434 0.6107 0.6475 0.4986 0.3914 0.4185
Elastic-10-7 0.7904 0.5980 0.6573 0.5321 0.3840 0.4255
Elastic-10-8 0.7968 0.5937 0.6566 0.5372 0.3415 0.4254
Elastic-10-9 0.7910 0.5976 0.6571 0.5325 0.3838 0.4255
Elastic-20-0 0.2174 0.9248 0.3441 0.1564 0.6530 0.2475
Elastic-20-1.5 0.5268 0.6303 0.5546 0.3396 0.4045 0.3542
Elastic-20-2.5 05723 0.6331 0.5803 0.3709 0.4044 0.3703
Elastic-20-4 0.6266 0.6332 0.6080 0.4108 0.4047 0.3901
Elastic-20-5 0.6879 0.6294 0.6350 0.4580 0.4037 0.4100
Elastic-20-6 0.6413 0.6333 0.6150 0.4221 0.4054 0.3953
Elastic-20-7 0.6914 0.6296 0.6367 0.4605 0.4039 0.4112
Elastic-20-8 0.7104 0.6279 0.6441 0.4755 0.4041 0.4173
Elastic-20-9 0.6945 0.6299 0.6383 0.4630 0.4043 0.4124
Elastic-30-0 0.1790 0.9434 0.2945 0.1331 0.6770 0.2185
Elastic-30-1.5 0.4776 0.6388 0.5290 0.3040 0.4108 0.3359
Elastic-30-2.5 05231 0.6341 0.5537 0.3374 0.4076 0.3537
Elastic-30-4 0.5652 0.6323 0.5766 0.3668 0.4046 0.3685
Elastic-30-5 0.6200 0.6354 0.6067 0.4063 0.4060 0.3888
Elastic-30-6 0.5831 0.6332 0.5864 0.3786 0.4050 0.3748
Elastic-30-7 0.6256 0.6359 0.6096 0.4104 0.4069 0.3911
Elastic-30-8 0.6506 0.6369 0.6217 0.4293 0.4070 0.3993
Elastic-30-9 0.6302 0.6364 0.6120 0.4139 0.4069 0.3928
Elastic-40-0 0.1555 0.9532 0.2621 0.1184 0.6924 0.1988
Elastic-40-1.5 0.4412 0.6473 0.5081 0.2801 0.4166 0.3227
Elastic-40-2.5 0.4915 0.6383 0.5366 0.3145 0.4106 0.3417
Elastic-40-4 0.5302 0.6343 0.5582 0.3404 0.4077 0.3556
Elastic-40-5 0.5755 0.6359 0.5840 0.3726 0.4069 0.3726
Elastic-40-6 05472 0.6356 0.5682 0.3521 0.4073 0.3618
Elastic-40-7 0.5819 0.6370 0.5878 0.3777 0.4083 0.3758
Elastic-40-8 0.6073 0.6374 0.6011 0.3959 0.4077 0.3847
Elastic-40-9 0.5870 0.6374 0.5908 0.3813 0.4082 0.3777
Elastic-50-0 0.1395 0.9603 0,239 0.1082 0.7045 0.1846
Elastic-50-1.5 0.4161 0.6542 0.4930 0.2628 0.4226 0.3127
Elastic-50-2.5 0.4669 0.6445 0.5239 0.2965 0.4151 0.3328
Elastic-50-4 0.5008 0.6392 0.5431 0.3192 0.4112 0.3452
Elastic-50-5 0.5447 0.6357 0.5670 0.3500 0.4081 0.3610
Elastic-50-6 05192 0.6390 0.5538 0.3324 0.4096 0.3518
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Elastic-X-T Precision Recall F1 LCA-P? LCA-R? LCA-F°
Elastic-50-7 0.5507 0.6361 0.5702 0.3548 0.4086 0.3637
Elastic-50-8 05767 0.6366 0.5849 0.3734 0.4074 0.3734
Elastic-50-9 0.5560 0.6360 05733 0.3585 0.4081 0.3656

3_CA-P: lowest common ancestor Precision.
bLCA-R: lowest common ancestor Recall.
YL CA-F: lowest common ancestor F-measure.

The exploitation of the hierarchical structure of MeSH does not
improvethe results; on the contrary, therecall is dropped almost
by 5% (see Tables 5 and 6). Therefore, we can conclude that
the strategy of replacing terms sharing the same ancestor by
their lowest common ancestor does not increase the results. A
possible explication for this fact could be that human curators
do not to follow the annotation guidelines.

The pattern of the hierarchical scores (LCA-P, LCA-R, and
LCA-F1) according to the different parameters is very similar
to the behavior of the flat scores. That is, the best hierarchical
scoresare usually obtained using the lowest number of retrieved
relevant documents and the threshold of the score function equal
to 8. Likewisein theflat setting, the rule of replacing 3 or more
MeSH terms by their lowest common ancestor does not seem
to improve the results.

Experiments on BioASQ 2016 Test Dataset

Finally, we ran the best setting (X=10, T=5) on thetest datasets.
Tables 7 and 8 show the results of this setting exploiting the
structure of MeSH and those without it, respectively. Asin the

http://medinform.jmir.org/2017/4/e48/

development dataset, the performance is better if we do not use
the structure of MeSH.

Asmentioned above, the M TI systemisconsidered the baseline
for the task. Table 9 showsthe results achieved by MTI on each
test set published in the 2016 BioASQ. The top F1 is 0.5196
and top LCA-F is 0.4807.

Table 10 shows the temporary scores of the best systems in
BioASQ Task 4a. The reader can see that the best F1 rates are
between 58% and 65%, the best recall between 54% and 60%,
and the best precision between 60% and 72%, depending on
the batch. Our approach that does not exploit the hierarchical
structure of MeSH seemsto obtain better performance than the
top systems (see Table 8). Our best F1is 0.70 (batch 1, week
1). On the other hand, if our system uses the hierarchica
relations of MeSH to select the best set of termsto label agiven
article, this obtains an F1 of 0.67, also better than the top F1
(0.61) of the best systems. Therefore, we can conclude that our
approach achieves to overcome the top participating systems
at the BioASQ 2016.
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Table 6. Experimental results on our development dataset without using the hierarchical structure of Medical Subject Headings.

Systems Precision Recall F1 LCA-P? LCA-R? LCA-F°
Elastic-10-0 0.4201 0.6273 0.4858 0.2678 0.4074 0.3104
Elastic-10-1.5 05737 0.7755 0.6439 0.3749 0.5260 0.4258
Elastic-10-2.5 0.6128 0.7598 0.6602 0.4017 05151 0.4374
Elastic-10-4 0.7102 0.7125 0.6927 0.4701 0.4812 0.4599
Elastic-10-5 0.7724 0.6755 0.7010 05141 0.4515 0.4636
Elastic-10-6 0.7178 0.7074 0.6935 0.4761 0.4773 0.4605
Elastic-10-7 0.7731 0.6746 0.7007 0.5149 0.4508 0.4634
Elastic-10-8 0.7803 0.6684 0.6997 0.5204 0.4456 0.4624
Elastic-10-9 0.7738 0.6740 0.7005 0.5154 0.4505 0.4634
Elastic-20-0 0.3498 0.6548 0.4413 0.2229 0.4274 0.2829
Elastic-20-1.5 0.4263 0.8527 0.5559 0.2821 0.5856 0.3723
Elastic-20-2.5 0.4859 0.8324 0.5982 0.3191 0.5702 0.3982
Elastic-20-4 0.5631 0.8008 0.6458 0.3678 0.5459 0.4280
Elastic-20-5 0.6433 0.7643 0.6820 0.4230 0.5213 0.4534
Elastic-20-6 0.5822 0.7926 0.6547 0.3811 0.5406 0.4345
Elastic-20-7 0.6479 0.7627 0.6838 0.4265 0.5203 0.4549
Elastic-20-8 0.6713 0.7515 0.6917 0.4434 05131 0.4609
Elastic-20-9 0.6518 0.7608 0.6852 0.4296 0.5195 0.4563
Elastic-30-0 0.3141 0.6747 0.4152 0.2023 0.4444 0.2690
Elastic-30-1.5 0.3538 0.8876 0.4950 0.2380 0.6146 0.3362
Elastic-30-2.5 0.4165 0.8668 0.5492 0.2760 0.5972 0.3686
Elastic-30-4 0.4769 0.8429 0.5956 0.3124 05773 0.3959
Elastic-30-5 0.5528 0.8115 0.6428 0.3602 0.5541 0.4254
Elastic-30-6 0.5016 0.8336 0.6113 0.3281 0.5705 0.4059
Elastic-30-7 0.5602 0.8087 0.6466 0.3652 0.5524 0.4281
Elastic-30-8 05913 0.7952 0.6623 0.3860 0.5430 0.4388
Elastic-30-9 0.5657 0.8067 0.6494 0.3690 0.5508 0.4300
Elastic-40-0 0.2905 0.6895 0.3962 0.1881 0.4562 0.2581
Elastic-40-1.5 0.3086 0.9071 0.4508 0.2112 0.6319 0.3106
Elastic-40-2.5 0.3710 0.8862 05110 0.2484 0.6135 0.3460
Elastic-40-4 0.4200 0.8675 0.5534 0.2777 0.5979 0.3710
Elastic-40-5 0.4895 0.8416 0.6054 0.3200 0.5770 0.4020
Elastic-40-6 0.4469 0.8591 0.5740 0.2942 0.5909 0.3834
Elastic-40-7 0.4980 0.8383 0.6106 0.3254 0.5752 0.4054
Elastic-40-8 05327 0.8242 0.6321 0.3471 0.5639 0.4187
Elastic-40-9 0.5052 0.8359 0.6152 0.3300 0.5733 0.4083
Elastic-50-0 0.2719 0.7006 0.3803 0.1776 0.4651 0.2496
Elastic-50-1.5 0.2769 0.9204 0.4168 0.1925 0.6458 0.2911
Elastic-50-2.5 0.3379 0.9003 0.4805 0.2287 0.6261 0.3282
Elastic-50-4 0.3791 0.8845 0.5192 0.2527 0.6118 0.3504
Elastic-50-5 0.4420 0.8615 05718 0.2904 0.5926 0.3813
Elastic-50-6 0.4065 0.8757 0.5425 0.2694 0.6042 0.3643
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Systems Precision Recall F1 LCA-P? LCA-R? LCA-F°
Elastic-50-7 0.4513 0.8578 05783 0.2961 0.5901 0.3854
Elastic-50-8 0.4876 0.8445 0.6043 0.3184 0.5793 0.4010
Elastic-50-9 0.4594 0.8555 0.5841 0.3012 0.5883 0.3890

3_CA-P: lowest common ancestor Precision.
bLCA-R: lowest common ancestor Recall.
YL CA-F: lowest common ancestor F-measure.

Table 7. Results on the biomedical semantic indexing and question answering 2016 test datasets (exploiting the Medical Subject Headings hierarchy.

Test Precision Recall F1 LCA-P? LCA-R? LCA-F1°
Batchl
Week1 0.705 0.619 0.635 0.470 0.389 0.406
Week2 0.717 0.627 0.646 0.476 0.397 0.413
Week3 0.701 0.625 0.635 0.467 0.395 0.407
Week4 0.725 0.613 0.643 0.486 0.385 0.410
Week5 0.707 0.624 0.638 0.474 0.398 0.410
Batch2
Week1 0.695 0.633 0.637 0.457 0.398 0.405
Week2 0.713 0.637 0.649 0.467 0.410 0.412
Week3 0.691 0.637 0.673 0.464 0.402 0.410
Week4 0.676 0.659 0.641 0.446 0.420 0.4120
Week5 0.686 0.660 0.648 0.448 0.414 0.409
Batch3
Week1 0.701 0.625 0.639 0.461 0.403 0.410
Week2 0.698 0.652 0.648 0.457 0.408 0.407
Week3 0.694 0.641 0.641 0.447 0.406 0.405
Week4 0.429 0513 0.399 0.284 0.264 0.258
Week5 0.674 0.660 0.640 0.447 0.419 0.409

3_CA-P: lowest common ancestor Precision.
b CA-R: lowest common ancestor Recall.
YL CA-F: lowest common ancestor F-measure.
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Table 8. Results on the biomedical semantic indexing and question answering 2016 test datasets (without exploiting the Medical Subject Headings

hierarchy).
Test Precision Recall F1 LCA-P? LCA-RP LCA-F1°
Batchl
Week1 0.665 0.753 0.687 0.438 0.503 0.452
Week2 0.674 0.767 0.700 0.441 0513 0.460
Week3 0.661 0.755 0.684 0.437 0.509 0.453
Week4 0.683 0.749 0.697 0.451 0.502 0.460
Week5 0.667 0.757 0.690 0.438 0.509 0.455
Batch2
Week1 0.655 0.755 0.681 0.427 0.501 0.445
Week2 0.669 0.758 0.692 0.427 0.508 0.454
Week3 0.653 0.757 0.681 0.433 0.509 0.452
Week4 0.639 0.764 0.674 0.420 0.516 0.445
Week5 0.643 0.797 0.692 0.417 0.531 0.451
Batch3
Week1 0.666 0.746 0.684 0.437 0.512 0456
Week2 0.654 0.774 0.690 0.421 0.517 0.448
Week3 0.655 0.754 0.680 0.426 0.507 0.446
Week4 0.390 0.475 0.410 0.254 0.311 0.268
Week5 0.663 0.770 0.672 0.416 0.516 0.442

3_CA-P: lowest common ancestor Precision.
bLCA-R: lowest common ancestor Recall.
YL CA-F: lowest common ancestor F-measure.
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Table 9. Baseline results provided by the Medical Text Indexer (MTI) tool. These results were taken from the biomedical semantic indexing and
question answering website.

Test Precision Recall F1 LCA-P? LCA-RP LCA-F1°
Batchl
Week1 0.558 0.516 0.493 0.498 0.462 0.463
Week2 0.550 0514 0.487 0.516 0.478 0.480
Week3 0.553 0.537 0.507 0.499 0.467 0.465
Week4 0.568 0.505 0.482 0.507 0.455 0.464
Week5 0.558 0.508 0.484 0.504 0.474 0.473
Batch2
Week1 0.546 0.520 0.493 0.495 0.473 0.467
Week2 0.544 0.520 0.492 0.497 0.471 0.469
Week3 0.558 0.526 0.500 0.503 0.470 0.470
Week4 0.549 0.516 0.491 0.487 0.452 0.449
Week5 0.532 0.551 0.519 0.480 0.487 0.467
Batch3
Week1 0515 0.459 0.444 0.492 0.441 0.449
Week2 0.543 0.484 0.466 0.493 0.455 0.455
Week3 0.580 0.502 0.486 0.512 0.457 0.466
Week4 0.545 0522 0.494 0.496 0.481 0.469
Week5 0.536 0.517 0.496 0.499 0.473 0.466

3_CA-P: lowest common ancestor Precision.
bLCA-R: lowest common ancestor Recall.
YL CA-F: lowest common ancestor F-measure.

Table 10. Results of thetop systemsin biomedical semantic indexing and question answering (BioA SQ) task 4a. These scores were taken on December
5 from the BioASQ website.

Batch System Week Number of annotated articles Total of articles Precision Recall F1

1 MeSHL abeler 1 1853 3740 0.626 0.521 0513
MeSHL abeler 2 1578 2872 0.625 0.515 0.506
MeSHL abeler 3 1115 2599 0.602 0.519 0515
MeSHL abeler-1 4 1436 3294 0.649 0.496 0495
MTI 5 1181 3210 0.558 0.508 0484

2 MTI 1 1080 3212 0.546 0.520 0493
MeSHL abeler-2 2 901 3213 0.630 0.505 0499
MeSHL abeler-2 3 850 2831 0.642 0.521 0516
MTI 4 800 3111 0.549 0.516 0491
MeSHL abeler 5 688 2470 0.615 0.538 0526

3 MeSHL abeler 1 305 2994 0.637 0.462 0462
MeSHL abeler 2 507 3044 0.6449 0.4851 0485
MeSHL abeler 3 501 3351 0.6544 0.4991 0456
MeSHL abeler 4 514 2630 0.6312 0.5098 03012
MeSHL abeler 5 627 3130 0.5017 0.5119 0615
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Discussion

Principal Findings

Our approach relies on the assumption that similar documents
should be classified by similar MeSH terms. Previous works
have already applied a k-NN approach for obtaining the set of
similar document for agiven test document. Our previouswork
[24] and this study are thefirst efforts to explore the document
similarity using the search engine ElasticSearch instead of k-NN.
ElasticSearch is one of the most efficient document-based
database. Given atest document, thisis represented as aquery,
whichisexecuted in the search engine, returning the documents
more relevant (similar) to the query. Then, our system proposes
the MeSH of all these documents as the initial set of MeSH
termsfor the test document and extends this set with the MeSH
terms proposed by the MTI tool. Finaly, the system uses a
scoring function to determine the best set of MeSH termsfor a
given article. Those MeSH terms that achieve a higher score
than a given threshold are finaly selected. The experiments
show that the best results are obtained when the number of
retrieved relevant documents by ElasticSearch issmall (10) and
the threshold for the scoring function is equal to 5.

Comparison With Prior Work

Our approach seems to provide better results than the top
systems in BioASQ 2016. We note that our results are not
immediately comparable with those reported by the BioASQ
challenge because we have used a different test dataset.
However, we think that it is a reasonable evaluation while no
official test datasets are available. Moreover, our devel opment
test datasets are available at our webpage [35] to facilitate
reproducibl e research, objective assessment, and further analysis.
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In addition, we implement one of the guidelines established by
human curatorsto classify MEDLINE abstracts. To do this, we
storethe MeSH thesaurusinto a graph-based database by using
the BlazeGraph tool. The main advantage of using a graph
structureisthe possibility to use algorithmswell known in graph
theory (such asdepth-first search) to extract subgraphs satisfying
a given query. In particular, the graph is visited with the
objectiveto determinewhether 3 or more MeSH termsassigned
to a given article share the same ancestor. In this case, this
lowest common ancestor should substitute them. Contrary to
expectations, the system produces worse results if this rule is
applied. This may be because human curators do not always
follow the recommendations to catalog MEDLINE abstracts.

Limitations

Although the results are better when we do no exploit the
hierarchy of MeSH, we think that the graph database version
of MeSH isapromising resourcethat will allow usto implement
other guidelines or strategies to select the most appropriate
MeSH terms for representing a given article.

Conclusions

Semanticindexing of MEDLINE articlesisamanual, laborious
task, which could be helped by information technol ogy.

As future steps, we also plan to determine semantic similarity
between documents using word embeddings[36] instead of the
well-known and commonly used VSM for information retrieval.
This approach has already been exploited by Liu et al [21] and
Kosmopoulos et a [22]. Unlike these works, based on the use
of k-NN for obtaining the set of similar documents, our approach
will continue using ElasticSearch as search engine and our graph
database format of MeSH. We al so plan to explore deep learning
methods (such as Convolutiona Neural Networks) for
supporting the automatic classification of MEDLINE abstracts.
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