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Abstract

Background: Early warning scores aid in the detection of pediatric clinical deteriorations but include limited data inputs, rarely
include data trends over time, and have limited validation.

Objective: Machine learning methods that make use of large numbers of predictor variables are now commonplace. This work
examines how different types of predictor variables derived from the electronic health record affect the performance of predicting
unplanned transfers to the intensive care unit (ICU) at three large children’s hospitals.

Methods: We trained separate models with data from three different institutions from 2011 through 2013 and evaluated models
with 2014 data. Cases consisted of patients who transferred from the floor to the ICU and met one or more of 5 different priori
defined criteria for suspected unplanned transfers. Controls were patients who were never transferred to the ICU. Predictor
variables for the models were derived from vitals, labs, acuity scores, and nursing assessments. Classification models consisted
of L1 and L2 regularized logistic regression and neural network models. We evaluated model performance over prediction horizons
ranging from 1 to 16 hours.

Results: Across the three institutions, the c-statistic values for our best models were 0.892 (95% CI 0.875-0.904), 0.902 (95%
CI 0.880-0.923), and 0.899 (95% CI 0.879-0.919) for the task of identifying unplanned ICU transfer 6 hours before its occurrence
and achieved 0.871 (95% CI 0.855-0.888), 0.872 (95% CI 0.850-0.895), and 0.850 (95% CI 0.825-0.875) for a prediction horizon
of 16 hours. For our first model at 80% sensitivity, this resulted in a specificity of 80.5% (95% CI 77.4-83.7) and a positive
predictive value of 5.2% (95% CI 4.5-6.2).

Conclusions: Feature-rich models with many predictor variables allow for patient deterioration to be predicted accurately, even
up to 16 hours in advance.

(JMIR Med Inform 2017;5(4):e45) doi: 10.2196/medinform.8680
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Introduction

Better prediction of clinical deterioration is a priority as many
patients today get harmed when precursors go unrecognized,
leading to potentially preventable morbidity, mortality, and cost.
Over the last two decades, it has become increasingly clear that
precursors to clinical deterioration commonly exist, and rapid
response systems that detect and respond to early deterioration
can improve outcomes [1-5].

Increased mortality and morbidity is associated with
deterioration in patients who require an unplanned transfer from
the nursing floor to the ICU (Intensive Care Unit). The mortality
rate associated with unrecognized deterioration that results in
a delay of ICU transfer and the need for resuscitation can be as
high as 67% [6,7]. Missing precursors to deterioration reduces
the window of opportunity and margin of error for effective
intervention and increases the intensity and complexity of the
required care.

Clinical EHR (electronic health record) systems and their rich,
heterogeneous data provide opportunities for impactful
secondary use [8,9]. Yet fully taking advantage of such large
repositories of data is a challenge because of sheer complexity
of the data [10]. Machine learning methods offer a promising
set of techniques to address such challenges by providing
statistically sound data-driven methods able to identify subtle
patterns in data while remaining robust to problems in data
quality and completeness [11].

Most machine learning methods for predicting deterioration
have focused on logistic regression models preceded by careful
variable selection [12,13]. Recently, more advanced machine
learning approaches including nonlinear and nonparametric
methods have been used [14]. These more powerful methods
can accommodate larger feature sets and also identify implicit
or explicit feature interactions. In many cases, however, model
interpretability can suffer [15,16].

The purpose of this study was to develop highly accurate
predictive models able to identify unplanned transfers to the
ICU at least 6 hours before transfer. Critically, we leverage
thousands of predictor variables, rather than dozens as is
common in predicting adverse health events. We hypothesized
that such complex models provide better accuracy at longer
prediction horizons, providing more time and opportunity for
clinicians to act to reverse deterioration.

Methods

Research Team
The MITRE Corporation together with three pediatric hospitals,
Boston Children’s Hospital (BCH), Children’s National Health
System (CNHS), and Cincinnati Children’s Hospital Medical
Center (CCHMC) formed a partnership for the purpose of
sharing data to uncover issues impacting patient safety. Each
hospital contributed EHR data from 2011 to 2014 totaling >1
million patients and >8 million patient encounters, forming >7.2

TB of data across all three hospitals. Clinical data available
from the three hospitals using 2 different EHR vendors was
used to in our study to predict deterioration.

Case Identification
Cases in our study involved instances of unplanned transfers
from an inpatient ward to the ICU. The unit of analysis was the
ICU transfer and not the patient, as each patient could experience
more than one ICU transfer within the same hospital admission.
The case identification proceeded in two phases. First, a set of
candidate cases were identified from admission-
discharge-transfer (ADT) data by selecting patient encounters
that involved a stay on the nursing floor followed by a transfer
to the ICU. Specifically, the candidate cases included ICU
transfers originating from all nursing floors, excluding any
transfers from the emergency department (ED), operating room
(OR), postanesthesia care unit (PACU) or ICU and excluding
any transfers to the neonatal intensive care unit (NICU).

From the candidate cases, we then developed a method for
establishing whether a transfer was likely unplanned or not.
Ideally, cases would be identified carefully by clinician review,
as no variable or flag exists in the EHR to designate an
unplanned transfer. To address this challenge, our team, which
included clinicians at three hospitals, identified a set of five
criteria to establish our case cohorts through objective, heuristic
means. Unplanned transfers were identified as transfers to the
ICU meeting one or more of the criteria (see Figure 1). This
working definition of unplanned ICU transfer is the result of
prior work in the literature [17] combined with knowledge
gained from each institution’s experience.

We further subdivided the list of cases into those patients who
experienced a critical deterioration event (CDE) along with an
unplanned transfer to the ICU. CDE was defined as an
unplanned floor to ICU transfer with invasive or noninvasive
positive pressure ventilation, vasopressors, fluid resuscitation,
or other emergent procedures 2 hours before and 12 hours post
transfer [5]. The prediction model was aimed at predicting
unplanned transfers; however, the CDE subgroup was important
in understanding the connection between unplanned transfers
and critical deteriorations.

Identification of the Control Group
Controls were sampled from the set of patient visits where the
patient spent at least 24 hours on an inpatient floor and was
never transferred to the ICU. Sampling was done by ensuring
that the ratios of ages and diagnoses were similar between the
case and control population. Diagnoses were determined by
discharge diagnosis according to ICD-9 (International
Classification of Diseases-9). This sampling scheme was
designed to balance the need for controls to be representative
of the inpatient floor population, yet also to ensure that the
control population did not differ from the case population in
systematic ways. We removed patients from cases and controls
that spent less than 8 hours on the floor. Table 1 provides the
counts for the cases and controls across the three institutions.
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Figure 1. The five criteria involved in determining an “unplanned” intensive care unit (ICU) transfer. CPAP: continuous positive airway pressure;
BiPAP: bilevel positive airway pressure; NS: normal saline; LR: lactated ringer; MAR: medication administration record.

Table 1. Counts for cases and controls across three institutions.

CNHScCCHMCbBCHaDataset

Training

54610901163Cases

389361706448Controls

Evaluation

324478326Cases

133913531878Controls

aBoston Children’s Hosptial.
bCincinnati Children’s Hospital and Medical Center.
cChildren’s National Health System.

Clinical Element and Feature Extraction
Data preparation involved two primary stages before creating
data instances for training and evaluating predictive models.
The first stage involved pulling clinical element data out of
underlying vendor database tables with a complex schema into
a simplified set of database tables through a set of Structured
Query Language (SQL) queries. The clinical element categories
included vitals, laboratory results, acuity scores (eg, existing
early warning score or nurse acuity calculations) and nursing
assessments. An overview of the clinical elements used in our
study, specific to data from Cincinnati Children’s are
summarized in Table 2. Clinical elements based on patients’

vitals were standardized across the three hospitals. The other
types of clinical elements, especially acuity and nursing
assessments differed across the institutions because of different
EHR systems and/or different customizations made by each
institution. No attempt was made to standardize such elements.
Although laboratory results would have been possible to
harmonize across the institutions, acuity scores did not map
from one institution to another. Nursing assessments provided
even more variability; besides a lack of a one-to-one mapping
between institutions, nursing assessments sometimes used values
chosen from a fixed set (in a drop-down menu) and in other
cases allowed for free text.
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Table 2. Summary of clinical elements.

Clinical elementsClinical category

TemperatureVitals

Heart rate

Respiratory rate

Systolic blood pressure

Oxygen saturation

SodiumLaboratory results

Potassium

Glucose

Creatinine

Bicarbonate

White blood cell count

Hermatocrit

Hemoglobin

PEWSa total scoreAcuity scores

Total acuity score

Acuity level

Braden riskNursing assessments

Activity

Adult Glasgow coma score

Audible sounds w/o stethoscope

Best verbal response

Brachial bilateral pulse

Brachial left pulse

Brachial right pulse

Cardiac

Cardiovascular

Central perfusion cap refill

Cough

Eye opening

Faces pain classification

Faces pain score

Femoral bilateral pulse

Femoral left pulse

Femoral right pulse

FLAACb activity

FLAAC consolability

FLAAC cry/face/legs

FLAAC pain classification

FLAAC total pain score

Fluid balance

Friction sheer
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Clinical elementsClinical category

Heart rate/rhythm

Patient experiencing pain?

Level of consciousness

Left lower extremity perfusion cap

Left upper extremity perfusion cap refill

Minimum stimulus to invoke response

Mobility

Moisture

Neurological

Neurovascular check

NRSc pain classification

Nutrition

Orientation level

Orientation

Ped Glasgow coma score

Perfusion cap refill

Perfusion color

Perfusion skin temperature

Peripheral pulses

PERRLAd

Pupil reaction

Respirations/respiratory

Respiratory status

Response to stimuli

Retractions

Rhythm

Right lower extremity perfusion cap

Right upper extremity perfusion cap refill

Secretion/sputum color

Skin within normal limits

Temperature condition

Total pain score for site

Upper perfusion cap refill

Work of breathing

aPediatric Early Warning Score.
bFaces, Legs, Activity, Cry, Consolability.
cNumeric Rating Scale.
dPupils, Equal, Round, React to Light, Accomodation.
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Table 3. Feature types used to construct features from clinical elements.

Feature examplesFeature type description

Vitals

HRa slope=−2.1Linear regression slope over scalar vitals of given type

HR magnitude slope=2.1Magnitude of linear regression slope

HR slope is negativeSign of slope of linear regression

Maximum HR is C4Binned category C1-C4 of MAXIMUM value

Minimum HR is C1Binned category C1-C4 of MINIMUM value

Average HR is C3Binned category C1-C4 of AVERAGE value

Newest HR is C4Binned category C1-C4 of NEWEST (most recent) value

Oldest HR is C1Binned category C1-C4 of OLDEST (least recent) value

HR C1 Histogram=0.3; HR C2 His-
togram=0.4; HR C4 Histogram=0.3

Normalized histogram values over categories computed by counting category assignments for
each measurement and normalizing to 1

Labs

Glucose low≥normalCategory (Low, Normal, High) pairs: 2nd Newest and Newest

Creatinine high≥highChange or lack of change in category (Low, Normal, High) from 2nd Newest to Newest

WBCb new/old>1.5Binned percentage change in value from Oldest to Newest value

Newest/Oldest>{1.25, 1.5, 2.0, 3,0}

Newest/Oldest<{0.8, 0.67, 0.5, 0.33}

Glucose new/2nd<0.5Binned percentage change in value from 2nd Newest to Newest value

Newest/Oldest>{1.25, 1.5, 2.0, 3,0}

Newest/Oldest<{0.8, 0.67, 0.5, 0.33}

Glucose is present; WBC is presentAttribute type is present in prediction window 1 or more times

Last WBC is highLast category (Low, Normal, High)

Acuity

Minimum PEWSc score is 0Score MINIMUM is 0 or value>{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

Maximum PEWS score>0Score MAXIMUM is 0 or value>{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

Newest PEWS score>0NEWEST score is 0 or value>{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

Slope PEWS score=-1.5Linear regression slope over scores

Slope PEWS score last 6 hours=3.1Linear regression slope over scores over last 6 hours

Magnitude slope PEWS score=1.5Magnitude of slope over scores

Magnitude slope PEWS score=1.5Magnitude of slope over scores over last 6 hours

Number of PEWS Measurements >0;
Number of PEWS Measurements >1;
Number of PEWS Measurements >2

Number of measurements of type over last 6 hours>{0, 1,2,4,6,10} (multiple overlapping features
included)

Assessments

Cough is productive; Mobility is 1;
Mobility is 2

Nursing assessment attribute value pair (whether value is scalar or a string)

Newest mobility is 2NEWEST assessment attribute-value pair for given attribute

aHeart rate.
bWhite blood cell count.
cPediatric early warning score.

Clinical elements present within the prediction window for each
clinical element type were used for feature extraction. The
prediction window for vitals included the time frame of 24 hours
leading up to the prediction time and for all other elements the

length of the prediction window was 72 hours. From raw clinical
elements, extracted features aim to capture the state of the
patient and patient trajectory. Many of our features using vitals
follow the approach taken by Zhai et al [12]. For example, vitals
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were binned into risk categories C1 to C4. Features are then
derived from these categorized/binned vitals. The types of
features derived from the various clinical elements are
summarized in Table 3. Noteworthy is that we made no attempt
to impute missing values.

Machine Learning Methods
Our experiments used logistic regression models and a nonlinear
extension to logistic regression in the form of multilayer
perceptrons (MLPs), also known as feed-forward neural
networks. Neural networks have seen a resurgence in recent
years with improved techniques to train them efficiently and
effectively.

For binary classification, logistic regression can be written as:

p(y=1|x) = logistic(x) = 1/ (1 + exp(−wx)) (1)

where w is the set of weights (or coefficients) in the model and
x represents a vector of input variables, that is, features. Hidden
layers consist of sets of neurons; each layer can be viewed as
successive (nonlinear) transformations of the input, each having
the form:

Hi(z) = g(Wi(z)) (2)

Where z is the input vector to layer i, g is an activation function
and Wi is a matrix of weights. In our models here, we use a
rectified linear activation function of the form g (x)=max(0, x).
Given this form, a MLP with n hidden layers can be written as:

p (y=1| x) = logistic (Hn(Hn-1(…(H1(x))))) (3)

As with logistic regression, the model is fit by maximizing the
likelihood of the training data . However, given the large number
of parameters in our models caused by so many features, there
is a strong tendency to overfit the training data leading to poor
generalization on unseen data. Accordingly, we heavily
regularize our models using L1 and L2 regularization terms
[18], their joint use sometimes referred to as elastic net
regularization. L1 regularization is especially useful as it
implicitly performs feature selection. This is beneficial in our
case with potentially many irrelevant features [19]. MLPs are
even more prone to overfitting as they include more parameters
and capture complex nonlinear interactions between the inputs.
Our experiments using MLPs make use of dropout [20], a
technique in which a certain percentage of the neurons are
randomly elided upon processing each data point during training.

Regularization can be achieved by adding penalty terms to the
likelihood based on the L1 and L2 norms of the model weights.
The penalized log-likelihood has the form:

L(D, W) =∑i=1[log p (y= y(i)| x(i))] − a1|| W ||1 − a2||
W ||2 (4)

where W refers to all the weights in the model (including any
hidden layer weights) and where a1 and a2 are
“hyper”-parameters that determine the “strength” of the two
regularizer components: || W ||1 denoting the L1 norm of the
parameters and || W ||2 the L2 norm. These regularizers penalize
large-magnitude weights and prevent the model from fitting the
training data too closely at the expense of its ability to
generalize. Modern machine learning techniques rely heavily

on regularization to develop accurate prediction models with
large numbers of features and modest amounts of training data.

Estimating the parameters for all models (logistic regression
and MLPs) was done by maximizing the penalized likelihood
with stochastic gradient descent [21,22]. All machine learning
models were trained and used for prediction with the Mandolin
machine learning toolkit available as open source on Github.

Model Preparation
The training data used to construct our models leveraged patient
encounters from January 1, 2011 through December 31, 2013.
Separate models were trained for each institution because
clinical elements are not standardized across EHR systems.
Model settings such as the regularization coefficients, the
number of hidden layers for MLP models, and the number of
training iterations were tuned using 5-fold cross validation on
the training set. Given the low prevalence of unplanned transfers,
we subsampled the controls so that our training data had roughly
a 1:5 ratio of cases to controls. We measured the area under the
receiver operating characteristic (ROC) curve, the specificity
at the threshold corresponding to 80% sensitivity, and also
computed the estimated positive predictive value (PPV) given
the overall 1.3% prevalence in our dataset. The estimated PPV
was derived from the sensitivity, specificity, and prevalence
[23].

Experimental Design
We carried out three sets of experiments across all three
institutions to measure the contributions of four different clinical
element types. The first set of experiments looked at the
performance of predictive models using only clinical elements
of a single type. A second set of experiments looked at
performance when features from each the clinical element types
were added successively, in the order: vitals, lab results, acuity
scores, and nursing assessments. Finally, we carried out a set
of ablation experiments comparing the full model, making use
of all features with feature sets constructed by removing features
for each clinical element type separately. These experiments
were carried out with regularized logistic regression.

A key concern in the practical use of a predictive model for
detecting patient deterioration is how sensitive the model might
be to varying lengths of time between when a prediction is made
and when a patient is transferred to the ICU or prediction
horizons. For controls, the prediction horizon is the time between
when the prediction is made and the patient leaves the floor.

We provided results on experiments training the model to predict
deterioration at prediction horizons varying from 1 hour to 16
hours, at 1-hour intervals. Evaluation on the test set was done
using the same prediction horizon as was used to train the model.

We examined how well models with different feature sets
performed across different prediction horizons.

This set of experiments examined how well models trained to
identify deterioration with a given prediction horizon performed
when evaluated across different prediction horizons. For
example, how a model fared when asked to predict deterioration
16 hours in advance if it was trained to identify deterioration
with just a 2-hour prediction horizon. Conversely, how might
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a model predict risk of deterioration for a patient just 2 hours
away from an unplanned transfer if trained to identify
deterioration 16 hours in advance.

Finally, experiments were carried out to measure the effect of
regularization on logistic regression models, reducing the
number of input features by feature selection and also provide
more detailed comparison of MLP models versus logistic
regression.

All models were binary classifiers designed to predict whether
a patient will have an unplanned transfer to the ICU or not.
Evaluation is carried out on the test data from 2014. Our primary
evaluation metric is the area under the ROC curve. We also
considered the models’ specificity at 80% sensitivity and
examined the PPV at this cut-point, assuming a prevalence of
1.3% which matched the prevalence of deterioration across the
three institutions.

Ethics Approval
The study was reviewed and approved by the institutional review
boards at Boston Children’s Hospital, Children’s National
Medical Center, and Cincinnati Children’s Hospital Medical
Center.

Results

Clinical Element Analysis
Our experiments followed the case and control selection
methodologies described, and subsampled the controls. The
total case and control counts are shown in Table 1. Primary
results are detailed in Table 4. The feature configurations
prefixed with All- X involved using all features except for those
of type X. Interestingly, removing any single feature type from
all available features generally resulted in minor, nonstatistically
significant, reductions in the area under the ROC curve. This
held except for the case of removing nursing assessments, which
resulted in statistically significant degradations for CCHMC
and CNHC but not BCH.

The prediction horizon used for training models and evaluating
them was 6 hours. The models used all available features for
all experiments and all models were regularized logistic
regression except for the rows with MLP denoting a multilayer
perceptron model. All logistic regression models across all
features sets and institutions used a1=0.001 and a2=0.01 (see

the likelihood equation above); these values were determined
empirically using 5-fold cross validation on the training data.
The MLP experiments here used three hidden layers with the
rectified linear activation function. The first, second, and third
layers had 60, 40 and 40 nodes, respectively. Each layer used
a 50% dropout rate [20], with L1 regularization (a1=0.0003).
Again, these model settings were determined through 5-fold
cross validation experiments on the training sets. As with
regularized logistic regression, the same MLP model settings
were used across all three institutions’ datasets.

Varying the Prediction Horizon
Although our focus involved predicting deterioration 6 hours
before the event, we also considered how well the models
performed across different prediction horizons. Additionally,
we wanted to further examine the contributions of different
groups of features from the various clinical elements to
determine how particular feature groups performed at each
horizon interval. Figure 2 shows the results for models trained
and evaluated at prediction horizons ranging from 1 to 16 hours.
We examined four different models where feature groups were
successively added, starting with vitals, then adding labs, then
acuity and finally assessments to arrive at the full model. As
we were also interested in understanding how each feature group
performed independently of the others; Figure 3 presents results
over different prediction horizons considering at each group of
features separately. These results show robustness in the models’
ability to predict deterioration even 10 to 16 hours before the
event.

In addition, we examined how well a model trained for a
particular prediction horizon performed when evaluated against
varying prediction horizons. We carried this out by looking at
a set of cross horizon experiments taking the 16 models trained
across prediction horizons from 1 to 16 hours (using all available
features) and evaluating each of those models against horizons
ranging from 1 to 16. These results are presented as surface
plots shown in Figure 4.

Model Comparison
A final set of experiments compared the performance of MLP
and regularized logistic regression models, shown in Figure 5.
The MLP models perform slightly better for shorter prediction
horizons at BCH and CNHS.
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Table 4. Evaluation results across all three institutions with various feature sets using a fixed prediction horizon of 6 hours for both training and testing.

PPVb % at 0.8 sensitivity (95% CI)Specificity at 0.8 sensitivity (95% CI)auROCa (95% CI)Feature set

CCHMC

5.19 (4.48-6.19)0.805 (0.774-0.837)0.890 (0.875-0.904)All features (MLPc)

5.45 (4.47-6.30)0.811 (0.773-0.839)0.886 (0.871-0.901)All features

4.67 (4.04-5.95)0.784 (0.749-0.830)0.881 (0.866-0.896)All-Vitals

5.17 (4.26-5.64)0.802 (0.762-0.830)0.878 (0.862-0.893)All-Labs

4.91 (4.23-5.63)0.791 (0.761-0.820)0.880 (0.865-0.895)All-Acuity

4.29 (3.59-4.85)0.763 (0.718-0.791)0.865 (0.849-0.880)All-Assessmentsd

2.21 (1.91-2.53)0.539 (0.470-0.599)0.751 (0.728-0.775)Vitalsd

1.47 (1.37-1.70)0.315 (0.263-0.403)0.651 (0.618-0.685)Labsd

2.24 (1.93-2.65)0.551 (0.474-0.618)0.746 (0.719-0.774)Acuityd

3.88 (3.28-4.50)0.738 (0.691-0.775)0.846 (0.828-0.865)Assessmentsd

BCH

7.73 (5.97-10.3)0.875 (0.834-0.908)0.911 (0.891-0.930)All features (MLP)

7.66 (5.90-9.36)0.873 (0.832-0.898)0.902 (0.880-0.923)All features

7.14 (5.18-9.62)0.863 (0.807-0.901)0.902 (0.882-0.922)All-Vitals

5.33 (3.65-7.71)0.813 (0.722-0.874)0.880 (0.857-0.903)All-Labs

5.87 (4.44-7.95)0.831 (0.773-0.878)0.884 (0.862-0.907)All-Acuity

6.77 (4.96-8.67)0.855 (0.798-0.889)0.885 (0.862-0.909)All-Assessments

1.98 (1.75-2.44)0.479 (0.409-0.579)0.732 (0.699-0.765)Vitalsd

2.57 (2.14-3.05)0.601 (0.518-0.665)0.803 (0.771-0.835)Labsd

2.51 (2.13-3.65)0.590 (0.515-0.722)0.812 (0.782-0.842)Acuityd

3.08 (2.25-3.87)0.668 (0.543-0.738)0.814 (0.788-0.842)Assessmentsd

CNHS

4.40 (3.62-5.71)0.771 (0.718-0.826)0.890 (0.872-0.910)All features (MLP)

5.08 (3.89-7.14)0.803 (0.740-0.863)0.884 (0.862-0.905)All features

6.82 (5.13-8.53)0.856 (0.805-0.887)0.899 (0.879-0.919)All-Vitals

4.22 (3.15-6.18)0.761 (0.676-0.840)0.869 (0.845-0.893)All-Labs

4.22 (3.17-5.62)0.761 (0.678-0.823)0.866 (0.842-0.890)All-Acuity

3.39 (2.81-4.73)0.700 (0.635-0.788)0.853 (0.828-0.879)All-Assessmentsd

1.95 (1.76-2.39)0.471 (0.412-0.569)0.722 (0.689-0.755)Vitalsd

1.91 (1.62-2.21)0.458 (0.359-0.533)0.700 (0.661-0.740)Labsd

1.58 (1.43-1.88)0.345 (0.276-0.451)0.735 (0.695-0.775)Acuityd

3.22 (2.76-3.97)0.683 (0.629-0.745)0.844 (0.818-0.871)Assessmentsd

aArea under the receiver operator characteristic curve.
bPositive predictive value.
cMLP: multilayer perceptrons.
dIndicates results that are statistically significant compared to the best result for each institution (DeLong test, P<.05).
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Figure 2. Model performance with increasingly complex (additive) feature sets across prediction horizons, including 95% CIs. ROC: receiver operating
characteristic; BCH: Boston Children’s Hospital; CCHMC: Cincinnati Children’s Hospital and Medical Center; CNHS: Children’s National Health
System.
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Figure 3. Performance of models with individual feature sets across prediction horizons, including 95% CIs. ROC: receiver operating characteristic;
BCH: Boston Children’s Hospital; CCHMC: Cincinnati Children’s Hospital and Medical Center; CNHS: Children’s National Health System.
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Figure 4. Area under receiver operating characteristic (ROC) curve when training and evaluating models across prediction horizons ranging from 1
hour to 16 hours. BCH: Boston Children’s Hospital; CCHMC: Cincinnati Children’s Hospital and Medical Center; CNHS: Children’s National Health
System.
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Figure 5. Best regularized logistic regression (linear) model in comparison with a multilayer perceptron (MLP) across different prediction horizons.
ROC: receiver operating characteristic; BCH: Boston Children’s Hospital; CCHMC: Cincinnati Children’s Hospital and Medical Center; CNHS:
Children’s National Health System.

Discussion

Analysis of Results
Across all three institutions, our best models generally use all
available features. The results show a somewhat consistent
pattern across institutions, with the CNHS results generally
lower, possibly beacause of less available data. The MLP
provides a nonstatistically significant, but consistent, benefit
over the linear model in terms of area under the ROC curve.
Noteworthy is how the combination of the four different types
of features generally provides the best performance, though we
do note that removing vitals from the feature sets does not affect

the BCH model and, in fact, slightly improves the CNHS model.
Nursing assessments provide a strong indication of future
deterioration, a finding that holds across all three institutions.
This finding is consistent with recent work predicting sepsis
that demonstrated significant benefits to utilizing text comment
fields [24]. We anticipate that with additional labeled data, the
nonlinear MLP model may outperform the logistic regression
model. Recent work at predicting deterioration has demonstrated
the utility of nonlinear models for predicting deterioration [14],
when sufficient data are available. These results are encouraging,
showing that a complex MLP with three hidden layers can be
regularized sufficiently to avoid overfitting.
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Features based on laboratory results, acuity scores, and nursing
assessments differed across the three hospitals. These differences
were because of the fact that some types of clinical data, nursing
assessments in particular, lack a one-to-one mapping across
institutions. In addition, vocabularies differ across EHR systems
and institutions. For example, one institution might have a
nursing assessment “Level of Consciousness” while another
abbreviates it to “LOC.” In a similar vein, the values (eg,
“drowsy,” “sleepy,” and “alert”) are institution-specific terms,
some of which may not map to values at another institution.
Rather than attempting to normalize all these clinical elements
to the same vocabulary, features were constructed by simply
taking the attribute-value pairs as they were realized in the EHR,
directly from the corresponding database fields. This has an
advantage of reducing the time and labor involved for building
a model for new institutions’ EHR systems as it obviates the
need to map to a standard feature vocabulary. On the downside,
however, each model is specific to a single institution.

When considering deploying deterioration prediction models
in the hospital setting, a natural question arises as to the
robustness of models across different prediction horizons. For
example, if the model is trained to forecast deterioration 10
hours in advance but a patient is, in fact, just 2 hours away from
a deterioration event, how well might the model perform? Not
surprisingly, our results here demonstrated that ideally models
should be trained and used to predict deterioration at a fixed
horizon. For example, models trained at predicting deterioration
only a few hours away perform very poorly at predicting
deterioration 10 to 16 hours prior.

Most previous methods to detect deterioration are more limited
than ours. The use of early warning scores, such as the Pediatric
Early Warning Scores (PEWS) [25] and Children’s Hospitals
Early Warning Score (CHEWS) [26] to assess the severity of
a patient’s illness can provide warnings up to 11 hours before
code and rapid response team (RRT) events [27]. Yet, these
scores require manual entry by nurses and only consider small
sets of clinical elements. Other work predicting deterioration
uses markedly smaller feature sets than ours [12,14] and make
use of 29 predictor variables. The Rothman Index (RI) uses 26
variables [28]. In contrast, we have upwards of 4000 predictor
variables across four different types of clinical elements. We
believe our rich set of predictor variables not only improves the
accuracy of our models but increases their robustness to missing
data. Indeed, removing any single feature group only mildly
degrades the models’ accuracies, except for the case of nursing
assessments. The RI [29-31] and the pediatric RI [32] use
stepwise logistic regression for the purpose of predicting 1-year
postdischarge risk of mortality and other adverse outcomes. It
demonstrated the usefulness of including nursing assessments
in predicting patient outcomes; however, it is not used to predict
unplanned ICU transfers.

Other previous research also focused on physiologic patient
characteristics to predict deterioration. Zhai et al [12] developed
an EHR-based logistic regression algorithm to predict
escalations to the pediatric ICU (PICU) in the first 24 hours
after admission from the emergency department (ED). This
work highlights several clinical elements that can be leveraged
and while the study focuses on pediatric patients, it limits the

patient population to only those who had an unplanned transfer
to the ICU within 24 hours. Although direct comparisons are
not possible because of different experimental conditions, we
note Zhai et al [12] achieved 0.912 area under ROC, predicting
deterioration 1 hour in advance. Churpek et al [14] obtained
lower results (0.79 area under ROC); their prediction horizon
ranges from 8 to 16 hours, and they make use of fewer clinical
elements than our models. Recent work by Horng et al [24]
predicted the occurrence of infection for purposes of sepsis
clinical decision support, showing the importance of text
analysis in conjunction with vitals for the task.

In contrast to previous studies, we looked carefully at a range
of prediction horizons. Zhai et al [12], included predictions with
a fixed horizon of 1 hour, whereas in the study by Churpek et
al [14], the horizon effectively varied from 8 to 16 hours.
Understanding the model’s predictive power at specific horizons
is necessary to determine how frequently the model should be
invoked to provide a new risk assessment for deterioration.
Here, our model shows robustness to longer horizons, meaning
that it may prove beneficial even in settings in which the model
can only be run infrequently because of strains it may place on
EHR system infrastructure.

Limitations
There are many directions for future work. Improved methods
for handling the nonstationary properties and sampling bias
underlying health care data may provide better features through
alternative parameterizations of time such as sequence time
[33]. Across time scales of months or years, there is potential
for data drift as patient populations and practice within the
hospital setting change. Methods to detect data drift [34] and
ameliorate them [35,36] would increase robustness and provide
indications as to when models need to be retrained. Relatedly,
models that capture the nonindependent sequence of predictions
over time for the same patient, in a state-space or Markov model,
may perform better and indicate trends.

In some cases models performed slightly better at longer
prediction horizons; we hypothesize some of these trends are
caused by noisy or missing inputs. Better features such as those
derived from procedures, medication ordering, and
administration may provide measures of the patient’s complexity
and acuity. Finally, rich information is present in various
free-text fields [37,38,24] that may provide indicators of
clinician concern.

Methods for providing explanations of model predictions in
terms of the predictor variables present may have benefits in
terms of validation and clinician acceptance [15]. On the other
hand, minimizing labor-intensive feature extraction altogether
is an interesting avenue to explore. Specifically, deep learning
techniques [39,40] that help to learn representations
automatically appear promising.

Adjustment of the outcome variable itself is another area for
refinement. Many patients not identified as cases, as they were
never transffered to the ICU, could be considered cases by virtue
of their potential to have resulted in a deterioration event, had
interventions not occurred. Expanding the cases to include
patients based on certain interventions may be worth exploring.
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Another formulation would be to train the model to predict
deterioration for some interval of time in the future, for example,
4 to 6 hours. This may improve the robustness of the model.
Survival analysis based on hazard models is another approach
where the goal is to measure the time until deterioration, yet
challenges arise from censoring [41] and competing events [42]
based on the fact that many patients never go on to have a
deterioration event. Finally, in cases where the outcome variable
of interest can be observed (eg, acuity scores) or computed (eg,
sequential organ failure assessment [SOFA], scores for sepsis
[43,44]) as a scalar value at various points in time from EHR
retrospectively, deterioration could be formulated as a
forecasting problem. Although forecasting models are inherently
more complex (as they provide a series of nonindependent
predictions), they may provide better interpretability, especially
in conjunction with CIs associated with the forecast.

Practical Implications
Deployed in the hospital setting, this model may supplement
existing detection tools in use such as safety huddles or rapid
response teams to improve the recognition of patients at risk of
experiencing an unplanned ICU transfer. Ultimately, the results

of the model could lead clinicians to detect deterioration and
act sooner. This may avoid serious events that lead to higher
rates of morbidity and mortality. There is also great potential
to reduce cost through fewer inpatient days, shorter ICU stays,
and fewer and less extreme medical interventions.

Conclusions
This paper described a machine learning approach to predict
deterioration in pediatric patients as indicated by an unplanned
ICU transfer by leveraging rich sets of clinical elements in the
EHR. Our study, carried out at three separate institutions with
different EHR systems, suggests that such approaches to
predicting deterioration have a great potential to improve care
and reduce costs [5]. By analyzing how prediction quality
changes across different prediction horizons, we have provided
insight into how such a model would fare in a real clinical
setting. In addition, our research suggests that feature-rich,
data-driven models may perform at a superior level to existing
models reported in the literature based on small numbers of
carefully tuned variables. Ultimately, the model output may be
integrated in workflows of rapid response teams and safety leads
so that deterioration could be recognized earlier.
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