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Abstract

Background: Medical terms are a major obstacle for patients to comprehend their electronic health record (EHR) notes. Clinical
natural language processing (NLP) systems that link EHR terms to lay terms or definitions allow patients to easily access helpful
information when reading through their EHR notes, and have shown to improve patient EHR comprehension. However, high-quality
lay language resources for EHR terms are very limited in the public domain. Because expanding and curating such a resource is
a costly process, it is beneficial and even necessary to identify terms important for patient EHR comprehension first.

Objective: We aimed to develop an NLP system, called adapted distant supervision (ADS), to rank candidate terms mined from
EHR corpora. We will give EHR terms ranked as high by ADS a higher priority for lay language annotation—that is, creating
lay definitions for these terms.

Methods: Adapted distant supervision uses distant supervision from consumer health vocabulary and transfer learning to adapt
itself to solve the problem of ranking EHR terms in the target domain. We investigated 2 state-of-the-art transfer learning algorithms
(ie, feature space augmentation and supervised distant supervision) and designed 5 types of learning features, including distributed
word representations learned from large EHR data for ADS. For evaluating ADS, we asked domain experts to annotate 6038
candidate terms as important or nonimportant for EHR comprehension. We then randomly divided these data into the target-domain
training data (1000 examples) and the evaluation data (5038 examples). We compared ADS with 2 strong baselines, including
standard supervised learning, on the evaluation data.

Results: The ADS system using feature space augmentation achieved the best average precision, 0.850, on the evaluation set
when using 1000 target-domain training examples. The ADS system using supervised distant supervision achieved the best
average precision, 0.819, on the evaluation set when using only 100 target-domain training examples. The 2 ADS systems both
performed significantly better than the baseline systems (P<.001 for all measures and all conditions). Using a rich set of learning
features contributed to ADS’s performance substantially.

Conclusions: ADS can effectively rank terms mined from EHRs. Transfer learning improved ADS’s performance even with a
small number of target-domain training examples. EHR terms prioritized by ADS were used to expand a lay language resource
that supports patient EHR comprehension. The top 10,000 EHR terms ranked by ADS are available upon request.

(JMIR Med Inform 2017;5(4):e42) doi: 10.2196/medinform.8531
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Introduction

Significance and Background
Online patient portals have been widely adopted in the United
States in a nationwide effort to promote patient-centered care
[1-3]. Many health organizations also allow patients to access
their full electronic health record (EHR) notes through patient
portals, with early evidence showing improved medical
comprehension and health care outcomes [4-6]. However,
medical terms—abundant in EHR notes—remain a major
obstacle for patients to comprehend medical text, including

EHRs [7-12]. In addition, an estimated 36% of adult Americans
have limited health literacy [13]. Limited health literacy has
been identified as one major barrier to patient use of EHRs
[3,14-17]. Misinterpretation of EHR content may result in
unintended increases in service utilization and change of
patient-provider relationships.

Textbox 1 shows an excerpt from a typical clinical note. The
medical terms that may hinder patients’ comprehension are
italicized. Here we show a subset of medical terms identified
by the Unified Medical Language System (UMLS) lexical tool
MetaMap [18] for illustration purposes only.

Textbox 1. Illustration of medical terms in a sample clinical note.

Her creatinine has shown a steady rise over the past four years. She does have nephrotic range proteinuria. The likely etiology of her nephrotic range
proteinuria is her diabetes.

She was on an ACE inhibitor, which was just stopped in August due to the elevated creatinine of 4.41. Given the severity of her nephrotic syndrome,
her chronic kidney disease is likely permanent; however, I will repeat a chem-8 now that she is off the ACE inhibitor. I will also get a renal duplex
scan to make sure she does not have any renal artery stenosis.

There has been long-standing research interest in developing
health information technologies that promote health literacy
and consumer-centered communication of health information
[19,20]. Natural language processing (NLP)-enabled
interventions have also been developed to link medical terms
in EHRs to lay terms [21,22] or definitions [23], showing
improved comprehension [22,23]. Although there is a substantial
amount of health information available on the Internet, many
Internet users face challenges accessing and selecting relevant
high-quality information [24-27]. The aforementioned
NLP-enabled interventions have the advantage of reducing
patients’ information-seeking burden by integrating authorized
health-related information in a single place, and thereby helping
patients easily read through and understand their EHR notes.

However, high-quality lay language resources—the cornerstone
of such interventions—are very limited in the public domain.
The readability levels of health educational materials on the
Internet often exceed the level that is easily understood by the
average patient [28-30]. Definitions of medical terms provided
by controlled health vocabularies, such as those included in the
UMLS, often themselves contain complex medical concepts.
For example, the term “nephrotic syndrome” in Textbox 1 is
defined in the US National Cancer Institute vocabulary as “A
collection of symptoms that include severe edema, proteinuria,
and hypoalbuminemia; it is indicative of renal dysfunction,”
where the medical concepts “edema,” “proteinuria,”
“hypoalbuminemia,” and “renal dysfunction” may not be
familiar to patients.

The consumer health vocabulary (CHV) [31] is a valuable lay
language resource that has been integrated into the UMLS and
has also been used in EHR simplification [21,22]. CHV contains
consumer health terms (which were used by lay people to query
online health information) and maps these terms to UMLS
concepts. As a result, it contains both lay terms and medical
terms, and links between these 2 types of terms. In addition, it

provides lay definitions for some medical terms. From our
current work, however, we found that CHV alone is not
sufficient for comprehending EHR notes, as many medical terms
in EHRs do not exist in CHV, and many others exist in CHV
but do not have lay terms or lay definitions. For example, among
the 19,503 unique terms identified by MetaMap [18] from a
corpus of 7839 EHR notes, 4680 (24.0%) terms do not appear
in CHV, including “focal motor deficit,” “Hartmann procedure,”
“titrate,” and “urethrorectal fistula” (see Multimedia Appendix
1 for more results).

We are building a lay language resource for EHR comprehension
by including medical terms from EHRs and creating lay
definitions for those terms. This is a time-consuming process
that involves collecting candidate definitions from authorized
health educational resources, and curating and simplifying these
definitions by domain experts. Since the number of candidate
terms mined from EHRs is large (hundreds of thousands of
terms), we ranked candidate terms based on how important they
are for patients’ comprehension of EHRs, and therefore
prioritized the annotation effort of lexical entries based on those
important terms.

The goal of this study was to develop an NLP system to
automate the process of lexical entry selection. This task was
challenging because the distinctions between important and
nonimportant EHR terms in our task were more subtle than that
between medical terms and nonmedical terms (detailed below
in the Important Terms for Electronic Health Record
Comprehension subsection). To achieve this goal, we developed
a new NLP system, called adapted distant supervision (ADS),
which uses distant supervision from the CHV and uses transfer
learning to adapt itself to the target domain to rank terms from
EHRs. We aimed to empirically show that ADS is effective in
ranking EHR terms at the corpus level and outperforms
supervised learning.
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Related Work

Natural Language Processing to Facilitate Creation of
Lexical Entries
Previous studies have used both unsupervised and supervised
learning methods to prioritize terms for inclusion in biomedical
and health knowledge resources [32-35]. Term recognition
methods, which are widely used unsupervised methods for term
extraction, use rules and statistics (eg, corpus-level word and
term frequencies) to prioritize technical terms from
domain-specific text corpora. Since these methods do not use
manually annotated training data, they have better domain
portability but are less accurate than supervised learning [32].
The contribution of this study is to propose a new learning-based
method for EHR term prioritization, which is more accurate
than supervised learning while also having good domain
portability.

Our work is also related to previous studies that have used
distributional semantics for lexicon expansion [35-37]. In this
work, we used word embedding, one technique for distributional
semantics, to generate one type of learning features for the ADS
system to rank EHR terms.

Ranking Terms in Electronic Health Records
We previously developed NLP systems to rank and identify
important terms from each EHR note of individual patients
[38,39]. This study is different in that it aimed to rank terms at
the EHR corpus level for the purpose of expanding a lay
language resource to improve health literacy and EHR
comprehension of the general patient population. Notice that
both types of work are important for building NLP-enabled
interventions to support patient EHR comprehension. For
example, a real-world application can link all medical jargon
terms in a patient’s EHR note to lay terms or definitions, and
then highlight the terms most important for this patient and
provide detailed information for these important terms.

Distant Supervision
Our ADS system uses distant supervision from the CHV. Distant
supervision refers to the learning framework that uses
information from knowledge bases to create labeled data to train
machine learning models [40-42]. Previous work often used
this technique to address context-based classification problems
such as named entity detection and relation detection. In
contrast, we used it to rank terms without considering context.
However, our work is similar in that it uses heuristic rules and
knowledge bases to create training data. Although training data
created this way often contain noise, distant supervision has
been successfully applied to several biomedical NLP tasks to
reduce human annotation efforts, including extraction of entities
[40,41,43], relations [44-46], and important sentences [47] from

the biomedical literature. In this study, we made novel use of
the non-EHR-centric lexical resource CHV to create training
data for ranking terms from EHRs. This approach has greater
domain portability than conventional distant supervision
methods due to fewer demands on the likeness between the
knowledge base and the target-domain learning task. On the
other hand, learning from the distantly labeled data with a
mismatch to the target task is more challenging. We address
this challenge by using transfer learning.

Transfer Learning
Transfer learning is a learning framework that transfers
knowledge from the source domain DS (the training data derived
from the CHV, in our case) to the target domain DT to help
improve the learning of the target-domain task TT [48]. We
followed Pan and Yang [48] to distinguish between inductive
transfer learning, where the source- and target-domain tasks are
different, and domain adaptation, where the source- and
target-domain tasks are the same but the source and target
domains (ie, data distributions) are different. Our approach
belongs to the first category because our source-domain and
target-domain tasks define positive and negative examples in
different ways. Transfer learning has been applied to important
bioinformatics tasks such as DNA sequence analysis and gene
interaction network analysis [49]. It has also been applied to
several clinical and biomedical NLP tasks, including
part-of-speech tagging [50] and key concept identification for
clinical text [51], semantic role labeling for biomedical articles
[52] and clinical text [53], and key sentence extraction from
biomedical literature [47]. In this work, we investigated 2
state-of-the-art transfer learning algorithms that have shown
superior performance in recent studies [47,53]. We aimed to
empirically show that they, in combination with distant
supervision, are effective in ranking EHR terms.

Methods

Electronic Health Record Corpus and Candidate
Terms
We used 7839 discharge summary notes (5.4 million words)
from the University of Pittsburgh NLP Repository (using these
data requires a license) [54], called EHR-Pittsburgh for
convenience, for this study. We applied the linguistic filter of
the Java Automatic Term Extraction (JATE) toolkit (version
1.11) [55] to EHR-Pittsburgh to extract candidate terms (see
step 1 in Figure 1). JATE’s linguistic filter uses a word extractor,
a noun phrase extractor, and a stop word list to select
high-quality words and noun phrases as candidate terms. We
extracted a total of 106,108 candidate terms and further used
them to identify and rank medical terms.
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Figure 1. Overview of development of the adapted distant supervision (ADS) natural language processing system to rank candidate terms mined from
electronic health record (EHR) corpora: data extraction (steps 1 and 2), ADS (step 3), and evaluation (step 4). CHV: consumer health vocabulary.

Consumer Health Vocabulary
CHV was developed by collaborative research to address
vocabulary discrepancies between lay people and health care
professionals [56-59]. CHV incorporates terms extracted from
various consumer health sites, including queries submitted to
MedlinePlus, a consumer-oriented online knowledge resource
maintained by the US National Library of Medicine [60,61].
CHV contains 152,338 terms, most of which are consumer
health terms [60-62]. Zeng et al [60] mapped these terms to
UMLS concepts by a semiautomatic approach. As a result of
this work, CHV encompasses lay terms (eg, “low blood sugar
level” and “heart attack”), as well as corresponding medical
terms (eg, “hypoglycemia” and “myocardial infarction”). In this
study, we used CHV to create distantly labeled training data for
ADS.

Important Terms for Electronic Health Record
Comprehension
We defined important terms as those terms that, if understood
by the patients, would significantly improve their EHR
comprehension. In practice, we used 4 criteria, unithood,
termhood, unfamiliarity, and quality of compound term (defined
with examples in Multimedia Appendix 2), to judge term
importance.

Except for unithood, which is a general criterion for lexical
entry selection, the other 3 criteria all measure term importance
from the perspective of patient EHR comprehension (details in
Multimedia Appendix 2). For example, familiar terms are not
important because they are already known by the average
patient. High-quality compound terms are those terms whose
meanings are beyond the simple sum of their component words
(eg, “community-acquired pneumonia”). These terms are
important and should be annotated with lay definitions because
otherwise patients would not understand them even if they know
all the individual words in these terms.

Distant Supervision from Consumer Health
Vocabulary
We used CHV to select positive examples to train ADS (see
step 2 in Figure 1). Specifically, we assumed that medical terms
that occur in both EHRs and CHV (called EHR-CHV terms)
are important for patient EHR comprehension. We chose CHV
for distant supervision for 3 reasons. First, terms in CHV have
been curated and thus all satisfy the unithood criterion. Second,
recall that medical terms existing in CHV are synonyms of
consumer health terms initially identified from queries and
postings generated by patients in online health forums.
Therefore, we expect most of these terms to bear clear and
significant clinical meanings for patients and thus satisfy the
termhood criterion. Third, CHV assigns familiarity scores to
57.89% (88,189 out of 152,338) of its terms for extended
usability, which can be used to distinguish between medical
terms and lay terms. CHV familiarity scores estimate the
likelihood that a term can be understood by an average reader
[63] and take values between 0 and 1 (with 1 being most familiar
and 0 being least familiar). CHV provides different types of
familiarity scores [21]. Following Zeng-Treitler et al [21], we
used the combined score and used a heuristic rule (ie, CHV
familiarity score ≤0.6) to identify medical terms.

Despite the aforementioned merits, CHV is not perfect in
labeling the training data. First, there is not a clear boundary
between familiar and unfamiliar terms if their CHV familiarity
scores are close to 0.6. For example, “congestive heart failure”
and “atypical migraine” have familiarity scores of 0.64 and
0.61; therefore, they would be labeled as negative examples by
CHV. However, these 2 terms were judged by domain experts
as important terms that need lay definitions. Second, some
compound terms in CHV (eg, “knee osteoarthritis,” “brain
MRI,” “aspirin allergy”), although labeled as positive examples
by CHV, were judged by domain experts as being not
high-quality compound terms from the perspective of efficiently
expanding a lay language resource and thus did not need
immediate treatment for adding lay definitions.
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Transfer Learning Algorithms

Problem Formalization
Since CHV-labeled training data are noisy, we used transfer
learning to adapt the system distantly supervised by CHV to
the target-domain task. More formally, we defined the training

data derived from CHV as the source-domain data DS={(xs
1,

ys
1), (xs

2, ys
2), …, (xs
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M)}, where N is the number

of source-domain instances, (xs, ys) is the paired feature vector
and class label of an instance in the source domain, and M and

(xt, yt) are defined similarly for the target domain. Notice that
we refer to CHV-labeled candidate terms as the source-domain
data by following the convention of transfer learning, although
these terms were extracted from EHRs. In our study, we used
all the N source-domain instances and at most K (K « M)
target-domain instances to train the model. The goal of transfer
learning is to make an optimal use of the N+K training data to
improve model performance on the M-K target-domain test data.

In this study, we investigated 2 state-of-the-art transfer learning
methods: feature space augmentation (FSA) and supervised
distant supervision (SDS).

Feature Space Augmentation
FSA [64] has shown the best performance in semantic role
labeling for clinical text [53].

This approach assumes that DS and DT share the same feature

space X= RF (ie, each feature vector is an F-dimension

real-valued vector) and defines an augmented feature space X+=

R3F. It then defines 2 feature mapping functions, ΦS and ΦT:

X→X+, by Equation 1 (Figure 2) to respectively map feature
vectors from DS and DT to the augmented feature space. The
motivation is to make the learning easier by separating the
general features (ie, the first F dimensions in the augmented
feature space, which are useful to learn examples in both DS

and DT) and the domain-specific features (the second and third
F dimensions in the augmented feature space). In addition, it
allows a single model to regulate jointly the trade-off between
the general and domain-specific feature weights.

Figure 2. Equations for feature mapping functions used in feature space augmentation (1), objective function used in supervised distant supervision
(2), and average precision (3).

Supervised Distant Supervision
SDS is an extension of the algorithm recently proposed by
Wallace et al [47]. It minimizes an objective function that
combines empirical source-domain and target-domain errors,
as defined in Equation 2 (Figure 2).

Our algorithm differs from that of Wallace et al [47] in that it
does not assume that only positive examples in the source
domain are unreliable and is therefore more generalizable.

Implementation Issues
We implemented 2 versions of the ADS system, ADS-fsa and
ADS-sds, by incorporating the 2 transfer learning algorithms.
We used the log-linear model as the base of all the models
(including the baseline models introduced in the subsection
Baseline Systems) and used L2 regularization for model training.
The output from the log-linear models is probabilities of a
candidate term being a positive example and can be used to rank
candidate terms directly. We used grid search and
cross-validation on the target-domain training data to set the
hyperparameters α (the corpus weighting parameter in Equation
2; Figure 2) and C (the hyperparameter of the log-linear model
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to control the regularization strength; a small C corresponds to
a strong regularization). In our experiments, we set α=β(K / N)
(N and K are the size of the source- and target-domain training
data) and searched β in [0.01, 0.1, 1, 10, 100]. We searched C
in [1,0.1,0.001,0.0001].

Training and Evaluation Datasets

Data Annotation
We derived the training and evaluation datasets from the
106,108 candidate terms extracted from EHR-Pittsburgh as
follows.

First, 3 people with a postgraduate level of education in biology,
public health, and biomedical informatics reviewed candidate
terms among the terms ranked as high by the nonadapted distant
supervision model (ie, among the top 10,000 terms) or by the
term recognition algorithm C-value [65] (ie, among the top 5000
terms). We chose top-ranked terms, which were likely to contain
more important terms than randomly sampled terms, to speed
up the whole annotation process. We used the output from 2
methods to increase the diversity of terms used for evaluation
and used more terms from the distant supervision model because
a manual review suggested that it outperformed C-value. We
adopted the expert annotation approach because nonexperts
may lack sufficient knowledge to judge the domain relevance
and quality of a candidate term, which could potentially
introduce noise to the data and slow down the annotation
process.

Each term was annotated by 1 primary reviewer and then
reviewed by another reviewer based on the 4 criteria introduced
in the subsection Important Terms for Electronic Health Record
Comprehension (details in Multimedia Appendix 2). Difficult
cases were discussed and resolved within the group. Using this
procedure, we obtained 6038 annotated terms (3530 positive
examples and 2508 negative examples) before starting this study
and used all of them for our experiments. To compute the
interannotator agreement, 2 reviewers independently annotated
500 candidate terms and achieved a .71 kappa coefficient on
this dataset.

Target-Domain Training and Evaluation Sets
We used 1000 examples randomly sampled from the 6038
annotated terms as the target-domain training set and used the
remaining 5038 terms as the evaluation set. We did not use
stratified sampling because in practice we did not know the
class distribution of the target-domain data or the test data. In
transfer learning, the target-domain training data are critical to
system performance. Therefore, we repeated the above
procedure 100 times to obtain 100 pairs of <target training set,
evaluation set> for system evaluation to take into account the
variance of the target training set. To test the effects of the size
of the target-domain training data, we reported system
performance by using L (L=100, 200, 500, 1000) examples
randomly selected from the full target training set.

Source-Domain Training Set
We first obtained 100,070 terms by removing the 6038 manually
labeled terms from the 106,108 candidate terms. We then
automatically labeled the 100,070 terms based on whether a

term was an EHR-CHV medical term (ie, positive term) or not
(ie, negative term). In this way, we obtained 4166 positive terms
and 95,904 negative terms. Because we did not know the
distribution of the target-domain data, we randomly sampled
3000 positive and 3000 negative terms from these data to form
a balanced source-domain training set. We set the size of the
source training set to 6000 by following previous work [66].

Baseline Systems
We employed 2 baselines commonly used to evaluate transfer
learning methods [47,53,64]: SourceOnly or nonadapted distant
supervision model, which was trained by using only
source-domain training data, and TargetOnly, which was trained
by using only target-domain training data.

Features

Word Embedding
Word embedding is the distributed vector representation of
words. It has emerged as a powerful technique for word
representation and proved beneficial in a variety of biomedical
and clinical NLP tasks. We used word2vec software to create
the skip-gram word embeddings [67,68] and trained word2vec
using a combined text corpus (over 3 billion words) of English
Wikipedia, articles from PubMed Central Open Access Subset,
and 99,735 EHR notes from the University of Pittsburgh NLP
Repository [54]. We set the training parameters by following
Jagannatha et al [37] and Pyysalo et al [69]. Specifically, we
used 200-dimension vectors with a window size of 6 and used
hierarchical soft-max with a subsampling threshold of 0.001
for training. We represented multiword terms (ie, compound
terms) by the mean of the vectors of their component words by
following Jagannatha et al [37] and Chen and colleagues [38,39].

Semantic Type
We mapped candidate terms to UMLS concepts and included
semantic types for those concepts that had an exact match or a
head-noun match as features. Each semantic type is a 0-1 binary
feature. This type of feature has been used to identify
domain-specific medical terms [23,33] and to rank medical
terms from individual EHR notes [38].

Automatic Term Recognition
We used the confidence scores from 2 term-recognition
algorithms: corpus-level term frequency-inverse document
frequency [55] and C-value [65].

General-Domain Term Frequency
We generated 4 features from the Google Ngram corpus [70]:
the average, minimum, and maximum frequencies of a term’s
component words and the term frequency. Corpus frequency
has proved to be a strong indicator for term familiarity [63,71].
The Google Ngram corpus is a database of unigram and n-gram
counts of words collected from over 15 million books containing
over 5 billion pages. We used the top 4.4 million high-frequency
words from this corpus and their unigram, bigram, and trigram
matches to derive our features.
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Term Length
Term length is the number of words in a term. Because a long
candidate term may not be a good compound term but rather a
simple concatenation of shorter terms (eg, “left heart cardiac
catheterization”), this feature may help the ADS system to
identify and rank as low the low-quality compound terms.

Evaluation Metrics

Average Precision
This metric averages precision P(k) at rank k as a function of
recall r, as defined in Equation 3 (Figure 2).

Area Under the Receiver Operating Characteristic Curve
The area under the receiver operating characteristic curve
(AUC-ROC) is computed; this curve plots the true positive rate
(y-coordinate) against the false positive rate (x-coordinate) at
various threshold settings.

Recall that we have 100 pairs of <target training set, evaluation
set> randomly sampled from the 6038 labeled terms. When
evaluating a system, we averaged its performance scores on the
100 pairs of datasets and report the averaged values.

We used sklearn.metrics to compute the average precision and
AUC-ROC scores. Scikit-learn is an open source Python library
widely used for machine learning [72]. In this study, we only
reported the paired-samples t test results for performance

difference between the ADS systems and the baselines because
the baselines were expected to be better than a random classifier.
The AUC-ROC score of each individual system tested in our
experiments was significantly better than 0.5—that is, the
AUC-ROC score of a random classifier (P<.001).

Statistical Analysis
We used the paired-samples t test to test the significance of the
performance difference between a pair of systems. We used
scipy.stats to conduct the paired t test. SciPy is an open source
Python library widely used for scientific computing [73].

Results

ADS Ranking Performance on Evaluation Set
Table 1 shows the evaluation results, where the 2 ADS systems
outperformed the 2 baselines significantly (t99 ranges from 4.84
to 133.31, P<.001) for AUC-ROC and average precision under
all 4 conditions (ie, using 4 different sizes of target training
data). The performance scores of the ADS systems continuously
improved with increased size of target training data. When
comparing the 2 ADS systems, ADS-fsa performed significantly
better than ADS-sds when using 1000 target-domain training
examples for transfer learning and performed worse than
ADS-sds when using 100 or 200 target-domain training
examples (see bottom 2 rows in Table 1 for t and P values).

Table 1. Performance of different natural language processing systems on the evaluation set under 4 conditions using 100, 200, 500, and 1000

target-domain training examplesa.

Average precisionAUC-ROCbSystem

10005002001001000500200100

0.8110.8110.8110.8110.7390.7390.7390.739SourceOnly

0.8440.8330.8160.7990.7820.7690.7490.728TargetOnly

0.8500.8390.8230.8150.7900.7760.7560.746ADS-fsac

0.8470.8380.8260.8190.7860.7750.7590.751ADS-sdsd

ADS-fsa vs ADS-sdse

11.583.043.818.782.794.25t 99

<.001.003<.001<.001.01<.001P values

aThe highest performance scores are italicized.
bAUC-ROC: area under the receiver operating characteristic curve.
cADS-fsa: adapted distant supervision-feature space augmentation.
dADS-sds: adapted distant supervision-supervised distant supervision.
eThe P values for difference between ADS-fsa and SourceOnly, ADS-sds and SourceOnly, ADS-fsa and TargetOnly, and ADS-sds and TargetOnly are
<.001 (t99 ranges from 4.84 to 133.31) for all metrics under all conditions. We report the P values (if the P value ≤.05) and the corresponding t99 values
for difference between ADS-fsa and ADS-sds.

The average familiarity level or score of top-ranked terms
measures one important aspect of ranking quality. However,
because many terms in the evaluation set did not have CHV
familiarity scores, we could not compute this value directly. A
manual review of the top 500 terms ranked by the best
system—that is, ADS-fsa trained using 1000 target-domain
training examples—did find many unfamiliar medical terms,
including “autoimmune enteropathy,” “ileostomy,” “myasthenia

gravis,” “nifedipine,” “parathyroid hormone,” and
“phototherapy.”

Effects of Individual Features on ADS Ranking
Performance
In addition to evaluating system performance, we tested the
contribution of each individual feature to system performance
by using feature ablation experiments. Table 2 shows that

JMIR Med Inform 2017 | vol. 5 | iss. 4 | e42 | p. 7http://medinform.jmir.org/2017/4/e42/
(page number not for citation purposes)

Chen et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


ADS-sds’s performance dropped significantly (P<.001 for both
measures under all 4 conditions) when respectively dropping
word embedding, general-domain term frequency, and term
length. Dropping the semantic features had mixed results,
slightly decreasing performance when the target-domain training
set was large and increasing performance when the

target-domain training set was small. Dropping features derived
from automatic term recognition had no statistically significant
effects. The effects of dropping individual features on ADS-fsa’s
performance were similar (see the first table in Multimedia
Appendix 3).

Table 2. Performance of different ADS-sdsa systems implemented by using all types of features or by dropping each individual type of feature, under

4 conditions using 100, 200, 500, and 1000 target-domain training examplesb.

Average precisionAUC-ROCcADS-sds system

10005002001001000500200100

0.8470.8380.8260.8190.7860.7750.7590.751ADS-sds-ALLd

0.7990.7930.7850.7800.7330.7260.7180.711ADS-sds-woWEe

ADS-sds-woWE vs ADS-sds-ALL

124.1581.0439.6336.61112.2559.9232.7430.37t 99

<.001<.001<.001<.001<.001<.001<.001<.001P value

0.8450.8380.8290.8230.7820.7720.7600.753ADS-sds-woSemf

ADS-sds-woSem vs ADS-sds-ALL

4.554.003.1812.284.63t 99

<.001<.001.002<.001<.001P value

0.8470.8380.8260.8190.7860.7740.7590.751ADS-sds-woATRg

0.8420.8330.8210.8130.7770.7650.7490.740ADS-sds-woGTFh

ADS-sds-woGTF vs ADS-sds-ALL

23.0711.526.498.1222.5514.859.5013.04t 99

<.001<.001<.001<.001<.001<.001<.001<.001P value

0.8380.8290.8150.8070.7780.7670.7510.741ADS-sds-woTLi

ADS-sds-woTL vs ADS-sds-ALL

41.7234.5017.1516.4325.5819.7810.8111.21t 99

<.001<.001<.001<.001<.001<.001<.001<.001P value

aADS-sds: adapted distant supervision-supervised distant supervision.
bWe report the P values (if the P value ≤.05) and the corresponding t99 values for differences between each implementation and ADS-sds-ALL.
cAUC-ROC: area under the receiver operating characteristic curve.
dADS-sds-ALL: ADS-sds with all types of features.
eADS-sds-woWE: ADS-sds without word embedding.
fADS-sds-woSem: ADS-sds without semantic features.
gADS-sds-woATR: ADS-sds without features derived from automatic term recognition.
hADS-sds-woGTF: ADS-sds without general-domain term frequency.
iADS-sds-woTL: ADS-sds without term length.

Discussion

Principal Results
In an effort to build a lexical resource that provides lay
definitions for medical terms in EHRs, we developed the ADS
system to rank candidate terms mined from an EHR corpus and
prioritized our efforts to collect and curate lay definitions for
top-ranked terms. Given only 100 labeled target training
examples, the best ADS system, ADS-sds, achieved 0.751

AUC-ROC and 0.819 average precision on the evaluation set,
which are significantly better (P<.001) than the corresponding
performance scores of supervised learning (Table 1, ADS-sds
vs TargetOnly). When using 1000 target-domain training
examples, the best ADS system, ADS-fsa, achieved 0.790
AUC-ROC and 0.850 average precision, also significantly better
(P<.001) than that achieved by supervised learning (Table 1,
ADS-fsa vs TargetOnly).
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Our evaluation set was challenging, because terms included in
this set had been prefiltered (ie, ranked as high) by 2
term-ranking methods (details in the Training and Evaluation
Datasets subsection). In other words, we evaluated ADS on a
set of candidate terms that had higher quality than the average
candidate terms mined from EHRs, for which the boundaries
between positive and negative examples were more subtle. For
example, some candidate terms (eg, “metastatic carcinoid
tumor,” “normal serum calcium,” and “acute cardiac ischemia”),
although registered as medical terms in UMLS, were judged
nonimportant or nonurgent for lay definition creation because
their meanings could be easily inferred from their component
words.

The evaluation results on this dataset suggest that our ADS
system is effective in ranking EHR terms and can be used to
facilitate the expansion of lexical resources that support EHR
comprehension. In particular, it can be used to alleviate the data
sparseness problem when there are very few target-domain
training data and can be used to boost the performance of
supervised learning when the size of the training data increases.

Effects of Target-Domain Training Data
Our evaluation results also suggested that using more
target-domain training data is beneficial for system performance
(rows 2-4 in Table 1). In an additional experiment (details in
Multimedia Appendix 4), we found that the performance of
ADS-fsa, the best system when using 1000 target training data,
continued to improve with increased target training data and
began to plateau when the number of target training examples
reached 2500.

Effects of Individual Features
The results of our feature ablation experiment (Table 2) indicate
that word embedding contributes mostly to system performance,
followed by general-domain term frequency and term length.
Although dropping semantic features had mixed effects, the
results from further analysis indicate that semantic features are
useful when excluding word embedding from the feature set.
Specifically, adding semantic features on the 3 other types of
features (ie, automatic term recognition, general-domain term
frequency, and term length) significantly improved system
performance (t99 ranges from 12.74 to 128.11, P<.001 for 2
measures under 4 conditions; see the second table in Multimedia
Appendix 3 for details). This suggests that most information
provided by the semantic features for ranking terms is subsumed
by that provided by word embedding (but not vice versa).
Different from the semantic features, the automatic term
recognition features had little additional effect on the
performance even without counting word embedding. A likely
reason is that our evaluation data set was created by including
terms already ranked as high (top 5%) by the automatic term
recognition algorithm C-value [65], which may have diminished
the effect of this type of feature on this dataset.

Comparing Different Transfer Learning Methods
Although ADS-fsa and ADS-sds were both effective in ranking
EHR terms (Table 1), ADS-fsa had small gains over ADS-sds
when the size of target training data was large (1000 examples)
and vice versa when the size of the target training data was small
(100 and 200 examples). The 2 systems used different methods,
SDS and FSA, to balance the source- and target-domain training
data. Specifically, SDS allows fine-grained weighting of training
data from source and target domains at the instance level; FSA,
by using an augmented feature space, allows redistribution of
feature weights for source, target, and “shared” domains. Our
results suggest that instance weighting (ie, ADS-sds) can be
more effective when the target-domain training data are very
limited.

Error Analysis
We identified three major types of errors through error analysis
on the top-rank and low-rank terms (using 300 as the rank
threshold) that were ranked by the ADS-sds system that used
1000 target-domain training examples for transfer learning.
Error analysis for ADS-fsa showed similar results. First, we
found that most errors were caused by compound terms.
Specifically, ADS-sds ranked some terms (such as “malignant
cell,” “chronic rhinitis,” and “viral bronchitis”) as high, even
though their meanings could be easily inferred from their
component words. It also ranked certain good compound terms
(eg, “community-acquired pneumonia,” “end-stage kidney
failure,” and “left ventricular ejection fraction”) as low when
these terms contained familiar words. This suggests that
advanced features generated by a compound term detector may
improve the system’s performance, which we may explore in
the future. Second, ADS-sds missed certain terms that are lay
terms in the general domain but bear unfamiliar clinical
meanings (eg, “baseline,” “vehicle,” and “family history”).
Third, ADS-sds ranked some common medical terms (eg,
“aspirin,” “vitamin,” and “nerve”) as high, although these terms
are likely to be already known by the average patient. The
second and third types of errors may be reduced by including
domain-specific knowledge about term familiarity as additional
features, which we will study in the future.

Conclusion
We report a novel ADS system for ranking and identifying
medical terms important for patient EHR comprehension. We
empirically show that the ADS system outperforms strong
baselines, including supervised learning, and transfer learning
can effectively boost its performance even with only 100
target-domain training examples. The EHR terms prioritized
by our model have been used to expand a comprehensive lay
language lexical resource that supports patient EHR
comprehension. The top 10,000 EHR terms ranked by ADS are
available upon request.
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