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Abstract

Background: Chronic kidney disease (CKD) is a major public health concern in the United States with high prevalence, growing
incidence, and serious adverse outcomes.

Objective: We aimed to develop and validate a model to identify patients at risk of receiving a new diagnosis of CKD (incident
CKD) during the next 1 year in a general population.

Methods: The study population consisted of patients who had visited any care facility in the Maine Health Information Exchange
network any time between January 1, 2013, and December 31, 2015, and had no history of CKD diagnosis. Two retrospective
cohorts of electronic medical records (EMRs) were constructed for model derivation (N=1,310,363) and validation (N=1,430,772).
The model was derived using a gradient tree-based boost algorithm to assign a score to each individual that measured the probability
of receiving a new diagnosis of CKD from January 1, 2014, to December 31, 2014, based on the preceding 1-year clinical profile.
A feature selection process was conducted to reduce the dimension of the data from 14,680 EMR features to 146 as predictors
in the final model. Relative risk was calculated by the model to gauge the risk ratio of the individual to population mean of
receiving a CKD diagnosis in next 1 year. The model was tested on the validation cohort to predict risk of CKD diagnosis in the
period from January 1, 2015, to December 31, 2015, using the preceding 1-year clinical profile.
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Results: The final model had a c-statistic of 0.871 in the validation cohort. It stratified patients into low-risk (score 0-0.005),
intermediate-risk (score 0.005-0.05), and high-risk (score ≥ 0.05) levels. The incidence of CKD in the high-risk patient group
was 7.94%, 13.7 times higher than the incidence in the overall cohort (0.58%). Survival analysis showed that patients in the 3
risk categories had significantly different CKD outcomes as a function of time (P<.001), indicating an effective classification of
patients by the model.

Conclusions: We developed and validated a model that is able to identify patients at high risk of having CKD in the next 1 year
by statistically learning from the EMR-based clinical history in the preceding 1 year. Identification of these patients indicates
care opportunities such as monitoring and adopting intervention plans that may benefit the quality of care and outcomes in the
long term.

(JMIR Med Inform 2017;5(3):e21) doi: 10.2196/medinform.7954
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Introduction

Chronic kidney disease (CKD) is a major public health concern
in the United States. The National Health and Nutrition
Examination Survey (NHANES) reported a prevalence of 15.2%
in the general population [1], and it is growing annually, from
less than 2% in 2000 to nearly 4.5% in 2008 [2]. The end-stage
renal disease prevalence was 2067 per million in the United
States in 2014, ranging from 965 to 1754 per million in different
health service areas in Maine [3]. CKD is highly associated
with other chronic conditions such as diabetes, hypertension,
and cardiovascular defects and is associated with poor outcomes
and high resource burden [4,5]. Timely recognition and
treatment of patients with CKD has been shown to reduce the
risk of mortality and complications and slow down disease
progression [6-9]. Taken together, these factors highlight a
critical need for early detection and intervention to mitigate the
impact of CKD.

A barrier to timely recognition and management of CKD is the
long clinically silent phase of the disease. Patients with CKD
tend to be asymptomatic in the early stage, resulting in generally
low awareness of the disease. NHANES reported a
self-awareness rate of less than 10% among patients with CKD
at stages 1 to 3 and less than 50% at stage 4 [10]. Low awareness
of CKD was also found at the provider level, mainly due to poor
documentation of the disease and lack of knowledge and
education about disease recognition [11-13]. The low awareness
at both patient and clinician levels is an impediment to
improving the quality of patient care. To increase awareness
and thus improve the early recognition from both sides, annual
screening with CKD diagnostic testing including serum
creatinine and urine albumin testing was recommended for
patients at increased risk of CKD, including those with diabetes,
hypertension, or family history of kidney disease [14,15]. Yet
the existing screening guidelines focus on selected patients
rather than the general population, which inevitably tends to
ignore a number of CKD patients, especially for those without
a history of diabetes or hypertension.

Recent attempts to improve the timely recognition of CKD
include identifying risk factors predictive of CKD and
combining them to develop a risk score [16-23]. Risk scores
stratify individuals based on their probability of having incident
CKD or further progression, which can help clinicians to make

decisions about intervention. Limitations of those efforts include
lack of generalizability across the population, insufficient
predictive accuracy, loss to follow-up, and dependence on
specific laboratory test results. So far, there is no widely
accepted risk assessment model implemented for clinical use
in a large, general population.

The widespread use of electronic medical records (EMRs)
affords a unique opportunity to understand health care status
and improve care management at the population level. The
successful use of EMR data to develop risk scores for population
stratification has facilitated better patient care for other
conditions [24-28]. Enabled by information technology, analysis
using EMR data provides a unique perspective on population
health tendencies, with large numbers of patients and high
dimensional clinical data elements. In this study, we aimed to
develop an EMR-based risk model to estimate the probability
of receiving an incident diagnosis of CKD within the next 1
year. The model was derived through statistical learning from
patients’ prior 1-year clinical history, combined with domain
knowledge of risk factors of CKD. The data sources were EMRs
collected from 35 hospitals, 34 federally qualified health centers,
and more than 400 ambulatory practices in the state of Maine
covering more than 1 million patients [27,29]. We aimed to
predict patients with newly recognized CKD within the next 1
year. The term “recognized CKD“ included patients having
diagnosis codes from the International Classification of
Diseases, Ninth Revision, Clinical Modification (ICD-9-CM)
associated with CKD diagnosis. We hypothesized that the
proposed risk model would be able to identify high-risk patients
prior to the assignment of a CKD diagnosis code. To our
knowledge it is the first study to predict the 1-year risk of being
diagnosed with CKD by using EMR data in an all-age,
all-disease, and all-payer group general population.

Methods

Reporting Method
The study was reported according to the Transparent Reporting
of a Multivariable Prediction Model for Individual Prognosis
or Diagnosis (TRIPOD) guidelines for a derivation and
validation predictive model [30] (Multimedia Appendix 1).
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Ethics Statement
Protected personal health information was removed for the
purpose of this research. Because it analyzed de-identified data,
this study was exempted from ethics review by the Stanford
University Institutional Review Board (October 16, 2014).

Studied Population and Source of Data
Patient information for this study was extracted from the Health
Information Exchange (HIE) dataset administered by
HealthInfoNet, an independent nonprofit organization. The
dataset contains records of nearly 95% of the population in the
state of Maine. Data elements include demographic information,
socioeconomic status, laboratory and radiographic tests coded
according to Logical Observation Identifier Names and Codes,
outpatient medication prescriptions coded according to the
National Drug Code, and primary and secondary diagnoses and
procedures which are coded using ICD-9-CM. Missing data
handling is described in Multimedia Appendix 2. The study
included patients who visited any care facility in the Maine HIE

network any time from January 1, 2013, through December 31,
2015. Patients who died or had a history of CKD diagnosis at
any time between 2009 (the first time deployment of any EMR
system in the state of Maine) and the time point of prediction
or a history of treatment or diagnosis for end-stage renal disease
were excluded from the study.

Outcome Definition
In this study, a CKD case was defined as having an ICD-9-CM
diagnosis code of CKD assigned during any visit during the
next 1 year, which refers to the period from January 1, 2014, to
December 31, 2014, in the derivation cohort and from January
1, 2015, to December 31, 2015, in the validation cohort. A full
list of ICD-9-CM codes of CKD was shown in Table m.1 in the
2015 Annual Data Report of the United State Renal Data System
[3]. All cases of CKD, including those specified as stages 1 to
5 as well as those with unspecified stages, were included as
study cases. The validity of ICD codes of CKD was reported
in previous reports [3,31].

Figure 1. Flow chart of study. Study population was split into two parts based on time frames of electronic medical records (2013-2014 for derivation
and 2014-2015 for validation).
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Figure 2. Formula of a tree ensemble model developed with the training subset.

Figure 3. Sum of the loss function and the overfitting control term at the t iteration.

Feature Selection
A workflow chart for the study is shown in Figure 1. To improve
computational efficiency, a feature selection process was carried
out to determine the features that would go into the model prior
to the derivation phase. The selection process was divided into
2 stages: literature review and variance analysis. Features
recognized to have an association with CKD in previous
literature were extracted as risk factors. These factors included
demographics, chronic disease history, abnormal laboratory test
results, and medication prescriptions. Chronic disease history
included primary or secondary diagnosis. Medication
prescriptions referred to the number of prescriptions for a
particular medicine during the past 1 year. Laboratory test results
were labeled as abnormal or normal according to thresholds
provided by each facility participating in the HIE network. The
rest of the features were screened by chi-square test to filter out
those not significantly associated with CKD outcome (P>.05).
The target of this process was to exclude features having low
discriminatory power. For example, features that were 0, No,
or NA in most of the patient records would probably be
removed.

Derivation Phase
The derivation cohort was divided into 2 subsets for training
and calibration purposes. An initial model was derived with the
training subset. The model input was the selected features that
profiled the preceding 1-year clinical history from January 1,
2013, to December 31, 2013, and the model output was set to
either 1 or 0 to indicate whether or not a patient was diagnosed
with CKD during the period from January 1, 2014, to December
31, 2014.

A gradient tree-based boosting algorithm was used to develop
the model [32]. The idea of the algorithm is to approach the
output by an ensemble of classification trees. Assume the
training subset had n samples (xi, yi, i=1,…, n), a tree ensemble
model developed with the training subset can be written
according to the formula in Figure 2, where f (x) is the predictive
function of a tree and K is the maximum number of trees in
algorithm (K=500 in this study). Overfitting was avoided by
adding a term to penalize the complexity of the algorithm.
Parameters were chosen to minimize the sum of loss function
and the overfitting control term. See Figure 3 for the sum term

at the t iteration, where l is the loss function, (yi’)
t-1 is the

predictive value at the t-1 iteration, and Ω is the term that

controls overfitting. Ω is a function of the number of trees and
weights of each tree in the algorithm.

An approximate greedy algorithm was used as a splitting method
to grow trees. Features on each node were sorted to propose a
couple of candidates at percentiles. Splitting points were chosen
to optimize purity at the next level. In this study, the maximum
depth of each tree was set to 5. Each node was assigned with
an estimated value. The final predictive estimate was summed
for individual trees.

A calibration subset was used to convert predictive estimates
of the model developed with the training subset to a measure
of positive predictive values (PPVs), which provided a universal,
standardized risk measure. PPV for each predictive estimate y’
was calculated as the proportion of incident CKD events in a
subset of samples having predictive estimates higher than y’.

In this way, all the predictive estimates were mapped to the
calculated PPVs. The PPVs were defined as scores that
described the probability of having a new diagnosis of CKD
within the next 1 year. We grouped all patients into 3 categories:
low risk, intermediate risk, and high risk, based on the scores.

The scores after calibration were converted to relative risks.
The relative risk of each individual was calculated by dividing
the score of the individual by the mean score of all patients in
the cohort. The relative risk measured the ratio of the probability
of having CKD to the baseline. The higher the relative risk, the
higher the probability of receiving a diagnosis of CKD in the
next 1 year.

Validation Phase
A validation cohort of patients with clinical history from January
1, 2014, to December 31, 2014, was assembled to test the model
performance on predicting the risk of CKD from January 1,
2015, to December 31, 2015. Predicted score and relative risk
to the baseline were calculated for each patient. The c-statistic,
relative risk distribution, and incidence of CKD diagnosis in
each risk category were estimated to assess the performance of
the model on the validation phase. The performance of the model
was also evaluated in subgroups of patients using receiver
operating characteristic (ROC) curves and c-statistics.
Characteristics and clinical patterns of patients in each risk
category were compared. Model errors were described by false
positives (labeling a patient with no CKD in next 1 year as high
risk) and false negatives (labeling a patient with CKD in next
1 year as low or intermediate risk), and clinical patterns of these
patients were discussed.
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Survival analysis was performed to track the timing of CKD
diagnosis in different risk categories. Kaplan-Meier curves were
plotted separately for each risk category to compare the
probabilities of being diagnosed of CKD at the same time point.
The analysis was not censored. A Kruskal-Wallis test was
performed to compare the curves between the 3 risk categories.
A temporal comparison of the CKD prediction date (ie, the time
point when a high-risk patient was identified by the model) and
CKD recognized date (ie, the time point when the patient was
assigned ICD-9-CM diagnosis codes of CKD) was performed
to evaluate the predictive power of the model in the time
domain. All analyses were performed using R software (The R
Foundation).

Results

Study Cohort
The final cohort included 1,310,363 patients for model
derivation, 7448 of whom received a new CKD diagnosis in
the next 1 year (from January 1, 2014, to December 31, 2014)
and 1,430,772 patients for model validation, 8299 of whom had
CKD diagnosed in the next 1 year (from January 1, 2015, to
December 31, 2015). A cohort construction diagram is shown
in Multimedia Appendix 3.

Table 1. Baseline characteristics.

Validation cohort

N=1,430,772

n (%)

Derivation cohort

N=1,310,363

n (%)

Characteristic

Age (years)

299,893 (20.96)269,355 (20.56)≥65

312,456 (21.83)288,645 (22.03)50-65

172,877 (12.08)163,792 (12.50)40-50

645,546 (45.12)588,571 (44.92)<40

748,867 (52.34)690,714 (52.71)Female

Race

1,194,478 (83.48)1,090,046 (83.19)White

21,770 (1.52)18,233 (1.39)Black

10,677 (0.75)9,082 (0.69)Asia

203,847 (14.25)193,002 (14.73)Othera/unknownb

60,631 (4.24)54,366 (4.15)Diabetes

133,328 (9.32)121,413 (9.27)Hypertension

52,780 (3.69)49,684 (3.79)Heart disease

40,765 (2.85)37,734 (2.88)Obesity

aOther refers to patients labeled as other race, multirace, or mixed.
bUnknown refers to patients labeled as unknown, undetermined, not applicable, or declined to answer.

Baseline Characteristics
The baseline characteristics of patients in derivation and
validation cohorts are shown in Table 1. Both cohorts exhibited
similar patterns of demographics and clinical conditions. The
study involved patients of all ages and was gender balanced. In
both cohorts, elderly patients (age ≥65 years) composed around
21% of the cohort, while young adults (<40 years) made up
around 45% of the total; 18% of patients were pediatric (<18
years). The majority of patients were white. A history of diabetes
or hypertension, 2 well-established risk factors of CKD, was
present in approximately 4% and 9%, respectively, of the
cohorts. Heart disease and obesity were present in almost 4%
and 3%, respectively, in the cohorts.

Feature Selection
There are 14,680 features to profile each patient’s clinical
history in HIE dataset. The literature review identified a total
of 153 clinical features as conventional risk factors of CKD,
including 10 demographic features, 11 socioeconomic
characteristics, 46 diagnostic diseases and conditions, 30
laboratory tests, and 56 medications. In parallel, 399 clinical
features were selected after screening by chi-square test. These
features, plus 184 chronic conditions identified by Clinical
Classifications Software for classifying diagnoses and
procedures into clinically meaningful categories (Healthcare
Cost and Utilization Project, US Agency for Healthcare
Research and Quality), constituted a set of 736 features for
model derivation (Multimedia Appendix 4). The derivation
process identified 146 features with non-zero weight as the final
predictors of the model, including 6 demographic features, 2
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socioeconomic characteristics, 36 diagnostic diseases and
conditions, 17 laboratory tests, 78 medication prescriptions, and
7 utilization variables (Multimedia Appendix 5). The top 50
features and their weights and odds ratios are listed in
Multimedia Appendix 6. The following features played an
important role in the model: age; history of diabetes, renal
diseases, and heart diseases; history of diabetes and blood
pressure medications; and health care resource utilization
including length of stay in the hospital, total number of
medications, and total number of laboratory tests with abnormal
results.

Derivation Phase
We grouped all patients into 3 categories: low risk (score <
0.005), intermediate risk (score 0.005-0.05), and high risk (score
≥ 0.05). Model outcomes in the derivation phase are shown in
Table 2. The model had a c-statistic of 0.916 in the derivation
cohort. Patients diagnosed with CKD in the next 1 year (n=7448)
had a median relative risk of 12.5, meaning that the model
predicted these patients to have a probability of having CKD
12.5 times more than the baseline. Of these patients, 16.22%
(1208/7448) were classified as low risk, 21.17% (1577/7448)
as intermediate risk, and 62.61% (4663/7448) as high risk. The
percentage of CKD cases and relative risk had a monotonic
increase from low-risk (0.10%, 0.017) to high-risk categories
(11.82%, 25.4).

Table 2. Comparison of the model outcome in derivation and validation cohorts.

Validation cohort

N=1,430,772

Derivation cohort

N=1,310,363

Outcome

8299 (0.58)7448 (0.57)Diagnosed with CKDain the next 1 year, n (%)

Risk score model

0.0044 (0.018)0.0050 (0.034)Baseline score, mean (SD)

0.049 (0.0079, 0.092)0.063 (0.013, 0.29)Baseline score for those diagnosed with CKD in the next 1 year, median (1st quartile, 3rd
quartile)

11.1 (1.8, 21.0)12.5 (2.6, 57.3)Relative riskbfor those diagnosed with CKD in the next 1 year, median (1st quartile, 3rd
quartile)

1778/2334/41771208/1577/4663CKD diagnosis by risk category: low/intermediate/high

Percent incidence of CKD diagnosis (95% CI)

0.14 (0-0.45)0.10 (0-0.30)Low (score 0-0.005)

2.10 (1.10-2.90)1.73 (1.15-2.60)Intermediate (score 0.005-0.05)

7.94 (6.50-10.10)11.82 (10.10-13.80)High (score ≥ 0.05)

Relative risk to the population baseline (95% CI)

0.011 (0.0067-0.017)0.017 (0.012-0.023)Low (score 0-0.005)

4.1 (3.9-4.2)3.2 (3.0-3.3)Intermediate (score 0.005-0.05)

18.3 (17.8-19.0)25.4 (23.9-27.2)High (score ≥ 0.05)

aCKD: chronic kidney disease.
aRelative risk of each patient was defined as the ratio of the risk score of the patient to the baseline score (ie, the mean risk score of total population).

Validation Phase
The performance of the model was slightly reduced in the
validation cohort, with a c-statistic of 0.871, but had similar
results (Table 2). The median relative risk of patients diagnosed
with CKD in the next 1 year (n=8299) was 11.1, and 50.33%
(4177/8299) of these patients were labeled as high risk. The
total numbers of low-, intermediate-, and high-risk patients were
1,266,893, 111,195, and 52,594, respectively, 0.14%, 2.10%,
and 7.94%, respectively, of whom had a diagnosis of CKD
within the next 1 year.

The cutoff of the high-risk patients (score ≥ 0.05) gave a
sensitivity of 62.61% (95% CI 61.50%-63.71%) and a specificity
of 97.33% (95% CI 97.30%-97.36%) in the derivation cohort

and sensitivity of 50.33% (95% CI 49.25%-51.41%) and a
specificity of 96.60% (95% CI 96.57%-96.63%) in the validation
cohort. A 2-by-2 contingency table is shown in Multimedia
Appendix 7. A list of sensitivities, specificities, and PPVs as a
function of cutoffs is shown in Multimedia Appendix 8.
Reduction of the specificity from 96.60% to 87.88% will
increase the sensitivity from 50.33% to 80.33%, but it will also
reduce PPV from 7.94% to 3.72%.

As shown in Figure 4, the model had effective discriminatory
power within patient subgroups. C-statistics for patients with
no chronic disease history (741,703/1,430,772, 51.84%), those
aged ≥65 years (280,787/1,430,772, 19.62%), and those <65
years (1,149,985/1,430,772, 80.38%) were 0.804, 0.819, and
0.734, respectively.
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Figure 4. Receiver operating characteristic curves and c-statistics of the model prediction.

Table 3. Clinical patterns of patients by risk categories in the validation cohort.

High risk

N=52,594

Intermediate risk

N=111,195

Low risk

N=1,266,983

Characteristic

79 (71, 85)75 (68, 82)39 (20, 56)Age, years, median (1st quartile, 3rd quartile)

25,710 (48.88)55,717 (50.11)667,440 (52.68)Female, n (%)

Race, n (%)

52,221 (99.29)110,303 (99.20)1,031,954 (81.45)White

195 (0.37)424 (0.38)21,151 (1.67)Black

92 (0.17)253 (0.23)10,332 (0.82)Asian

86 (0.16)215 (0.19)203,546 (16.07)Other/unknown

19,335 (36.76)19,271 (17.33)22,025 (1.74)Diabetes, n (%)

32,794 (62.35)39,564 (35.58)60,970 (4.81)Hypertension, n (%)

19,236 (36.57)16,156 (14.53)17,388 (1.37)Heart disease, n (%)

4771 (9.07)6686 (6.01)29,308 (2.31)Obesity, n (%)

34,183 (64.99)42,096 (37.86)64,974 (5.13)Blood pressure medication, n (%)

15,553 (29.57)17,045 (15.33)26,533 (2.09)Diabetes medication, n (%)

618 (1.18)388 (0.35)575 (0.05)Abnormal diabetes test, n (%)

171 (0.33)90 (0.08)155 (0.01)Abnormal urine albumin-to-creatinine ratio, n (%)

1700 (510, 4530)850 (170, 2455)170 (0, 925)Total costs, median (1st quartile, 3rd quartile)

8 (4, 15)4 (1, 8)1 (0, 3)Outpatient visits, median (1st quartile, 3rd quartile)

32 (7, 75)7 (0, 31)0 (0, 3)Total counts of medications, median (1st quartile, 3rd quartile)

6 (0, 81)0 (0, 29)0 (0, 0)Total counts of laboratory tests, median (1st quartile, 3rd quartile)
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Figure 5. Distribution of false positive patients (top) and false negative patients (bottom) in validation cohort.

Clinical patterns were compared among the low-, intermediate-,
and high-risk categories in the validation cohort (Table 3). There
was a significant difference (P<.001) in age distribution between
low- and high-risk patients: 99.86% (644,610/645,546) of young
adults (age <40 years) were classified as low risk, while 87.80%
(46,175/52,594) of the high-risk patients were ≥65 years of age.
Patients in the high-risk category featured more serious
comorbidities and more resource consumption. Among high-risk
patients, a history of diabetes, hypertension, heart diseases, and
obesity was present in 36.76%, 62.35%, 36.57%, and 9.07%,
respectively, much higher than in the overall cohort (4.24%,
9.32%, 3.69%, and 2.85%). High-risk patients also utilized the
largest amount of resources in terms of total number of
outpatient visits (median 8), medications (median 32), and
laboratory tests (median 6) over the last 1 year, resulting in the
highest annual costs (median $1700) among all 3 risk categories.
The model tends to aggregate heavy users of health care
resources and those with traditional risk factors of CKD (age,
diabetes, and hypertension) into the high-risk category.

False Positives and False Negatives
The distribution of false positives and false negatives in the
validation cohort is shown in Figure 5. Of false positives,
89.53% (43,346/48,417) were patients ≥65 years of age; 8.45%
(4092/48,417) were <65 years but with diagnosis of hypertension
and/or diabetes; 0.55% (265/48,417) did not have diabetes or

hypertension but had kidney disorders, heart diseases, or obesity;
and 1.25% (603/48,417) were prescribed medications for
diabetes or hypertension. Of the other 111 false positive patients,
110 had at least 1 medication prescription or 1 abnormal
laboratory test result during the preceding year. Conversely,
there were 4122 false negatives, patients with CKD in next 1
year who were missed by the model. Among these, 38.50%
(1587/4122) were <65 years of age, 37.99% (1566/4122) were
≥65 years old but had no history of diabetes or hypertension,
and 23.12% (953/4122) had diabetes or hypertension but no
kidney disorder.

Temporal Analysis
Kaplan-Meier analysis was performed to estimate freedom from
a new CKD diagnosis for patients in the 3 risk categories in the
validation cohort (Figure 6). Significant differences (P<.001)
were demonstrated between the risk categories.

Among high-risk patients in the validation cohort, 4177/52,594
received a new CKD diagnosis within the next 1 year. Figure
7 shows the distribution of the time intervals from the time point
when a patient was identified as high risk by the model and the
time point when the patient was assigned an ICD-9-CM CKD
diagnosis code. Nearly half (48.24%) of the CKD cases were
marked as high risk 6 months or more prior to assignment of a
diagnosis code (ie, confirmatory diagnosis was made by
physician).
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Figure 6. Kaplan-Meier progression to chronic kidney disease for patients in low-, intermediate-, and high-risk categories of validation cohort.

Figure 7. Distribution of high-risk patients in the validation cohort by time intervals between the model identification and coded chronic kidney disease
diagnosis by International Classification of Disease, Ninth Revision, Clinical Modification.

Discussion

Principal Findings
We have derived and validated a risk model predictive of
incident CKD diagnosis within the next 1 year across 1.3 million
patients in the state of Maine. Through machine learning from
preceding 1-year clinical profiles that were recorded in EMR
databases, patients were classified into 3 risk categories (low,
intermediate, and high risk), indicating the stratified probabilities
of receiving CKD-related ICD-9-CM codes in the next 1 year.
The model had similar performance in the derivation phase
(c-statistic of 0.916) and validation phase (c-statistic of 0.871).
Compared with other simplified score metrics [19,21,33], the
model uses more predictors, giving a better result in
classification (Multimedia Appendix 9). Performance of the
model in subcohorts, especially those considered low risk by
traditional risk factors (ie, age <65 years, no history of chronic
disease) was fairly good (c-statistics 0.734 and 0.804,
respectively), showing predictive power in patients with low
awareness of CKD that traditional models tend to ignore. Model

outcomes (Table 2) and survival analysis (Figure 6) both showed
the model to provide reasonable risk stratification.

We applied a 2-step feature reduction process; 736 features
survived after the first step (filtered by P<.05 plus literature
review), and 146 features survived after the second step (filtered
by non-zero weight in algorithm). Features having smaller P
value in the chi-squared screening might not have larger weight
in the algorithm due to the different mechanisms of establishing
the relationship between the outcome and the features in the 2
steps of feature reduction. With this consideration, we set up
P<.05 as a threshold to enable more features that might
contribute to the modeling to go into the next step.

Results of misclassification analysis (Figure 5) show that
97.98% of false positives were patients who were ≥65 years of
age or had a history of diabetes or hypertension. These patients,
although they did not receive a CKD diagnosis within the next
1 year, were still considered at higher risk for developing CKD
or other adverse outcomes than the general population.
Monitoring these patients would help identify signs of CKD at
an early stage and may benefit their long-term outcomes. Among
false negatives, 99.61% were patients who lacked one or more
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major risk factor (eg, patients <65 years old or without a history
of diabetes, hypertension, or kidney disorders), causing the
model to identify them as low or intermediate risk.

Our model identified patients in other or unknown race
categories as less likely to get CKD. The percentages of patients
in the other race category were 16.07% (203,546/1,266,983) in
the low-risk category and 0.16% (86/52,594) in the high-risk
category in the validation cohort. Most patients (90.13%,
183,723/203,847) in the other or unknown race category actually
had an unknown race marked in the dataset. It perhaps indicated
a data quality issue that the race information was probably
missing. Compared to the total studied population, patients in
the unknown race category had a much lower rates of history
of diabetes (0.16% vs 4.24%) and hypertension (0.38% vs
9.32%), and fewer outpatient visits (5.59% vs 56.04%). Lack
of risk factors of CKD made the majority of these patients
stratified to the low-risk group. However, such results didn’t
mean these patients were healthier than the average level of the
total population. As described in the Multimedia Appendix 2,
for a patient who didn’t have any EMR, it is hard to tell whether
this patient was healthy thus had never used care service or this
patient did use care service but the records were missing. Such
limitation was caused by the EMR storage format.

A main challenge of this study was that actual values of
estimated glomerular filtration rate (eGFR) and
albumin-to-creatinine ratio (ACR), the 2 parameters used to
determine CKD stage [34,35], were not available in our data
source. The total counts of abnormal creatinine blood test results
and ACR over the preceding 1-year period were used instead.
Moreover, as it was a study on the general population, most of
the participants did not have abnormal test results related to
eGFR or ACR. Therefore, unlike other studies in which eGFR
and ACR played critical roles in CKD prediction, these
parameters were not selected as top features by the model
proposed in this study. The model, however, had performance
comparable to studies using exact values of eGFR and ACR as
predictors [21,22], indicating that CKD incidence can be
predicted without knowledge of eGFR or ACR. These results
support the potential value of EMR- or claims-based
retrospective studies in which actual laboratory test results tend
to be missing due to data quality issues or data sharing policies.
An analysis of Medicare patients showed that even among
patients older than 65 years, a group at high risk for CKD, less
than 80% of patients had claims indicating serum creatinine
testing and less than 20% had urine albumin testing [3].
Development and validation of a CKD risk model within a
general population in which eGFR and ACR are frequently
absent is extremely useful for its applicability in clinical practice
as a routinely used assistant tool. It makes our model an
economically feasible method for general population screening
because it eliminates the time and costs of collecting eGFR and
ACR during traditional screening tests of CKD [36-38]. A
prescreening on general population using the proposed model
followed by tests of urine albumin and serum creatinine on
high-risk patients forms a cost-effective approach to identify
risks of CKD.

Another challenge was that this study targeted prediction of
CKD incidence within the next 1 year, which is a short time

horizon compared with other studies of CKD prediction in which
the follow-up periods were several years [21-23]. Such a short
time frame resulted in a low incidence (0.57% in the derivation
cohort and 0.58% in validation cohort), which increased the
difficulty of prediction. The complex model with multiple
predictors allowed identification of a group of patients with a
high 1-year incidence of CKD (derivation phase 11.82%, 20.7
times higher than the baseline; validation phase 7.94%, 13.7
times higher than the baseline). These patients were labeled as
high risk and are good targets for administration and intervention
plans. Traditional risk factors (age, history of diabetes and
hypertension) identified a group of patients with a 1-year
incidence of 1.95% in the derivation phase and 1.97% in the
validation phase, only about 3 times higher than the baseline.

Interpretation of Predictors
The feature selection process that combined both data-driven
methodology and domain knowledge resulted in a list of
predictors composing the predictive algorithm (Multimedia
Appendix 5). Traditional risk factors of CKD remained highly
important. Age and the use of furosemide were 2 predictors of
top importance. This observation makes sense, as age is
considered a common risk factor of CKD, while furosemide is
a medication used in patients with congestive heart disease,
kidney disorders, and high blood pressure, all of which are
correlated with CKD. The link between cardiovascular diseases
and CKD has been reported in many studies, and the role of
cardiovascular diseases in the development and progression of
CKD was found [39,40]. CKD was found in over half of patients
with heart failure [41]. CKD and cardiovascular diseases share
common risk factors, and a bidirectional pathway was noticed
between the progression of cardiovascular disease and CKD
[39]. Medical history of furosemide, which is commonly used
to treat congestive heart failure, therefore may indicate a risk
of CKD initiation. What’s more, furosemide is a commonly
used preventive and therapeutic drug for acute kidney injury
(AKI) [42]. The benefits of furosemide in reducing hypertension
and improving eGFR show its potential role in reducing the risk
of AKI. Compared with other diuretics for kidney diseases such
as bumetanide, hydrochlorothiazide, and spironolactone that
were predictors of our model, furosemide is more powerful and
less expensive. The biological link between AKI and CKD has
been established, and AKI is considered as an independent risk
factor of CKD.

In addition, the model identified a group of previously
prescribed medications as predictors, primarily drugs for
diabetes (insulin glargine, insulin isophane, glipizide, insulin
fetemir, etc.), blood pressure control (hydralazine, amlodipine
besylate, metoprolol tartrate, etc.), heart diseases (isosorbide
mononitrate, valsartan, amiodarone, etc.), and kidney disorders
(allopurinol). Such medication histories indicate patients either
at risk for or living with diseases that might lead to CKD.
Prescriptions for medications used for inflammatory processes
(prednisone and colchicine), bone disease (febuxostat), anemia
(folic acid), and hypokalemia (potassium chloride) were also
identified as predictors, illustrating their contribution to the
disease network. Abnormal results of metabolic panel, glucose
test, coagulation test, and therapeutic drug monitoring were
predictors in the laboratory test category, which indicates disease
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states such as diabetes. History of hypertension, renal disorders,
heart diseases, anemia, and diabetes were top important
diagnostic features that were highly correlated to CKD.

In addition to the clinical features, variables indicative of high
resource consumption (eg, health care costs, total counts of
medications, laboratory and radiology tests, outpatient visits,
and inpatient length of stay) were also considered risk factors
by the model. This pattern identifies heavy users of health care
services (eg, older patients or patients with multiple chronic
morbidities) to have a higher probability of developing CKD,
which makes sense as CKD has been considered as a
complication of complex chronic diseases that are associated
with large health resource expenditures [3].

In all, senior patients and heavy users of care resources with
chronic conditions like diabetes and hypertension that are highly
correlated to CKD tend to be classified as high risk for incident
CKD by the model.

Beyond Risk Estimation
Several previous studies have reported the development and
validation of CKD risk scores. The predictors, modeling process,
validation, and accuracy of the scores were well presented, but
little effort was made to translate the risk scores to patient care
action plans. Those studies addressed whether the risk of CKD
onset or progression can be predicted but did not address what
actions should be taken for high-risk patients [43]. The
widespread application of EMR in the state of Maine has
enabled us to develop risk scores for the Maine residents
[27,28,44-46] in terms of future resource utilization and clinical
conditions. The meaningful use of EMR data, however, is not
only to forecast the health status in the future but also to guide
the health care providers to make decisions in the present. There
are already established guidelines in CKD preventive care to
address both nonmodifiable and modifiable risk factors. For
example, CKD screening is recommended on a regular basis
for patients with nonmodifiable risk factors (eg, older patients)
to identify CKD at an early stage.

For patients with modifiable risk factors such as concurrent
chronic conditions, life styles, and medications, there are quite
a few targeted intervention options to reduce the risk. Nutritional
treatments such as a low-protein diet together with sufficient
and regular exercise should be initiated on patients with obesity,
hypertension, or diabetes to prevent or slow CKD progression
[47,48]. Medications that may reduce renal function or cause
complications, such as angiotensin-converting enzyme and
nonsteroidal anti-inflammatory drugs, should be prescribed with
careful consideration and monitoring plans if necessary [49,50].
Advice to stop smoking and limit alcohol should be given to
smokers and alcohol users to improve overall health and reduce
the risk of CKD [51,52] for those individuals. The modifiable
risk factors are even more important than nonmodifiable
predictors as they offer an opportunity to both clinicians and
patients to be proactive to the disease by implementing
interventions before deterioration.

In all, a combination of a single scalar score and longitudinal
clinical profile including chronic disease history, current
problem list, and therapies and medications will help clinicians

develop a personalized action plan with modifiable risk factors
for each high-risk individual. It is the subsequent actions rather
than an isolated risk score that help improve health status,
outcomes, and resource utilization [53]. The ultimate goal of
this study is to confirm, modify, or disapprove care plans based
on the risk prediction outcomes, leading to improved quality of
care. Obtaining a risk score is not the end of the study but the
first step of translating predictive analytics into prescriptive
solutions, a proactive approach to prevent or delay deterioration
in health.

Implications for Treatment and Prognosis
A chart showing time intervals between identification of
high-risk patients and receiving a CKD diagnosis code in Figure
7 reveals clinical implications for treatment and prognosis of
CKD. Certain interventions at an early stage can reduce the risk
of developing CKD or progression to end-stage disease. For
example, clinical trials showed that patients receiving blood
pressure control treatment had significantly reduced proteinuria
within the first 4 months compared with those had no blood
pressure control, suggesting a reduced risk of CKD development
and progression [54,55]. A meta-analysis reported that lifestyle
modifications for 3 months decreased the risk for diabetes from
the end of intervention up to 10 years later [56], which in turn
correlated to attenuated risk of developing CKD, as diabetes
has been recognized as an important predisposing factor for
CKD.

In our validation cohort, the model identified 72.90%
(3045/4177) of high-risk patients at least 3 months before the
confirmatory diagnosis was made by physicians. Of those
patients, 41.02% (1249/3045) had diabetes or an abnormal
glucose test result at the time they were identified by the model
to be at high risk for CKD. Implementation of lifestyle
modifications at that time has the potential to mitigate adverse
outcomes in those patients. Moreover, 64.59% (2698/4177) of
high-risk patients were identified by the model at least 4 months
prior to confirmatory diagnosis, and 9.82% (265/2698) of those
patients were not taking any blood pressure medication and did
not have a diagnosis of hypertension. Blood pressure monitoring
and necessary control in these patients can help to reduce the
risk of CKD. Such explorations highlight potential meaningful
use of the model in clinical practice, in that it can help to initiate
decision making and timely intervention.

The predictive model and risk scores can benefit health care
organizations at multiple levels. For health care managers who
take charge of the population management at the whole
department or hospital, the population stratification by risk
scores will help with budget planning, as high-risk patients tend
to require more resources. For physicians, the model can be
used as an assistant tool for decision making. High-risk patients
without eGFR or ACR parameters available can be referred to
the CKD screening test to decide whether or not the patients
have CKD already. The risk stratification will also give
physicians ideas of treating patients at high risk of CKD for
other concurrent clinical problems, especially in the situation
where the current medical or surgical treatments can help with
the existing problems but accelerate CKD progression in
patients. Clinicians can also drill down to see what information
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is driving the risk scores, which provides the clinical background
they need to trust and act on the risk scores.

Study Limitations
There are several limitations of this study. First, uncoded CKD
cases could be outliers of the model and affect accuracy. Patients
with undiagnosed CKD might not be excluded from the study
cohort. Computed false positives from undiagnosed CKD
patients missing diagnosis codes are actually true positives,
especially for those who were over age 65 years. eGFRs of older
patients tend to be lower and thus may further complicate the
diagnosis. Patients who were waiting a random urine test for
confirmative diagnosis but didn’t have an ICD-9-CM code
assigned during the study period could confound the model as
well. Maine HIE went live in 2009, so patients with CKD
diagnosed before 2009 might not be documented in the EMR
database. These patients could be treated as false positives
during the performance evaluation. Second, there might be a
delay of the assignment of an ICD-9-CM code that was longer
than the transition of kidney function from a normal state to a
disease state. It might explain why the incidence rate
(0.568%-0.580%) in our study cohort was higher than reported
by other studies [57,58], as some of the patients who received
an ICD-9-CM code might already have undiagnosed stage 1 to
2 CKD. Assignment of an ICD-9-CM code doesn’t always mean
a new case showing up. Another possible reason for the high
incidence was that the study cohort had a slight age bias (20.96%
in the validation cohort vs 15.64% in the overall population in
Maine for percentage of patients at 65 years and over), and age
is an independent risk factor of CKD. Third, unlike other CKD
risk models, our model does not include exact values of eGFR
or ACR as predictors due to lack of such data, and it is possible
that including eGFR could further improve the model
performance. Fourth, all laboratory test variables were labeled

as either normal or abnormal in the data source. A detailed
classification of laboratory test results would help to construct
a deeper understanding of clinical conditions of patients and
enhance model performance. Fifth, due to the nature of EMR
storage format, we cannot differentiate the situation where a
particular medical record was missing, although it would happen
at a very low probability. Sixth, the cutoff point (score ≥ 0.05)
for high-risk categories was selected to optimize the PPV with
a fair value of sensitivity. In the production dashboard we
deployed at the Maine HIE, there is an option to allow each
provider user to set up its own cutoffs on our real-time
population health care surveillance platform. Seventh, all the
study participants were from the state of Maine, and
recalibration as well as other necessary adjustments would be
needed before leveraging the model to health care management
for populations in other states. Geographical, environmental,
and racial disparities may contribute to population
characteristics, and additional risk factors should be considered
if necessary.

Conclusions
A risk model that estimated the probability of receiving CKD
diagnosis within the next 1 year was developed and validated
in this study. Through the statistical learning of the EMRs of
over 1.3 million patients in the state of Maine, the model was
able to assign each individual a risk score based on the preceding
1-year clinical history. The whole population was stratified into
3 risk categories according to the score, where the high-risk
category had a CKD incidence 13.7 times higher than the
baseline. A c-statistic of 0.871 was achieved in the validation
phase. Identification of patients at high risk of receiving CKD
diagnosis will help to promote care plans of monitoring and
intervention, which will ultimately benefit the outcomes of
patients.
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