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Abstract

Background: Physicians and health policy makers are required to make predictions during their decision making in various
medical problems. Many advances have been made in predictive modeling toward outcome prediction, but these innovations
target an average patient and are insufficiently adjustable for individual patients. One developing idea in this field is individualized
predictive analytics based on patient similarity. The goal of this approach is to identify patients who are similar to an index patient
and derive insights from the records of similar patients to provide personalized predictions..

Objective: The aim is to summarize and review published studies describing computer-based approaches for predicting patients’
future health status based on health data and patient similarity, identify gaps, and provide a starting point for related future
research.

Methods: The method involved (1) conducting the review by performing automated searches in Scopus, PubMed, and ISI Web
of Science, selecting relevant studies by first screening titles and abstracts then analyzing full-texts, and (2) documenting by
extracting publication details and information on context, predictors, missing data, modeling algorithm, outcome, and evaluation
methods into a matrix table, synthesizing data, and reporting results.

Results: After duplicate removal, 1339 articles were screened in abstracts and titles and 67 were selected for full-text review.
In total, 22 articles met the inclusion criteria. Within included articles, hospitals were the main source of data (n=10). Cardiovascular
disease (n=7) and diabetes (n=4) were the dominant patient diseases. Most studies (n=18) used neighborhood-based approaches
in devising prediction models. Two studies showed that patient similarity-based modeling outperformed population-based
predictive methods.

Conclusions: Interest in patient similarity-based predictive modeling for diagnosis and prognosis has been growing. In addition
to raw/coded health data, wavelet transform and term frequency-inverse document frequency methods were employed to extract
predictors. Selecting predictors with potential to highlight special cases and defining new patient similarity metrics were among
the gaps identified in the existing literature that provide starting points for future work. Patient status prediction models based
on patient similarity and health data offer exciting potential for personalizing and ultimately improving health care, leading to
better patient outcomes.

(JMIR Med Inform 2017;5(1):e7) doi: 10.2196/medinform.6730
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Introduction

Medicine is largely reactive—a disease is treated only after it
is observed [1]. However, a move toward proactive medicine
has been initiated by advances in technologies for analyzing
the nature of a disease or estimating individual susceptibility
to disease [2]. Moreover, a sharp increase in electronic health
record (EHR) adoption has facilitated the move toward proactive
medicine, which will hopefully lead to improved care and better
patient outcomes. However, it is challenging for clinicians to
examine and derive insights from multidimensional, large-scale
EHR data. One pathway to proactive medicine employs
predictive analytics to accurately derive insights from EHR data
to predict disease progression. Predictive analytics, by
employing EHRs, can also lead to personalized decision making
based on the unique characteristics of a given patient [3].

Many studies have analyzed large populations to answer a wide
range of health-related questions, including the study that
developed Acute Physiology and Chronic Health Evaluation II
(APACHE-II) [4]. These studies often provide statistically
rigorous results for an average patient but are also expensive,
time-consuming, and prone to selection bias [1]. Moreover, one
of the major challenges for population-based studies is
comorbidity, which limits generalizing a study to many patients
[5,6]. Typically, these studies provide “the average best choice”
[3]. Therefore, physicians cannot solely rely on the evidence
from such population-based studies when facing a patient with
conditions that deviate from the average.

One developing idea in this field is personalized predictive
modeling based on patient similarity. The goal of this approach
is to identify patients who are similar to an index patient and
derive insights from the records of similar patients to provide
personalized predictions. Employing patient similarity helps
identify a precision cohort for an index patient, which will then
be used to train a personalized model. Compared to conventional
models trained on all patients, this approach has the potential
to provide customized prediction. This approach has been widely
used for personalized predictions in other fields, including music
[7], movies [8], and sales pricing [9], and is referred to as
collaborative filtering [10]. It can potentially be employed to
manage a real-world patient with a complex health status and
comorbidity profile. Patient similarity analytics also has the
potential to assess the similarity between an index patient and
trial population in conventional studies and help clinicians
choose the most appropriate clinical trial [11].

Although the concept of patient similarity is not new—blood
typing has been used for blood transfusion for more than a
century [12]—advanced application of patient similarity is
missing in the new era of data-driven medicine. The online
PatientsLikeMe website provides a patient-reported database,
where an index patient can find a cohort of similar patients and
explore their data including symptoms, treatments, and tests
[13]. Although PatientsLikeMe received the Drug Information
Association 2014 President’s Award for Outstanding
Achievements in World Health, the full potential of patient
similarity, especially in predictive modeling, has not been
uncovered. Although there have been some attempts to embed

patient similarity in health predictive modeling, a comprehensive
picture of patient health predictive analytics based on health
data (including EHRs) and patient similarity is lacking in the
literature. The objectives of this paper are to provide an analysis
and summary of the studies on patient health prediction models
based on health data and patient similarity, identify any gaps
in this area, and suggest ideas for future work. Overall, this
review aims to address the following three research questions:

In which context (applications) have patient health prediction
models based on health data and patient similarity been used?

Which modeling techniques have been considered in the
literature?

How do patient similarity-based models affect health predictions
in comparison to conventional models?

We hope the results could also contribute to the broad field of
case-based reasoning (CBR)—with the core component of
similarity assessment—to meet the challenges in medical
applications [14].

Methods

A systematic search approach in line with guidelines of
Kitchenham et al [15] was taken to review and analyze the
literature on patient similarity in health prediction models based
on health data. However, this paper does not aim to report the
performance of particular models and identify the best model
because various health data types and performance measures
are possible.

Inclusion and Exclusion Criteria
Studies included in this review had to be journal articles or
conference proceedings written in English. They had to focus
on prediction in the health domain, devise a model for
prediction, embed explicit patient similarity analytics, and utilize
health data for training their model. Studies were excluded if
(1) they entirely relied on human input for predictions or
similarity assessment, (2) the model was tested on seen
data—the part of the data used for training the algorithm, and
(3) the algorithm was trained using only genomic data. If the
same study appeared in multiple publications, only the most
comprehensive and latest version was included.

Paper Selection
The literature search was finalized in December 2015. Scopus,
PubMed, and ISI Web of Science, all databases covering
health-related publications, were searched for peer-reviewed
studies with keywords related to “prediction,” “health data,”
and “patient similarity.” The search strings used in each of these
search engines are given in Multimedia Appendix 1. After
removal of duplicates, the title and abstract of each identified
article were screened. The remaining articles were further
examined in full text to finalize the set of included articles.

Data Extraction and Analysis
Data from included articles were extracted into a matrix table
and analyzed with respect to the following criterion: publication
information, context, predictors (or features), missing data,
modeling algorithms, performance measures, and outcomes.
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The context was further examined from two points of view:
data source and application area. The employed patient
similarity-based modeling algorithms were also synthesized in
three categories: neighborhood-based, clustering-based, and
other algorithms, with the majority falling in the first category.
Because measuring predictive performance is essential to model
development (model selection/model tuning)—and can also be
used to compare a given model with other methods (performance

estimation)—evaluation metrics along with validation techniques
used in the reviewed studies were also extracted.

Results

A total of 22 articles were included in the review (Figure 1).
Tables 1 and 2 summarize the data extracted from input
data/predictors and outcome perspectives, respectively.
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Table 1. Summary of the reviewed articles in terms of data type, data origin, number of predictors, and number of instances (N=22).

Instances, ncPredictors, nbData originaData typeAuthors

Cross-sectional

78855NRCross-sectionalJurisica et al [16]

51140The Gastroenterological Clinic of the Institute of Food and
Feeding in Warsaw [18]—a database consisting of hepatological
patient data

Cross-sectionalBobrowski [17]

35035UCI repository [20]-DermatologyCross-sectionalPark et al [19]

27013UCI repository [20]-Heart Disease: Cleveland Clinic;Cross-sectional

56031UCI repository[20]-Breast Cancer Wisconsin: University of
Wisconsin Hospital and Clinics

Cross-sectional

7608UCI repository[20]-Pima Indians Diabetes: NRCross-sectional

3407UCI repository[20]-Liver Disorders: BUPA Medical ResearchCross-sectional

37750MIMIC-II [22]-The Multiparameter Intelligent Monitoring in
Intensive Care at Boston’s Beth Israel Deaconess Medical
Center

LongitudinalSaeed et al [21]

5015Hospital-history of suicidal attempts and committed suicides
collected from hospital records

Cross-sectionalChattopadhyay et al [23]

7450MIMIC-II [22]-The Multiparameter Intelligent Monitoring in
Intensive Care at Boston’s Beth Israel Deaconess Medical
Center

LongitudinalSun et al [24]

150010MIMIC-II [22]-The Multiparameter Intelligent Monitoring in
Intensive Care at Boston’s Beth Israel Deaconess Medical
Center

LongitudinalSun et al [25]

4900NRLaboratory results generated by two Beckman-Coulter Gen-S
analyzers at an acute care facility in Brooklyn

Cross-sectionalDavid et al [26]

148655A dataset focused on palliative care for cancer patientsCross-sectionalHoueland [27]

56031UCI repository [20]-Breast Cancer Wisconsin: University of
Wisconsin Hospital and Clinics

Cross-sectionalWang et al [28]

7608UCI repository [20]-Pima Indians diabetesCross-sectional

135KNRA real-world EHR data warehouse of a health network consist-
ing of data from 135K patients over a year

Cross-sectional

39462388A real-world EHR data warehouse of a health network consist-
ing of data from 135K patients over a year

Cross-sectionalWang et al [29]

113719French Renal Epidemiology and Information Network (REIN)
registry [31]

Cross-sectionalCampillo-Gimenez et al
[30]

997416Hospital dataset-Stanford Medical Center, USACross-sectional and
longitudinal

Gottlieb et al [32]

551316Hospital dataset-Rabin Medical Center, IsraelCross-sectional and
longitudinal

51,08813A dataset by the United States Renal Data System (USRDS)
consisting of all kidney transplant procedures from 1969 to
1999

Cross-sectionalLowsky et al [33]

57865/57The Study of Health in Pomerania (SHIP) [35]-a dataset consist-
ing of a comprehensive examination program including but not
limited to ultrasound tests and laboratory analysis

Cross-sectionalHielscher et al [34]

1219NRA 3-year longitudinal EHR data of 110,157 patientsLongitudinalZhang et al [36]

41NRmyHeart home telemonitoring study [38]-daily physiological
records including blood pressure, respiration rate, heart rate,
and body weight

LongitudinalHenriques et al [37]

17,15276MIMIC-II [22]-The Multiparameter Intelligent Monitoring in
Intensive Care at Boston’s Beth Israel Deaconess Medical
Center

Cross-sectional and
longitudinal

Lee et al [39]
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Instances, ncPredictors, nbData originaData typeAuthors

Cross-sectional

150388500A longitudinal medical claims database consisting of data from
over 300,000 patients during four years

Cross-sectional and
longitudinal

Ng et al [40]

138633The Mayo ClinicCross-sectionalPanahiazar et al [41]

56031UCI repository [20]-Breast Cancer Wisconsin: University of
Wisconsin Hospital and Clinics

Cross-sectionalWang [42]

7608UCI repository[20]-Pima Indians diabetesCross-sectional

135KNRA real-world EHR data warehouseCross-sectional

3946127A real-world EHR data warehouseCross-sectionalWang et al [43]

a NR: not reported.
b Predictors: the total number of predictors.
c Instances: the total number of data points used in each study including the training and test.
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Table 2. Summary of reviewed articles in terms of outcome, evaluation metrics, and comparing methods (N=22).

Compared againstcEvaluation metricsbOutcomeaAuthors

NRAccuracySuggesting hormonal therapy (day of human chorionic go-
nadotrophin administration and the number of ampoules of human

Jurisica et al [16]

menopausal gonadotrophin) after in vitro fertilization and predict-
ing pregnancy outcome (pregnancy, abortion, ectopic pregnancy,
and ovarian hyperstimulation syndrome)

Classic k-NN (k=10)AccuracyFour types of liver disease (cirrhosis hepatis biliaris primaria,
cirrhosis hepatis decompensata, hepatitis chronica activa, and
hepatitis chronica steatosis)

Bobrowski [17]

LR; C5.0; CART; neural net-
work; conventional CBR (k=5)
with five neighbors

Accuracy; sensitivity;
specificity

(1) Six types of dermatology diseases (psoriasis, seborrheic der-
matitis, lichen planus, pityriasis rosea, chronic dermatitis, pityri-
asis rubra pilaris); (2) diagnosis of heart disease (angiographic
disease status); (3) diagnosis of a breast tumor as malignant or
benign; (4) diagnosis of diabetes; (5) diagnosis of liver disorder

Park et al [19]

NRSensitivity; positive pre-
dictive value

Hemodynamic stability or instability of an episodeSaeed et al [21]

NRNRSuicidal risk levels (level 1: suicidal plans or thoughts; level 2:
single suicidal attempt; level 3: multiple suicidal attempts)

Chattopadhyay et al
[23]

Human expert’s idea based on
the Euclidean [44]; k-NN over

AccuracyOccurrence of acute hypotensive episode within the forecast
window of an hour

Sun et al [24]

low-dimensional space after
applying PCA

Human expert’s idea based on
the Euclidean [44]; k-NN over

AccuracyOccurrence of acute hypotensive episode within the forecast
window of an hour

Sun et al [25]

low-dimensional space after
applying PCA

Human expert’s ideaAccuracySeven disease diagnoses (microcytic anemia, normocytic anemia,
mild SIRS, thrombocytopenia, leukocytopenia, moderate/severe
SIRS, normal)

David et al [26]

Random retrieval; k-NN (k=1)
with the Euclidian distance;
random forest

Error rate (1-accuracy).Pain levelsHoueland [27]

PCA; LDA [45]; LSDA [45];
LSML [24]

Accuracy; sensitivity;
precision; F-measure

(1) Diagnosis of a breast tumor as malignant or benign; (2) diag-
nosis of diabetes; (3) diagnosis of dementia without complications
(HCC352) or diabetes with no or unspecified complications
(HCC019)

Wang et al [28]

LLE; LE; PCA; Euclidean dis-
tance.

Accuracy; sensitivity;
precision; F-measure

Diagnosis of CHF 6 months laterWang et al [29]

k-NN; LR; k-NN with weighted
predictors; k-NN with weighted
patients

ROC curveRegistration on the renal transplant waiting list: yes/noCampillo-Gimenez
et al [30]

NRROC curve; F-measurePatient discharge diagnosis ICD codesGottlieb et al [32]

Cox model; RSF [46]IPECGraft survival probabilityLowsky et al [33]

Multiple variants of the k-NN:
majority voting; weighted vot-

Accuracy; sensitivity;
specificity

Three levels of liver fat concentration measured by magnetic
resonance tomography: (1) fat concentration <10%; (2) fat con-
centration of 10%-25%; (3) fat concentration ≥25%

Hielscher et al [34]

ing; with/without predictor se-
lection

Patient similarity; patient simi-
larity with drug structure simi-

ROC curveFour effective drugs for hypercholesterolemia treatment: atorvas-
tatin, lovastatin, pravastatin, and simvastatin

Zhang et al [36]

larity; patient similarity with
drug target similarity

Coefficients’ distance; linear
correlation of signals; Eu-
clidean distance

Sensitivity; specificity;
F-measure; G-measure

Early detection of heart failure: decompensation or normal con-
dition

Henriques et al [37]

Population-based and personal-
ized versions of: majority vote;
LR; DT

Area under ROC curve;
area under precision-re-
call curve

30-day in-hospital mortalityLee et al [39]
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Compared againstcEvaluation metricsbOutcomeaAuthors

Global LR; k-NN; patient simi-
larity-based LR with Euclidean
distance

ROC curveThe risk of diabetes disease onsetNg et al [40]

K-means; hierarchical cluster-
ing

Sensitivity; specificity;
F-measure; accuracy

Medication plans for heart-failure patients (angiotensin-converting
enzyme, angiotensin receptor blockers, β-adrenoceptor antago-
nists, statins, and calcium channel blocker)

Panahiazar et al [41]

kd-tree; PCA- kd-tree; ball-tree;
spectral-tree.

Precision; F-measure;
sensitivity; accuracy

(1) Diagnosis of a breast tumor as malignant or benign; (2) diag-
nosis of diabetes; (3) occurrence of CHF within 6 months

Wang [42]

PCA; Laplacian regularized
metric learning [47]; LLE [48];
LSR; LSML [24]

Precision; F-measure;
sensitivity; accuracy

Occurrence of CHF within 6 monthsWang et al [43]

a CHF: congestive heart failure; ICD: International Classification of Diseases.
b IPEC: integrated prediction error curve ; NR: not reported; ROC: receiver operating characteristic: SIRS: systemic inflammatory response syndrome.
c CART: classification and regression tree; CBR: case-based reasoning; DT: decision tree; k-NN: k- nearest neighbor; kd-tree: k dimensional tree; LDA:
linear discriminant analysis; LE: Laplacian embedding; LLE: locally linear embedding; LR: logistic regression; LSDA: locality sensitive discriminant
analysis; LSML: locally supervised metric learning; LSR: local spline regression; NR: not reported; PCA: principal component analysis; RSF: random
survival forest.
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Figure 1. Flow diagram of article selection procedure.

Publication Information
The level of interest could be gauged by the increase in
publication on this topic in recent years (Figure 2). Fifteen

studies of 22 were journal publications
[16,17,19,21,23,25,26,30,32,33,36,37,39,40,42,43] and seven
were conference articles [24,27-29,34,41].
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Figure 2. Distribution of publications by year.

The Context
Although a considerable number of articles did not clearly state
the source of data—some articles used more than one
dataset—hospitals were named (10/22); within hospitals,
intensive care units (ICUs) were the main sources of data (5/10).

In addition, one study [19] used data from a research center and
another study [37] utilized telemonitoring data, also known as
wearable-based remote patient monitoring data. From the
application area perspective, chronic diseases were the most
prevalent context. For detailed distributions, refer to Figure 3.
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Figure 3. Focused application areas of studies. Some studies featured more than a single application area and were counted more than once.

The Predictors
Raw health data can be in various formats, including
narrative/textual data (eg, history of a present illness), numerical
measurements (eg, laboratory results, vital signs, and
measurements), recorded signals (eg, electrocardiograms), and
pictures (eg, radiologic images). Numerical measurements and
recorded signals were the format used most in the reviewed
articles. Three main approaches were used for extracting
predictors from raw health data. First, for some variables,
including age and gender, the exact/coded value was used as a
predictor. Second, in articles employing recorded signals and/or
longitudinal numerical measurements, numeric variables,
including wavelet coefficients, minimums, maximums, means,
and variances, were extracted from within particular time
windows [24,25,37,39,41]. Third, three studies [21,29,43]
employed the term frequency-inverse document frequency
(TF-IDF) technique from text mining to produce predictors for
their model.

Although predictor extraction affects the performance of the
model [24], one of the challenging tasks in patient
similarity-based predictive modeling is identifying the most
relevant and important patient characteristics for patient

similarity assessment. Patient similarity assessment is generally
defined as investigating the similarity of patients’ data in terms
of their symptoms, comorbidities, demographics, and treatments,
but there is no predefined list of predictors to be considered.
Most of the studies proposed an arbitrary list of predictors or
limited their work to the available predictors, but selected
predictors must be representative of patient’s condition in each
particular application. Two studies [26,30] employed weighting
schemes to adjust the importance of the predictors based on the
outcome. One study [34] showed that predictors selected by a
correlation-based feature algorithm could vary according to
gender. Although feature selection methods can help with
predictor selection, selected predictors may not be the most
appropriate ones for each individual patient because they are
derived from general analysis of the population. One study [40]
showed that a group of similar patients has a similar set of
predictors, but the predictors’ importance was different between
individuals. Two studies [29,43] suggested utilizing expert
knowledge on the similarity of cases to implicitly consider
case-specific predictors. One study [16] proposed a
context-based similarity metric in which an expert determined
a set of predictors and their allowable values for patient
similarity assessment.
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Missing Data
One common challenge in using health data in predictive
analytics is missing data. Most of the modeling techniques
cannot handle an incomplete data matrix. Nevertheless, all
studies that mentioned this challenge [19,23,25,30,32,39,41],
except for two [23,25], simply excluded patients with incomplete
data. In Chattopadhyay et al’s study [23], missing values were
replaced with the most common value of the corresponding
predictor. Sun et al [25] evaluated two methods in overcoming
missingness: replacing the missing value with the mean of the
sensor measurements within a time window or imputing based
on the correlations among multiple sensors using linear
regression models. The latter method consistently performed
better than the former. Three studies [21,29,43] that mapped
EHRs to TF-IDF space handled the missing data challenge
indirectly. Other studies did not discuss missing data.

The Modeling Algorithms

Neighborhood-Based Algorithms
The neighborhood-based algorithms indicate studies in which
a group of patients similar to an index patient is retrieved and
a prediction is produced by a model trained on similar patients’
data. This category is comparable to memory-based techniques
in collaborative filtering [10]. Various types of similarity metrics
can describe the similarity between patients. Studies in this
category [16,17,19,21,23-26,28,30,33,34,37,39,40,43,47] were
organized based on the type of similarity metric they employed
for calculating patient similarity.

Distance-Based Similarity Metrics
Twelve studies (of 18) used various types of distance-based
similarity. One study [23] utilized the sum of absolute distances
for each predictor to retrieve a cohort of similar patients and
find the closest class to a new patient.

Five studies [17,19,26,34,43] utilized the Euclidean distance.
Bobrowski [17] designed a linear transformation by solving a
convex optimization problem to maximize between-class
distances and minimize in-class distances. In this study, the
k-nearest neighbor (k-NN) method on the transformed data
outperformed the classical k-NN algorithm. Park et al [19]
investigated the optimum number of neighbors for each patient.
In this study, a grid search found a cut-off probability based on
the distribution of pairwise distances to define a distance
threshold. This method outperformed several conventional
machine learning algorithms, including logistic regression (LR),
C5.0 decision tree (DT), classification and regression tree, neural
network, and conventional CBR.

David et al [26] employed the Euclidean distance on weighted
predictors to select neighbors for an index patient. Although
their method strongly agreed with a human reviewer, no
comparison with other methods was reported. Hielscher et al
[34] suggested the idea of subgrouping the training set based
on gender and then applying a k-NN method. This study showed
that using a predictor selection algorithm can reduce the
dimension of the predictor space and improve performance.
Furthermore, the results demonstrated that only a few of the
predictors with highest predictive power within each subgroup

are common, thus highlighting the efficiency of subgrouping a
population, then considering customized predictors for each
subgroup.

Six studies utilized the Mahalanobis distance
[24,25,28,29,33,40]. Sun et al [24] defined a Mahalanobis
distance by solving an optimization problem aimed at
minimizing the within-class squared distances and maximizing
between-class squared distances. A sensitivity analysis of the
parameter k— number of neighbors — revealed that small k
resulted in lower classification error, confirming the idea of
using local information. The proposed metric outperformed the
Euclidean distance. As an extension of a previous study [12],
Sun et al [25] trained a linear regression model based on a least
squared error fitting technique on the retrieved data. The
proposed method outperformed the previous method and k-NN
with Euclidean distance on a lower dimensional space mapped
by linear discriminant analysis.

Wang et al [28] focused on integrating multiple patient similarity
metrics learned independently without sharing the training
datasets. In combining the metrics, various degrees of
importance were considered for each individual Mahalanobis
metric. The proposed method outperformed all compared
methods and improved accuracy even when some individual
metrics were biased. Building on that study, Wang et al [29]
proposed a new algorithm in which human experts’ ideas could
be embedded. To incorporate expert knowledge, two matrices
were defined by an expert: a similarity matrix and dissimilarity
matrix. The proposed method outperformed k-NN with the
Euclidean distance in the original feature space and
low-dimensional spaces derived by PCA, locally linear
embedding and Laplacian embedding.

Wang [43] then proposed a two-term objective function for
Mahalanobis distance learning: a part based on human experts’
knowledge (following the same procedure as in the previous
study) and a part based on available historical data. The
proposed online distance metric learning method outperformed
locally supervised metric learning [24]. In addition, the results
showed that the performance increased from 20 to 200
neighbors, but decreased after 200. This result supports the
advantage of using local neighborhood data.

Lowsky et al [33] proposed a neighborhood-based survival
probability prediction model based on a Mahalanobis distance
and constructed a weighted Kaplan-Meier survival curve on the
basis of retrieved similar cases. Although their method did not
show consistent advantage over the Cox model on the original
dataset, its performance improved as the proportional hazards
violation was highlighted on the simulated datasets.

Ng et al [40] compared personalized predictive modeling and
population-based predictive models. The proposed algorithm
made predictions using Mahalanobis and an LR model.
Clustering analysis of risk factors revealed that patients with
similar risk factors were grouped together, whereas patients
with different risk factors were distributed in groups far apart
in the cluster tree. Furthermore, a large number of risk factors
were not captured by the population-based model, whereas
personalized models highlighted them.
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Correlation-Based Similarity Metrics
Saeed et al [21] utilized a correlation coefficient to retrieve the
k most similar patients. This correlation coefficient measured
the extent of the linear correlation between two data points. The
proposed algorithm was not benchmarked against other methods.

Cosine-Similarity Metrics
Lee et al [39] examined the hypothesis that predictive modeling
based on patient similarity analytics can outperform
conventional predictive modeling in which all available patient
data are analyzed. Their study employed cosine patient similarity
and focused on characterizing neighborhood size and model
performance. Results confirmed that patient similarity analytics
can outperform not only population-based models but also
well-known clinical scoring systems. Moreover, a reasonably
small and homogenous neighborhood improved predictive
performance; however, a very small neighborhood compromised
performance due to small sample size effects.

Other Similarity Metrics
Four studies used other similarity metrics. One of the earliest
proposed methods [16] retrieved patients based on the context
defined by a user. A context was defined as a set of predictors
and had allowable values for these predictors in the retrieval
task. Houeland [27] proposed a combination of a Euclidean
distance and a tree-based distance. Each case in the training set
was stored with its associated terminal node for every tree in a
forest of randomly grown trees. For a new patient, half of the
most similar patients in the training set were retrieved based on
Euclidian distance. Then, two patients were considered to be
more similar if they shared the same terminal node assignments
for a higher number of trees. The proposed method outperformed
conventional random forest and k-NN with the Euclidean
distance.

Campillo-Gimenez et al [30] employed an exclusive OR-based
patient similarity metric with an LR model. This method
outperformed compared methods, including population-based
LR, and performed well, after randomly generated predictors
were added to the relevant predictors. Henriques et al [37]
utilized a similarity metric based on the signs of Haar wavelet
coefficients derived from telemonitoring data. A metric based
on the coefficients’ signs outperformed similarity metrics based
on the coefficients’ distances, Euclidian distance, and linear
correlation of the actual data points.

Cluster-Based Algorithms
Cluster-based algorithms group patients in a training set based
on their profiles and relationships. Therefore, a new patient is
assigned to a predefined cluster based on his/her similarity to
each cluster. These methods have a trade-off between prediction
performance and scalability for large datasets. Only one study
[41] employed supervised and unsupervised clustering
approaches with a Mahalanobis distance in recommending a
medication to a heart-failure patient. Then, the most frequently
prescribed medication in the most similar cluster was selected
for the index patient. The proposed supervised clustering
outperformed hierarchical clustering and k-means.

Other Algorithms
Gottlieb et al [32] focused on associations between
hospitalization data and discharge diagnoses, considering eight
similarity metrics between hospitalization data and two
similarity measures for International Classification of Diseases
codes. Then, they combined these measures into 16
hospitalization-discharge code associations. For a new patient’s
hospitalization data, the score of a potential discharge code was
calculated by considering the similarity to the known discharge
code-hospitalizations’ associations, and then an LR classifier
was trained to distinguish true associations (of medical history
with diagnosis) from false ones. Using various similarity metrics
helped overcome the limitations of using only one particular
similarity metric—using just one similarity metric for all
predictors may miss information relevant to prediction [49].

Zhang et al [36] augmented patient similarity analytics with
drug similarity analytics and proposed an algorithm for
personalized drug recommendations in hypercholesterolemia
treatment. Based on the Jaccard similarity metric in their label
propagation algorithm, they defined three sets of similarities:
(1) patient-patient, (2) drug-drug, and (3) patient-drug. This
study suggested that combining patient similarity with drug
similarity can help achieve personalized medicine.

Wang [42] proposed an adaptive semisupervised recursive tree
partitioning (ART) approach to reduce the computational burden
of pairwise patient similarity calculations. This algorithm can
also leverage expert knowledge. The algorithm constructs a tree
used to index patient profiles and then rapidly retrieve the
nearest neighbors to a new patient. The ART series methods
generally performed better than compared methods.

Outcomes
The outcomes of prediction models normally take six forms:
continuous, binary, categorical (but not ordered), ordinal, count,
and survival. The studies reviewed targeted continuous outcomes
[16], such as hormonal therapy dosage; binary outcomes
[19,21,24,25,28-30,37,39,42,43], such as disease diagnosis or
patient death; categorical outcomes [17,19,26,32,36,41], such
as multiple-disease diagnosis; and ordinal outcomes
[23,27,34,40], such as the grade of an illness. One study also
aimed to predict a survival outcome [34] (ie, the prediction of
the time to an event of interest) [50]. No study had a count
outcome, which is a nonnegative integer value derived from
counting rather than grading.

Evaluation Metrics and Validation Techniques

Evaluation Metrics
Evaluation metrics are widely used to tune the parameters of a
model and compare the model with other methods.

Evaluation Metrics Based on a Confusion Matrix
A confusion matrix is a cross-tabulation representation of
observed and predicted classes. Various evaluation metrics
extracted from a confusion matrix—including accuracy,
sensitivity, specificity, F-measure, G-measure, precision, and
positive predictive value—were used in the included articles.
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Receiver Operating Characteristic Curve
Five articles [30,32,36,39,40] used the receiver operating
characteristic (ROC) curve, and one [39] used the
precision-recall curve in combination with the ROC curve to
overcome the optimistic estimate of ROC curves in the presence
of imbalanced data—where class distribution is not
approximately uniform among the classes.

Measures Based on Model Residuals
When a model generates a continuous outcome, a common
performance measure is the mean squared error. This metric is
based on model residuals, which are the difference between the
observed and predicted responses, and can be calculated by
taking the average of squared model residuals. One study [25]
used a relative error rate and another [33] used integrated
prediction error curve, a time-invariant measure that calculates
the weighted quadratic difference of prediction and observed
survival outcome.

Validation Techniques
Validation techniques can generally be grouped into two
categories: internal and external [50].

Internal Validation Techniques

Internal validation techniques randomly split the available
dataset into two parts using various approaches: a training set
and a test set. Seven studies [21,23,25,26,28,30,51] used various
ratios for this splitting. Eight studies [19,32,34,36,39-42]
employed a k-fold cross-validation technique and five studies
[16,17,24,27,37] used leave-one-out.

External Validation Techniques

External validation means assessing the performance of the
prediction model in other scenarios or settings (eg, assessing
the geographic or temporal transportability of the model). Only
one study [33] used temporal validation for assessing their
model’s performance. External validation better evaluates
generalization of a model to new patients.

Discussion

Over the period of 1989 to 2015, we found 22 articles that
focused on patient similarity in predictive modeling using EHR
data, with an increase in the number of these studies over time.
Overall, three main approaches were employed in these studies
to leverage patient similarity: neighborhood-based modeling,
clustering modeling, and other algorithms. This section discusses
the results from this review study to address the research
questions then identifies gaps and future research directions.

Predictive Modeling Based on Patient Similarity and
Health Data Context
This study showed that patient similarity-based predictive
modeling has been widely used on hospital data, which sheds
light on the need for patient similarity-based predictive modeling
in tackling big data. In addition, further analysis revealed that
ICUs are the central focus in hospitals. ICUs treat patients with
severe and life-threatening illnesses that require continuous
monitoring. Thus, ICU patients are surrounded by equipment
that constantly generates a large amount of data. However, this

large volume usually overwhelms clinicians and highlights the
need for a computerized system. In addition, the critical health
status of the patients in ICUs requires more proactive (rather
than reactive), precise, and personalized care. Therefore, ICUs
are a suitable environment for personalized prediction models.

Furthermore, chronic disease prognosis was one of the common
application areas for personalized predictive modeling. Such
analytics can help in improving patient health status if used in
planning new therapies or interventions to prevent further
complications. Patient similarity analytics can also be used for
predicting a patient’s risk of developing further complications
or disease. In particular, patient similarity analytics can
overcome the challenge of comorbidities in chronic disease risk
stratification and provide customized plans for a given patient.
It is worth mentioning that cardiovascular diseases and diabetes
were common application domains among the reviewed studies.

Modeling Techniques
Most of the studies focused on neighborhood-based modeling.
These models are easy to implement and they typically perform
well. However, their performance depends greatly on the chosen
patient similarity metric. Although there are a variety of
similarity metrics in data mining [52], distance-based similarity
metrics were the most popular in the reviewed studies. These
methods are also constrained by their limited scalability for big
data. Although Lee et al [39] suggested that computational load
can be parallelized, the high computational load of
neighborhood-based methods in comparison to other models is
not trivial.

Cluster-based methods exhibit better scalability than
neighborhood-based modeling, but there is a trade-off between
prediction accuracy and scalability. These methods may not
satisfactorily address the prediction for patients with rare
conditions because they work based on predefined clusters.
Especially in hierarchical clustering methods, in which final
clusters are derived based on merging smaller clusters [53], the
algorithm may fail to provide personalized predictions for
patients with a rare condition.

Four studies embedded patient similarity analytics in their
modeling approach even though they did not explicitly compute
a patient similarity metric [27,32,36,42]. These studies reported
improved prediction performance and overcame the limitations
of neighborhood-based algorithms. However, these methods
tend to be associated with increased computational and
mathematical complexity. Mathematical complexity can lead
to decreased interpretability in the context of how the model
has learned to solve a problem. Nevertheless,
neighborhood-based methods and cluster-based methods
maintain a fair level of interpretability (a summary of the
reviewed articles in terms of methodology is provided in
Multimedia Appendix 2).

Patient Similarity-Based Models Versus Conventional
Models
Only two studies [39,40] directly compared the performances
of patient similarity-based models and population-based models.
Both demonstrated that patient similarity-based models resulted
in better predictive performance. Lee et al [39] also compared
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the performance of patient similarity-based models to the
Sequential Organ Failure Assessment [54] and the Simplified
Acute Physiology Score [55], two widely used scoring systems
in ICUs, and the patient similarity-based models showed a
significant improvement.

Gaps and Future Work
One of the factors that strongly affects predictive performance
is the choice of predictors. Results show that researchers are
searching for reliable predictors to enhance the performance of
patient similarity-based models. In the context of personalized
prediction models, the best possible predictors should have at
least two characteristics: (1) be capable of capturing the
progression of a patient’s health status, and (2) be as
discriminative as possible. Applying TF-IDF technique could
help boost the accuracy of similarity assessment for patients
with rare conditions [21] in the predictor extraction phase
because the IDF value is low for common clinical observations
and high for rare observations. Although identifying the relevant
predictors for patient similarity assessment is of special
importance for precise prediction, only a few studies have
considered this component in their proposed framework.
Although feature selection techniques, predictor weighting
schemes, and experts’ opinions were used in the reviewed
articles to address this question, further studies are needed to
identify appropriate predictors. However, as the number of
predictors increases, the performance of many types of
prediction models may decline and this can lead to a
generalizability concern; hence, the need for external validation
of prediction models. This challenge may be encountered in
patient similarity predictive modeling, particularly with
neighborhood-based methods where a model is developed from
a small cohort of similar patients and the number of predictors
may exceed the number of training instances. Therefore, creating
a balance between the number of training instances—training
sample size—and the number of predictors is important.

As observed in several studies, some values for a given patient
may be missing. Although imputation methods can help deal

with missing data, it is important to determine why the values
are missing. Sometimes, associations exist between patterns of
missing data and the outcomes. This type of information gap is
referred to as informative missingness [56]. Further studies that
account for this type of missingness are needed.

As mentioned previously, a wide variety of techniques have
been employed in efforts to achieve personalized prediction.
Neighborhood-based methods are among the most popular
techniques. However, abundant room remains for progress in
defining new patient similarity metrics. In addition, as suggested
by Gottlieb et al [32], various similarity metrics based on
different predictors can be combined to devise better similarity
metrics.

There are some limitations to this review. First, although the
article selection protocol was devised by all reviewers, there
could have been a bias in selecting articles because title and
abstract screening was done by only one reviewer. Second, the
search process focused on the more generic terms covering the
concept of EHR, and it might have excluded articles in which
domain-specific words (eg, “diabetes data”) were used to
describe the data source. Finally, due to inaccessibility to some
EHR data in the included studies, data quality assessment was
infeasible and all the studies received equal importance in the
interpretation of the findings, which might have caused a bias
in the results.

Conclusion
Personalized medicine has the potential to facilitate predictive
medicine, provide tailored prognoses/diagnoses, and prescribe
more effective treatments. Interest is increasing in the use of
personalized predictive modeling and various patient
similarity-based models using EHRs have been described in the
literature. This review has demonstrated the value of patient
similarity-based models in critical health problems and noted
the results of two studies [39,40] on the superiority of patient
similarity-based models over population-based ones. The
suggested future work could improve the capabilities of these
models.
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