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Abstract

Background: With a large-scale electronic health record repository, it is feasible to build a customized patient outcome prediction
model specifically for a given patient. This approach involves identifying past patients who are similar to the present patient and
using their data to train a personalized predictive model. Our previous work investigated a cosine-similarity patient similarity
metric (PSM) for such patient-specific predictive modeling.

Objective: The objective of the study is to investigate the random forest (RF) proximity measure as a PSM in the context of
personalized mortality prediction for intensive care unit (ICU) patients.

Methods: A total of 17,152 ICU admissions were extracted from the Multiparameter Intelligent Monitoring in Intensive Care
II database. A number of predictor variables were extracted from the first 24 hours in the ICU. Outcome to be predicted was
30-day mortality. A patient-specific predictive model was trained for each ICU admission using an RF PSM inspired by the RF
proximity measure. Death counting, logistic regression, decision tree, and RF models were studied with a hard threshold applied
to RF PSM values to only include the M most similar patients in model training, where M was varied. In addition, case-specific
random forests (CSRFs), which uses RF proximity for weighted bootstrapping, were trained.

Results: Compared to our previous study that investigated a cosine similarity PSM, the RF PSM resulted in superior or comparable
predictive performance. RF and CSRF exhibited the best performances (in terms of mean area under the receiver operating
characteristic curve [95% confidence interval], RF: 0.839 [0.835-0.844]; CSRF: 0.832 [0.821-0.843]). RF and CSRF did not
benefit from personalization via the use of the RF PSM, while the other models did.

Conclusions: The RF PSM led to good mortality prediction performance for several predictive models, although it failed to
induce improved performance in RF and CSRF. The distinction between predictor and similarity variables is an important issue
arising from the present study. RFs present a promising method for patient-specific outcome prediction.

(JMIR Med Inform 2017;5(1):e3) doi: 10.2196/medinform.6690
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Introduction

Harnessing the information contained in health data from various
sources toward personalized medicine has been a research topic
of interest and discussed by a number of highly regarded health
researchers recently [1-5]. In particular, patient outcome

prediction is an important topic in health care since accurate
prognostic information can inform treatment planning and
resource allocation. While prognostic scoring systems have
traditionally been developed based on large population studies,
the current rapid transition to electronic health records (EHRs)
has led to an increased interest in data-driven, patient-specific
outcome prediction models. Large-scale EHR data enable
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personalized predictive models where the degree of similarity
between an index patient (for whom a prediction is to be made)
and a past patient (the clinical data of whom can be found in an
EHR repository) is taken into consideration. Such a personalized
approach ensures that the predictive model is optimized for the
index patient rather than the average patient in the population
by building a customized predictive model just for the index
patient.

A key to personalized patient outcome prediction is how patient
similarity is defined. Various similarity measures have been
investigated in the context of EHR-based outcome prediction,
including distance-based [6,7] and cluster-based [8] methods.
In addition, propensity score matching [9] employs a similar
approach by identifying patients with similar likelihoods of
receiving the treatment under investigation. A defined similarity
measure is called a patient similarity metric (PSM), which can
be calculated between patients. Subsequently, PSM values can
be used to either discard the EHR patient data below a certain
threshold or weight EHR patients’ contributions to predictive
modeling proportionately to the PSM magnitude.

Outside of health, several domains have employed similarity
approaches in machine learning and predictive analytics. One
prime example is product recommendation in e-commerce where
purchase histories of similar consumers are leveraged to
recommend products to a given customer [10]. Furthermore, a
variety of subspace clustering [11,12] and mixture models [13]
have been developed and applied to identify and use similar
cases across different application domains.

Our previous studies in this line of research investigated a cosine
similarity PSM for personalized mortality prediction in intensive
care unit (ICU) patients with hard thresholding [14] and bagging
[15]. The results were promising and showed that using data
from only similar patients, rather than the entire available data
set, leads to better predictive performance. In order to study the
effects of the particular choice of PSM on the results, however,
it is worth investigating other PSMs.

One interesting way to define a PSM is to use the random forest
(RF) proximity measure, which represents the likelihood of 2
cases falling in the same terminal node in the trees of an RF
[16]. Xu and colleagues have developed the case-specific
random forest (CSRF) using the RF proximity measure as a
bootstrap sampling weight [17]. While this approach used RF
proximity in personalizing the standard RF, the RF proximity
can also be used as an independent PSM for predictive models
other than the RF. Being a stochastic similarity measure, RF
proximity is certainly distinct from the cosine similarity PSM
we previously studied and as a result may capture patient
similarity from a different perspective. Also, other similar
approaches reviewed above (propensity score matching,
subspace clustering, etc) tend to rely on well-known distance
measures (such as the Euclidean or Mahalanobis) or clustering
algorithms (such as K-means) to identify similar cases. To the
best of our knowledge, an RF-inspired PSM has never been
investigated for the purpose of patient outcome prediction in
the ICU.

The objective of this study was to evaluate the effectiveness of
RF patient similarity on improving mortality prediction
performance in the critically ill.

Methods

Patient data were extracted from the public ICU database
Multiparameter Intelligent Monitoring in Intensive Care II
(MIMIC-II) version 2.6 [18,19]. Because MIMIC-II is a
deidentified, publicly available database, the need for a research
ethics review was waived for this study. In order to make a
direct comparison with our previous results [14,15], the same
data set of 17,152 ICU admissions was analyzed. Table 1 lists
the predictor variables extracted from MIMIC-II. The outcome
variable was 30-day mortality. ICU admissions with missing
data were excluded, and each included ICU admission was
treated as an independent “patient,” as was done before.

Table 1. List of predictor variables.

Predictor variablesCategory

Age, genderDemographics

Admission type (elective, urgent, emergency), ICUa service type (MICUb,

SICUc, CCUd, CSRUe)

Administrative information

Heart rate, mean blood pressure, systolic blood pressure, SpO2, sponta-
neous respiratory rate, body temperature

Vital signs (min. and max. every 6 hours during the first 24 hours in the
ICU)

Hematocrit, white blood cell count, serum glucose, serum HCO3, serum
potassium, serum sodium, blood urea nitrogen, and serum creatinine

Labs (min. and max. from the first 24 hours in the ICU

Vasopressor therapy, mechanical ventilation, or continuous positive airway
pressure

Intervention (yes/no during the first 24 hours in the ICU)

Worst Glasgow Coma Scale score, total urinary output every 6 hoursOthers (from the first 24 hours in the ICU)

aICU: intensive care unit.
bMICU: medical intensive care unit.
cSICU: surgical intensive care unit.
dCCU: coronary care unit.
eCSRU: cardiac surgery recovery unit.
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In MIMIC-II, there are 1.24 ICU admissions per patient on
average which indicates that most patients have only one ICU
admission. Other admissions from the same patient are likely
to contain useful and relevant information since they represent
the most similar “patients” (determined by the PSM) for the
index patient. This is akin to incorporating past patient history
in most prognostic scoring systems. Most importantly, if the
data from other admissions from the same patient are available
at the time of prediction, it would be a waste of data if they are
not taken into account.

Out of 29,149 adult ICU admissions in MIMIC-II, 17,152
(58.84%) had complete data and were included in the present
study.

In the data set, the overall 30-day mortality rate was 15.10%
(4,401/29,149), while 56.70% (16,527/29,149) were male. The
average age was 64.5 years with a standard deviation of 17.0.
The percentages of elective, urgent, and emergency admissions
were 18.00% (5,247/29,149), 3.70% (1,078/29,149), and 78.30%
(22,824/29,149), respectively. More detailed descriptive
statistics of the data set can be found elsewhere [14]. All data
were extracted from MIMIC-II using SQL Developer version
3.2.09 (Oracle Corp).

Following how bootstrap sampling weights were calculated in
CSRF [17], the RF PSM in the present study was calculated
first by growing an RF in unsupervised mode using all data with
an mtry value equal to the total number of predictor variables,
a nodesize of 5, and 500 trees. When used in an unsupervised
manner, RFs are capable of developing a dissimilarity measure
among unlabeled data, which has been deployed for
differentiating between observed and synthetic data [16,20].
The proximity values from this RF were normalized as displayed
in Figure 1 to quantify the similarity between an index and
another patient.

Figure 1. Random forest patient similarity metric formula.

where i and j refer to the index and the jth patient in the data,
respectively, and Proxi,j is the number of trees in the grown RF
that have both the index and jth patient in the same terminal
node. This RF PSM was calculated for every pair of patients in
the data.

For every index patient, the M most similar patients in the
training data (ie, hard thresholding on RF PSM) were used to
train a customized predictive model. A total of 4 different
models were evaluated with hard thresholding: death counting
(DC, predicted mortality risk is equal to the empirical probability
of death among the M most similar patients), logistic regression
(LR), decision tree (DT), and RF.

The range of M values varied depending on the predictive
model. For DC, M ranged from 10 to 15,000 with a step size
of 10, whereas for LR and RF the range was from 4000 to
15,000 with a step size of 1000. The M range for DT was from
5000 to 15,000 with a step size of 1000. This variation in M
range accounted for computational burden and lack of variability
in categorical variables (either predictor or outcome) among

the M most similar patients when M was sufficiently small (only
1 category remained in some categorical variables when the M
patients were too homogenous). Moreover, for LR, DT, and
RF, training data size had to be sufficiently large (at least 1000),
given that there were 75 predictor variables (Table 1). Since
DC was associated with the least computational burden and was
not subject to the issue of insufficient variability in categorical
variables, it was evaluated with the widest M range with the
smallest step size. The lower ends of the ranges for LR, DT,
and RF were determined by trial and error. The step size of 1000
resulted in sufficient resolution allowing identification of
predictive performance patterns, as will be evident in the Results
section. In addition to the M ranges specified above, all training
data were also used to represent traditional predictive modeling
except for DC where using all training data implies using the
overall mortality rate in the entire training data as the predicted
mortality risk for all patients. In any case, 15,000 was very close
to using all training data which included approximately 15,500
patients.

Note that we did not attempt to select the optimal M value for
each patient, since our objective was to investigate the effects
of the RF PSM on prediction performance as a function of M,
as was done in our previous work [14].

As a fifth predictive model, CSRF was investigated. The entire
data set was used for training CSRF models since the RF PSM
was used as bootstrap sampling weights instead. Since this is a
soft thresholding method, applying a range of M values was not
applicable to CSRF.

Note that while DC, LR, and DT were investigated previously
[14], RF and CSRF were not. RF and CSRF were included in
this study in the spirit of conducting a comprehensive RF
investigation in personalized predictive analytics.

Predictive performance was evaluated using the area under the
receiver operating characteristic curve (AUROC) and the area
under the precision-recall curve (AUPRC). A 10-fold
cross-validation was conducted for all models to avoid
overfitting. In each iteration of the cross-validation, the RF PSM
between each patient in the test data and each patient in the
training data was computed. Then, for each patient in the test
data, the predictive models described above were trained using
the M most similar cases in the training data (except CSRF),
where M was varied as explained above. Once all patients in
the test data were predicted, the AUROC and AUPRC for that
fold were computed. Hence, the 10 iterations of the
cross-validation yielded 10 AUROCs and 10 AUPRCs.

All computation was conducted in R version 3.3.1 (R
Foundation). In particular, the randomForest package [21] was
used to build RFs (with the default parameter values except for
the unsupervised RF for proximity measure calculation, for
which the parameter values were described above). CSRF
models were constructed using the R code supplied by Xu et al
[17], with a nodesize of 1 and 500 trees, while mtry was set to
the same default value as the randomForest package (ie, floor
of the square root of the number of predictors). LR and DT
models were created using the stats and rpart packages,
respectively, with the default parameter settings.
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Results

Figures 2 and 3 show the predictive performances of DC, LR,
DT, and RF with hard thresholding, in terms of AUROC and
AUPRC, respectively, as a function of the number of similar
patients included in model training (ie, M). The pattern of
exhibiting suboptimal performances when M is too small (due
to small sample size) or too large (due to dissimilar patients
being included in the training data) and a peak performance
somewhere in the middle was most prominent in DC and mildly
visible in LR in terms of both AUROC and AUPRC.
Interestingly, DT showed 2 local maxima in Figure 2 and weakly
showed 1 peak in Figure 3. RF did not seem to benefit from
hard thresholding on RF PSM as its performance was relatively
independent of M.

DC and DT showed statistically significant improvement (via
2-sided t tests) between the best performance (in terms of mean

AUROC or AUPRC) and when the maximum number of patients
were used as training data, with respect to both AUROC (DC:
P<.001; DT: P<.001) and AUPRC (DC: P<.001; DT: P<.001).
LR and RF showed statistically significant performance
improvement for neither AUROC (LR: P=.07; RF: P=.75) nor
AUPRC (LR: P=.36; RF: P=.85).

Table 2 tabulates the best predictive performance of each model
with respect to mean AUROC and AUPRC. The numbers of
similar patients at which the best performance occurred as well
as the performance of CSRF are also reported in Table 2. Figures
4 and 5 (AUROC and AUPRC) are boxplots that correspond to
the best performances shown in Table 2 and enable a quick
visual comparison among all 5 models. Note that these best
performances simply correspond to the maximum mean AUROC
or AUPRC and do not represent statistically significant peak
performances, as evident in Figures 2 and 3. Overall, RF and
CSRF resulted in the best performances, followed by LR, DC,
and DT in decreasing order of performance.

Table 2. Best predictive performance from each random forest patient similarity metric (PSM) model in terms of mean area under the receiver operating
characteristic curve and area under the precision-recall curve in comparison with cosine PSM and traditional models with no PSM. All cosine PSM
results are from Lee et al [14].

Best predictive performance, mean (95% CI)Number of similar patients at best predictive perfor-
mance

AUPRCAUROCAUPRCbAUROCa

No PSMCosine
PSM

RF PSMNo PSMCosine
PSM

RF PSMCosine
PSM

RF PSMCosine
PSM

RFc PSMd

0.280
(0.263-
0.297)

0.393
(0.378-
0.407)

0.429
(0.409-
0.449)

0.693
(0.679-
0.707)

0.797
(0.791-
0.803)

0.801
(0.792-
0.811)

60230100260DCe

0.449
(0.430-
0.468)

0.474
(0.460-
0.488)

0.460
(0.437-
0.484)

0.811
(0.799-
0.821)

0.830
(0.825-
0.836)

0.824
(0.815-
0.832)

6000900060005000LRf

0.339
(0.324-
0.353)

0.347
(0.335-
0.358)

0.352
(0.337-
0.367)

0.721
(0.705-
0.738)

0.753
(0.742-
0.764)

0.779
(0.775-
0.784)

4000700020005000DTg

0.505
(0.487-
0.523)

—0.507
(0.527-
0.486)

0.839
(0.835-
0.844)

—0.839
(0.835-
0.844)

—4000—15000RF

——0.496
(0.520-
0.471)

——0.832
(0.821-
0.843)

————CSRFh

aAUROC: area under the receiver operating characteristic curve.
bAUPRC: area under the precision-recall curve.
cRF: random forest.
dPSM: patient similarity metric.
eDC: death counting.
fLR: logistic regression.
gDT: decision tree.
hCSRF: case-specific random forest.
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Figure 2. Mortality prediction performance measured in area under the receiver operating characteristic curve as a function of the number of similar
patients. Mean and 95% confidence interval from 10-fold cross-validation are shown.

Figure 3. Mortality prediction performance measured in area under the precision-recall curve as a function of the number of similar patients. Mean
and 95% confidence interval from 10-fold cross-validation are shown.
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Figure 4. Box plot comparing area under the receiver operating characteristic curves (AUROCs) from all 5 models. For death counting, logistic
regression, decision tree, and random forest, the performance from the number of similar patients corresponding to the maximum mean AUROC is
shown.

Figure 5. Box plot comparing area under the precision-recall curves (AUPRCs) from all 5 models. For death counting, logistic regression, decision
tree, and random forest, the performance from the number of similar patients corresponding to the maximum mean AUPRC is shown.
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Discussion

Principal Findings
The conventional doctrine in machine learning is that it is always
beneficial to collect more training data. This is true if collected
data represent the same underlying phenomenon, but it is often
difficult to make this assumption in medicine largely due to
enormous variability in patient/clinical characteristics, as well
as our limited understanding of complex human health and
disease pathways. In the era of big data, we can now afford to
be more selective regarding which cases should be included in
predictive modeling. Data-driven patient similarity matching,
via a PSM, leads to objective training data selection and uses
hidden patterns in multidimensional data that are difficult for
human clinicians to identify.

In comparison with conventional, one-size-fits-all predictive
models such as those from the Framingham Heart Study [22],
patient-specific predictive models improve predictive
performance at the cost of increased computational burden
associated with computation of all pairwise PSM values and
training of a unique custom model for each patient. This is a
reasonable trade-off today given that powerful computing is
available at ever falling prices. With big data analytics
leveraging parallel computing, it is feasible to train and use
patient-specific models in real time at the point of care.

In this study, RF and CSRF, which were not studied in our
previous work, outperformed DC, LR, and DT, while the
difference between RF and CSRF was statistically insignificant.
The comparison between RF with CSRF is interesting because
the difference is essentially hard thresholding versus weighted
bootstrapping. Also, CSRF did not improve upon the
conventional RF that used all data as training data. The
comparable performances from RF and CSRF, and the negligible
effects of the number of similar patients on RF performance
(Figures 2 and 3), imply that not all predictive models benefit
from the use of a PSM. This could be a characteristic of
ensemble models but needs further research to clarify.

An appropriate method to circumvent the lack of variability in
categorical variables when M is too small should be investigated
in future work. One simple solution is to exclude such
problematic categorical variables in model training after “using
them up” for similarity matching. For example, gender may be
used for PSM calculation but if the training data subsequently
only include 1 gender (same as that of the index patient), then
gender can be dropped from model training to avoid the
computational issue. This solution will not work for the outcome
variable, however. This issue is closely related to the important
topic of how best to use the variables in a given data set in
personalized predictive analytics: should they be used as
predictor or similarity variables, or both? This topic requires
further research involving both real life and simulated data.

Although this study only investigated prediction performance
as a function of M without attempting to select optimal M values
for individual patients, optimal M selection will become
important when the results of this study are taken to practice.
However, in the context of patient similarity, selecting the

optimal M for a given patient is not trivial because it may vary
across different types of patient. This implies that optimal M
values should not be selected based on Figures 2 and 3 because
they represent the cohort as a whole and individual patients may
not follow the global patterns shown in Figures 2 and 3. For
this reason, a subset of similar patients would have to be
compiled first (assuming that they are sufficiently similar to
yield similar optimal M values), and then this subset would
have to be partitioned into training, validation, and test data so
that the validation data can be used for M selection. The main
challenge with this approach is that insufficient sample size is
likely to occur, especially given that there were 75 predictor
variables in this study. Furthermore, it is difficult to determine
how many similar patients should be included in the subset and
how similar they need to be to the patient under consideration.

Instead of selecting the M most similar patients from training
data, it is also feasible to threshold RF PSM values so that all
patients with an RF PSM above this threshold are included in
model training. One advantage of this approach is that the
quality of similarity in the training data can be ensured and
controlled, whereas a fixed M would force M patients to be used
for model training regardless of how similar they are to the
index patient in absolute sense. However, a challenge with this
approach is that a good understanding of the magnitude of the
RF PSM is required, which could be the subject of another
research study. Moreover, the threshold is likely to vary across
patients.

In addition to the future work mentioned above, future PSM
research directions should involve the following: other PSMs
especially those that can capture temporal patterns, other health
data sets, patient outcomes other than mortality, other predictor
variables (such as diagnosis, medications other than
vasopressors, information from free-text clinician notes, etc),
and other predictive models.

Comparison With Prior Work
In comparison with the DC, LR, and DT results from our
previous work that studied a cosine similarity PSM [14], the
predictive performance patterns as a function of the number of
similar patients were similar in this study. In terms of the best
performance of each model, 2 performances were better than
the corresponding performances in our previous work (ie, no
overlap between the 95% confidence intervals): DC and DT in
terms of AUPRC and AUROC, respectively. The rest of the
reported best performances did not show any significant
difference between the 2 studies. Despite the modest
performance improvement, these results indicate that the RF
PSM outperformed the cosine similarity PSM.

However, the number of similar patients associated with the
best performance was different between the 2 studies. The RF
PSM tended to require more similar patients to be included in
the training data to achieve peak performance; the cosine
similarity PSM results peaked with respect to AUROC and
AUPRC at 100 and 60 for DC, 6000 and 6000 for LR, and 2000
and 4000 for DT. This finding suggests that the RF and cosine
similarity PSMs quantified patient similarity somewhat
differently.
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Limitations
This study has limitations. First, MIMIC-II is a single-center
database and hence the results may not be generalizable to other
ICU data. Second, no extensive investigation of various
parameter values was conducted for the predictive models in
order to keep the number of models that had to be trained at a
reasonable level. Although the default parameter settings from
the widely used R packages are reasonable choices, the effects
of the parameter values on predictive performance could be
investigated further in future work.

Conclusions
PSM-driven predictive analytics is an exciting topic, as accurate,
tailor-made patient outcome prediction can greatly inform risk
stratification and resource allocation. The results from this study
that stem from the use of an RF PSM corroborate the utility of
PSMs in enhancing predictive performance at the patient level.
The superior predictive performances of RF and CSRF, as well
as the fact that the RF PSM outperformed the cosine similarity
PSM in some models, indicate that RFs are well suited for
patient-specific predictive modeling.
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