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Abstract

Background: Diabetes case finding based on structured medical records does not fully identify diabetic patients whose medical
histories related to diabetes are available in the form of free text. Manual chart reviews have been used but involve high labor
costs and long latency.

Objective: This study developed and tested a Web-based diabetes case finding algorithm using both structured and unstructured
electronic medical records (EMRs).

Methods: This study was based on the health information exchange (HIE) EMR database that covers almost all health facilities
in the state of Maine, United States. Using narrative clinical notes, a Web-based natural language processing (NLP) case finding
algorithm was retrospectively (July 1, 2012, to June 30, 2013) developed with a random subset of HIE-associated facilities, which
was then blind tested with the remaining facilities. The NLP-based algorithm was subsequently integrated into the HIE database
and validated prospectively (July 1, 2013, to June 30, 2014).

Results: Of the 935,891 patients in the prospective cohort, 64,168 diabetes cases were identified using diagnosis codes alone.
Our NLP-based case finding algorithm prospectively found an additional 5756 uncodified cases (5756/64,168, 8.97% increase)
with a positive predictive value of .90. Of the 21,720 diabetic patients identified by both methods, 6616 patients (6616/21,720,
30.46%) were identified by the NLP-based algorithm before a diabetes diagnosis was noted in the structured EMR (mean time
difference = 48 days).
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Conclusions: The online NLP algorithm was effective in identifying uncodified diabetes cases in real time, leading to a significant
improvement in diabetes case finding. The successful integration of the NLP-based case finding algorithm into the Maine HIE
database indicates a strong potential for application of this novel method to achieve a more complete ascertainment of diagnoses
of diabetes mellitus.

(JMIR Med Inform 2016;4(4):e37) doi: 10.2196/medinform.6328
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Introduction

Diabetes mellitus (DM) is a leading cause of mortality and
morbidity and accounts for significant burden of disease
worldwide [1,2]. In the United States, 9.3% of the population
or 29.1 million people were reported to have diabetes in 2013,
plus an estimate of 8.1 million people with undiagnosed diabetes
[3,4]. Diabetes is a metabolic disorder caused by a high
concentration of glucose in the blood stream. If untreated,
diabetic patients will eventually develop a range of
complications. Diabetes complications can be prevented through
timely application of several measures such as lifestyle
modification and control of blood glucose and blood pressure
for diabetic patients [3,5-8].

The identification of persons with diagnosed DM in electronic
medical records (EMRs) is essential to quality improvement
initiatives, clinical decision support systems, and regional
disease prevalence estimates used by public health departments.
Although DM diagnoses have typically been captured by
International Classification of Diseases (ICD) codes and stored
in EMRs, previous studies found that diagnostic codes alone
do not adequately represent DM diagnoses across a population,
resulting in underestimates of disease prevalence and
challenging the development of electronic approaches to clinical
management [9,10]. The prevalence of DM in 2014 in Maine
was 7.8%, whereas the codified prevalence is 6.8% in our
database. It indicates a gap caused by uncodified DM in the
structured EMRs of patients. Diabetic patients who have
received little or no diabetes care are unlikely to be associated
with a diabetes-specific diagnosis code for billing, as are patients
who transfer their care between multiple unaffiliated health care
systems but receive no DM care for some time. To overcome
this shortcoming, manual chart reviews of unstructured clinical
notes have been used to identify uncodified DM cases. However,
this method involves high labor costs and long latency, which
has limited use for large scale datasets [11-13].

One possible solution to the problem and a fully automated
alternative and acceptable means of delivering cost-effective
case finding is the use of natural language processing (NLP), a
Web-based technique. NLP has increasingly been used to
enhance case finding for some high-impact chronic diseases
such as heart failure and cancer through analyzing narrative text
in EMRs [14-16]. The advantage of the automated NLP-based
case finding algorithm is that it allows for the rapid real-time
identification of uncodified diagnoses from large datasets. It
also allows for the rapid preprocessing of unstructured clinical
notes for different diseases and clinical conditions before a
diagnosis is selected [14,16]. However, the existing NLP
applications are mainly based on a small sample of patients with
a limited number of clinical notes. Currently, the application of
NLP in public health and medicine faces the following
challenges [17-21]: (1) a lack of a comprehensive knowledge
base to generate the accumulated domain knowledge from the
targeted patient population; (2) a lack of a comprehensive data
model to encapsulate the unstructured clinical notes of various
formats across different health care facilities; (3) and a lack of
a robust and scalable analytics pipeline to process a large
number of EMR notes across statewide health care facilities.

The aim of this study was therefore to develop and integrate an
online real-time NLP-based DM case finding algorithm into the
health information exchange (HIE) care flow in the state of
Maine, United States (Figure 1). We hypothesized that the
algorithm we developed could find additional patients with DM
who were not identified by codified diagnoses in structured
EMRs. This algorithm was built on a knowledge base that
incorporates taxonomies and controlled vocabularies encoding
domain knowledge, as well as the task-oriented characteristics
of clinical notes. It also used both structured and unstructured
information and data available in EMRs, which were treated as
variables for statistical learning in identification of uncodified
DM diagnoses.
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Figure 1. A schematic presentation of the natural language processing (NLP)–based algorithm integrated into the statewide diabetes mellitus case
finding and surveillance. The clinical note was preprocessed and identified to generate the decision. The knowledge bases, statistical model, and the
gold standard datasets form the basis of the NLP engine. ICD: International Classification of Diseases; NLM: US National Library of Medicine; MeSH:
Medical Subject Headings; EMR: electronic medical record; HIE: health information exchange; PPV: positive predictive value. SNOMED CT:
Systematized Nomenclature of Medicine – Clinical Terms.

Methods

Ethics Statements
Protected personal health information was removed for the
purpose of this research. Because this study analyzed
deidentified data, it was exempted from ethics review by the
Stanford University Institutional Review Board (October 16,
2014).

Data Sources
Data for this study were extracted from the HIE dataset
administered by HealthInfoNet—an independent nonprofit
organization. The dataset contains records of nearly 95% of the
population in the state of Maine. There are 35 HIE-associated
hospitals, 34 federally qualified health centers, and more than

400 ambulatory practices [22,23]. To identify the DM cohort,
clinical notes of all categories in the Maine HIE EMR database
were analyzed. Clinical notes are also known as progress notes,
which are the part of a medical record where health care
professionals document the details of a patient's clinical status
or achievements during the course of inpatient care or outpatient
care. Clinical notes in our study are encounter based. These
notes were divided into 2 subcohorts. The retrospective cohort
contained 1,385,280 notes representing 1,129,952 patients
covering the period from July 1, 2012, to June 30, 2013, and
the prospective cohort comprised 982,211 clinical notes
representing 935,891 patients recorded from July 1, 2013, to
June 30, 2014 (Figure 2). Clinical notes were derived from more
than 100 different types of clinical reports, including history or
physical reports, discharge summaries, and emergency reports.

JMIR Med Inform 2016 | vol. 4 | iss. 4 | e37 | p. 3http://medinform.jmir.org/2016/4/e37/
(page number not for citation purposes)

Zheng et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 2. Cohort construction of the study. ICD9: International Classification of Diseases, Ninth Revision; DM: diabetes mellitus; MDS: multidimensional
scaling.

Algorithm Overview
The patients with DM were defined as those who had DM noted
as either primary or secondary diagnosis (International
Classification of Diseases, Ninth Revision, Clinical
Modification, ICD-9-CM, codes: 249, 249.x, 249.xx, 250, 250.x,
and 250.xx) in their medical records [24]. The case finding
algorithm consisted of 3 sequential steps based on both
structured and unstructured EMR information (Figure 1). The
first step involved a preprocessing of unstructured clinical notes
to remove information indicating the patient did not have DM,
such as family history of DM and negation (ie, the patient denied
DM). This step removed the misleading information to avoid
false-positive errors, thus improving the performance of
subsequent steps. The second step entailed a feature extraction
that mapped DM risk factors recognized in previous studies
[25-29], medications extracted from Unified Medical Language
System, and NLP terms into the structured metadata. In the third
step, a decision tree–based model based on the retrospective
cohort was developed to determine whether a patient had DM.
The development procedures are detailed in later sections. To
support the whole algorithm pipeline, the NLP engine was
created, including knowledge base, statistical models, and gold
standard datasets as functional modules. Their construction and
utilization are described below.

Knowledge Base
The knowledge base consisted of 3 cores: (1) DM-related
clinical terms as the controlled vocabularies; (2) antidiabetic
medications; and (3) extracted rules in the clinical notes.

Clinical terms in our NLP knowledge base were derived from
the following sources: (1) the description and synonyms of
ICD-9-CM codes under 249, 249.x, 249.xx, 250, 250.x, and
250.xx; (2) the comprehensive clinical terminologies within
SNOMED CT (Systematized Nomenclature of Medicine –
Clinical Terms) [30]; (3) a mapping of ICD-9-CM with
SNOMED CT proposed by the US National Library of Medicine
(NLM) [31], based on the concepts and synonyms mapped to

ICD codes 249, 249.x, 249.xx, 250, 250.x, and 250.xx; (4) the
headings returned by the query of “diabetes” using NLM for
article indexing [32] in a controlled vocabulary thesaurus,
namely, Medical Subject Headings (MeSH). These clinical
terms in the knowledge base were further tokenized, combined,
and filtered to derive our controlled vocabulary of single and
dual tokens. If those controlled vocabularies contained stop
words, for example, “the,” “a,” “of,” provided by the text mining
(tm) package (R Development Core Team) [33], they were
removed. In total, 742 final NLP terms were identified
(Multimedia Appendix 1); of these, 72 were found to be
significantly associated with DM diagnosis (Mann-Whitney
test P value <.05) in the retrospective cohort. Here, the patients
who were assigned any of the ICD-9-CM codes 249, 249.x,
249.xx, 250, 250.x, 250.xx during the encounter were defined
as having a diagnosis of DM.

Antidiabetic medications were identified from the Unified
Medical Language System database. Out of 36 medications
analyzed, 22 were found to be significantly associated with DM
diagnosis (Mann-Whitney test P value <.05) in the retrospective
cohort.

Because information on DM risk factors (eg, body mass index
or BMI, high blood pressure, obesity, smoking history, and
alcohol use disorders) might be presented in multiple
unstructured formats in EMRs, we developed a series of regular
expressions and rules to unify unstructured information and
subsequently standardize feature categories. For example, BMI
could be available from clinical notes, but in many instances
only height and weight were provided. The BMI was then
divided into 4 categories: underweight, normal, overweight,
and obesity, according to the World Health Organization
classification [34]. Additionally, to make the knowledge base
more compatible with the expression of clinical notes, it was
updated iteratively along with development of the retrospective
model.
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Preprocessing and Feature Extraction
Intuitively, DM-related words in the notes can be used to classify
a DM case. However, this simpleminded note-processing method
ignores negative expressions, for example, “The patient denied
DM” in the note. Obviously, such negation will mislead the
algorithm to wrongly classify the patient as a DM case. To avoid
this kind of error, negation should be handled first before being
fed into the pipeline. Preprocessing to remove family DM
history is done because of similar considerations: the note with
sentence “his mother had diabetes mellitus” does not classify
the corresponding patient, “he,” as a diabetic patient. To ensure
NLP specificity, segments associated with negation and family
history of DM as described above were removed during
preprocessing according to the entries in the knowledge base.
The vocabulary of negation was populated using the lexicon
proposed by NegEX [35]. The family-related words [36] were
used to initiate the vocabulary of family history.

To break narrative text in clinical notes into smaller pieces, we
applied the text semantics. A note was collapsed into paragraphs,
sentences, and lines as basic units with nonoverlapping contents.
Criteria to define a basic unit were developed on statistics of
the text lengths and newline characters. If a paragraph (or a
sentence, a line) satisfied criteria of a basic unit, it was regarded
as one segment without further decomposition. The parts of
speech were annotated and referred for sentence boundary
detection against the confusion between periods and decimal
points using openNLP (R Development Core Team) [33]. When
a segment contained a word or a phrase in the vocabularies
associated with negation and family history, this segment was
removed from the note.

To map the unstructured text into structured metadata, the
knowledge base was applied to the standardized clinical notes
after preprocessing. When matching the text with the NLP terms
and medications in the knowledge base was successful, the
structured data of the notes were coded as “1,” otherwise as
“0.” Then DM risk factors were extracted to further enrich the
clinical notes metadata using the rules and regular expressions
stored in the knowledge base.

Workflow of Gold Standard Dataset
Gold standard datasets were created for model development
and validation purposes (Figure 2). The datasets contained a
subset of patients with or without DM. The patient DM status
was determined by manual chart reviews of clinical notes
conducted by 2 physician-curators. If a patient had any notes
showing DM diagnosis, he or she was coded as having DM.
The 2 physicians reviewed each note individually and assessed
whether the note showed the presence of DM. After individual
review, the 2 assessments for each note were compared. Any
disagreement was discussed by the 2 physicians and an
agreement was reached [37]. When there was a disagreement
on diagnosis that could not be resolved by discussion between
the 2 curators, the patient was excluded. The datasets created
through this process were used as the gold standard to define
the cutoff point, run the blind testing, or to validate our
NLP-based case finding algorithm. The cohort construction of
the gold standard datasets is shown in Figure 2.

Model Development
A model was developed on the retrospective cohort (Figure 2).
The clinic’s facilities where clinical notes were derived were
randomly allocated to 1 of the 2 subsets: one for training and
for finding the cutoff point (n=17 facilities) and the other for
blind testing (n=18 facilities). Within the subsets for training
and finding the cutoff point, all available notes (n=44,368) with
codified DM diagnoses, and an equal number of uncodified
notes (n=44,368), were selected to construct a training subcohort
for model development. In the remaining uncodified subset, a
gold standard dataset was constructed by randomly selecting
100 positive (DM) patients and 500 negative (non-DM) patients
as the subcohort for finding the cutoff point. A further random
sample of 100 positive and 500 negative patients identified from
uncodified notes in the blind testing subset were selected to
construct the blind testing subcohort.

By feeding the training subcohort to the preprocessing and
feature extraction, each note had a feature vector denoted as f.
The identification of DM was stated as maximum a posteriori
probability (MAP) estimation in Figure 3 (a), where DM was
a binary random variable indicating whether the sample had a
DM diagnosis (DM=1). To take diagnosis codes into
consideration, a binary variable ICD was introduced to indicate
whether a note was codified (ICD=1). By inserting ICD into
the posterior and then applying the Bayesian rule, we had the
decomposition in Figure 3 (b).

Because the assignment of diagnosis code was independent of
the extracted feature, the model was simplified to the equation
in Figure 3 (c).

The first term on the right side determined the probability of
DM for a codified note, while the second term on the right side
for an uncodified note. As coding information was known, we
had 2 branches to obtain the posterior a shown in Figure 3 (d).

The great majority of uncodified notes did not include a DM
diagnosis, while most DM codified notes were ICD-9-CM DM
diagnoses. This led us to develop the following class labeling
method:

1. If a note is codified, this note should have a diagnosis of DM
(Figure 3 (e));

2. If a note is not codified, a model should be built to estimate
the probability (Figure 3 (f)).

As a result, the inference of DM diagnosis for a codified note
was only dependent on the ICD code noted in the structured
data, whereas for uncodified notes we trained a random forest
model [33,38] to obtain T(f) (Figure 3 (g)), where tn was the n
th decision tree in the random forest.

At the perspective of hierarchical tree, the model could be
considered as a combination of a predetermined tree-based
model and a random forest-based model. The predetermined
tree was developed based on the ICD-9-CM diagnosis codes
associated with DM, which represented human prior knowledge.
The random forest-based model was developed by extracting
information from clinical notes, which represented machine
learning knowledge.
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The model was first trained with codified notes, the DM-positive
sample, and uncodified notes, the DM-negative sample. The
false positives in the training sample were uncodified notes
either with or without a DM diagnosis. The former was regarded
as the positive sample in the next round of training. By applying
the 2 steps iteratively, the model as well as the knowledge base
associated with the expression of family history and negation
was fine-tuned. All false-positive cases were reviewed manually
to understand how these occurred.

This codified-note–driven iterative training scheme was based
on the hypothesis that the notes’ features should be similar
between codified notes and uncodified notes where a DM
diagnosis was found. To test this hypothesis and validate the
method, multidimensional scaling (MDS) plots were constructed
with 1000 samples randomly selected from the training
subcohort to illustrate the distribution of notes.

Figure 3. Equations describing the modeling process of the natural language processing (NLP)–based algorithm.

Patient Classification Cutoff Point Determination
As the algorithm was developed to find out uncodified DM
cases, the proportion of true positives among the identified
samples, positive predictive value (PPV), was the most
important indicator of performance. With a PPV of ≥90%, the
proportion of false-positive cases is less than 10%. On the other
hand, given that the method was to identify uncodified cases in
addition to the codified cases, maintaining a high level of PPV
at the expense of sensitivity is acceptable. The way we located
the optimal cutoff by considering the trade-off between PPV
and sensitivity was also presented in a previous NLP study [39].
Given that our algorithm assigned a classification probability
to each subject, we aimed to find an optimal cutoff point to
achieve the maximum classification sensitivity with a predefined
PPV of 90%. To achieve a 90% PPV, the classification
specificity can be calculated through a linear formula, thus
forming a straight line overlaid on the receiver operating
characteristic (ROC) curve. The combination of sensitivity and
specificity in the region above the line allowed for a
performance with >90% PPV. Thus, the cutoff point was set at
the first intersection between the line and the ROC curve.

At the final stage of the retrospective model development, the
case finding algorithm was blind tested on patients from health
care facilities that were not included in the training subset.

Prospective Case Finding and Validation
Our NLP-based DM case finding algorithm was then deployed
online through integration into the HIE real-time population
exploration dashboard system. The clinical notes (N=982,211)
covering the period from July 1, 2013, to June 30, 2014, were
aggregated for prospective validation of the algorithm. An

independent gold standard dataset was constructed based on
chart reviews of clinical notes of 200 patients with DM and
1000 patients without DM randomly selected from the
prospective cohort (Figure 2). The prospective classification
performance on the gold standard dataset was evaluated using
the following parameters: PPV, sensitivity, specificity, negative
predictive value (NPV), and the area under the ROC curve. A
total of 200 samples were further randomly selected from the
uncodified DM cases identified by the algorithm to evaluate
the case finding accuracy on the entire prospective cohort. On
the basis of the longitudinal records of both clinical notes and
diagnosis codes for each patient in the HIE EMR database, a
temporal comparison of the 2 sources was analyzed.

Results

Case Finding Algorithm Performance
An MDS plot was constructed to visualize the classification
performance. As shown in Figure 4, out of 500 uncodified notes,
2 were classified as DM diagnosis. A closer examination
revealed that these “false-positive” cases had notes with genuine
diagnosis of DM. This MDS plot indicated that (1) our model
effectively differentiated the notes from those patients with DM
diagnosis and those without DM diagnosis and (2) our
NLP-based analysis of clinical notes can identify uncodified
notes with diagnosis of DM.

Figure 4 shows that more than 99% of the uncodified notes were
linked to patients without DM diagnosis and more than 99% of
the codified notes were linked to patients with DM diagnosis.
There were only 1% mislabeled samples in the training dataset,
which did not alter the model performance [40].
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Figure 4. The multidimensional scaling (MDS) plots of the training result. This analysis was aimed at detecting meaningful underlying dimensions,
for example, 1 and 2, which allow the explanation of the observed similarities (distances) between the investigated subjects. The axes of the MDS plots
represent no real sizes and thus were marked as dimension 1 and dimension 2 without units. The red dots and blue triangles, indicating the positive and
negative samples, were clearly separated. The “false positives” are circled in the plot. Chart reviews showed that these were notes with a genuine
diagnosis of diabetes mellitus.

Diabetes Mellitus Discriminant Variables
A total of 100 DM discriminant features were retained in the
final model, including demographics (n=2), risk factors (n=5),
clinical history (n=1), medications (n=20), and NLP-extracted
clinical terms (n=72; Multimedia Appendix 1). Figure 5 shows
the top 30 features ranked by their importance in the model.
The importance of each feature was rated according to the mean
decrease in algorithm accuracy scaled by standard deviation
after randomly permuting the variable values. A higher mean

decrease in accuracy (node impurities from splitting on the
variables; specifically, the node impurity is measured by the
Gini index) corresponds to greater importance of the feature
[40]. Among the top 30 features, “diabetes” and “type 2,” which
directly indicate DM, were the top 2 features, followed by age,
an important predictor of DM [41,42], and then “metformin,”
a first-line antidiabetic drug. The remaining important
discriminant features were high blood pressure, cigarette
smoking, history of alcohol use, BMI, and “obesity.”

Figure 5. List of the top 30 clinical variables included in the diabetes mellitus natural language processing (NLP)–based model. BMI: body mass index.
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Patient Classification Cutoff Point Determination
The decision tree–based classification scores were evaluated to
determine a cutoff point that allows maximal sensitivity with a
≥90% PPV (Multimedia Appendix 2). With this cutoff value
(set as .618), the continuous classification scoring outputs were
converted to reach a binary decision to identify genuine DM
cases.

Retrospective Blind Testing
As shown in Figure 6, in the retrospective blind testing, our
NLP-based analysis achieved a 95.4% (62/65) PPV, 62.0%
(62/100) sensitivity, 99.4% (497/500) specificity, and 92.9%
NPV (497/535). The blind testing results indicate that the
knowledge acquired from some hospital facilities could be
leveraged to allow prediction in others (eg, learning transfer)
[43].

Figure 6. Performance evaluation of the proposed case finding algorithm. Top: the contingency tables on blind test and prospective gold standard
datasets. Middle: the positive predictive value (PPV), negative predictive value (NPV), sensitivity, and specificity of the validation based on the
retrospective blind testing subcohort and prospective cohort. Bottom: the prospective case finding results in the total population. DM: diabetes mellitus;
GS: gold standard; ICD-9-CM: International Classification of Diseases, Ninth Revision, Clinical Modification; NLP: natural language processing.

Prospective Validation
The prospective performance of the algorithm was explored by
chart review over a gold standard dataset consisting of randomly
selected 200 patients with DM and 1000 patients without DM
in the uncodified subcohort (Figure 2). The PPV was 90.1%
(136/151), which was within the 95% CI of the retrospective
blind testing PPV (87.3%-98.4%). The sensitivity was 68.0%
(136/200). The specificity, NPV, and area under ROC curve
were 98.50% (985/1000), 93.90% (985/1049), and .929,
respectively (Figure 6).

The algorithm was deployed to allow real-time DM case finding
on the entire prospective cohort. A total of 64,168 patients with
DM were identified from codified DM diagnosis, while our
NLP-based algorithm identified an additional 5756 patients,
resulting in an 8.97% (5756/64,168) increase in the total patients
with DM during the study period. To further explore the case
finding accuracy, we randomly selected 200 samples from the
5756 samples. Manual review showed that of the 200 samples
there were 183 DM cases and 17 normal patients, resulting in
an accuracy of 91.5% (183/200). Such accuracy was above the
predetermined PPV (90%) in the calibration phase and was
within the 95% CI of the retrospective blind testing PPV
(87.3%-98.4%). The consistency of performance shows that it

is reasonable to use the results obtained on smaller samples to
reflect the performance of the algorithm on a large population.

Temporal Comparison
The time point when a patient’s first DM diagnosis was
identified by ICD codes was evaluated and compared with the
time point when the DM was identified by NLP case finding
algorithm. Out of 21,720 patients with DM identified by both
methods, 6616 patients (6616/21,720, 30.46%) were identified
by the NLP-based algorithm before a DM ICD code was noted
in the medical record (mean time difference = 48 days). In
particular, 19.86% (1314/6616) of patients were identified by
NLP case finding 3 months or more before they were identified
by a DM ICD code (Multimedia Appendix 3).

Discussion

Principal Findings
To the best of our knowledge, this is the first online deployment
of a real-time NLP-based case finding method for DM, using
both patients’ structured (eg, codified diagnosis) and
unstructured (free text) clinical histories from a statewide EMR
database. Consistent with our hypothesis, during a 1-year period
(from July 1, 2013, to June 30, 2014), our algorithm identified
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5756 additional patients with DM (an 8.97% increase in the
total patients with DM) who were otherwise left undiagnosed
when only code-based case finding was applied. Our finding
indicates that the proportion of false negatives decreased using
the NLP-based approach compared with the existing ICD-based
approach (P<.01). Many patients with DM who were
misclassified as patients without DM by the code-based case
finding were correctly identified by our NLP text searching
algorithm, resulting in a more complete ascertainment of DM
diagnoses.

There exist several reasons why patients with diagnosed DM
may have not been associated with a DM diagnosis code. Among
the uncodified DM patients we identified, 30% had DM noted
as secondary, discharged, or other types of diagnosis and 63%
had a history of diabetes in clinical records. A possible reason
for missing diagnostic codes in those cases might be that if a
patient was admitted to the hospital owing to more acute or
life-threatening clinical conditions, information related to DM
was overlooked when ICD coding was conducted. Therefore,
there is a strong need for enhancing the current ICD coding
practice in hospitals and other health care facilities in the state
of Maine to ensure that all DM diagnoses noted in the patients’
medical records are coded.

Strengths and Limitations
Although several standardized coding systems (eg, ICD, Logical
Observation Identifiers Names and Codes) have been used to
record diagnoses, procedures, laboratory tests, and medications
associated with each patient encounter, a large amount of
information related to patients’ clinical histories were also
available in the form of unstructured free text in EMRs. In
addition to the terms directly describing DM (eg, “diabetic,”
“type 1,” “diabetes mellitus”), our NLP algorithm was able to
obtain more complete medical histories based on information
about risk factors and medications available from clinical notes.
A range of conventional DM risk markers (eg, age, smoking,
BMI, and blood pressure) [42,44-46], emerging risk markers
(eg, overweight) [47], and antidiabetic drugs (eg, metformin)
were identified and used to enhance DM case detection. In
particular, metformin, the first-line medication for type 2
diabetes, appeared to be the most important drug in our feature
selection process. These findings indicate that our algorithm
effectively incorporated a variety of clinically relevant features,
leading to a significant improvement in DM case finding in the
population of the state of Maine.

Another strength of our NLP case finding algorithm is the ability
to find uncodified DM cases before the assignment of
ICD-9-CM codes. The proposed DM case finding methodology
used NLP algorithm in parallel with ICD-9-CM codes. In the
prospective study, 69,924 patients with DM were identified.
Among those 69,924 patients, 21,720 patients were able to be
identified by both methods. That is, there were 21,720 DM
patients having clinical notes that indicated they had DM.
30.46% (6616/21,720) of those patients had such clinical notes
associated with an encounter earlier than the assignment of a
DM diagnosis code, while 69.54% (15,104/21,720) of those
patients had such clinical notes during the same encounter when
a DM diagnosis code was given. Compared with using

ICD-9-CM codes alone, the NLP algorithm was able to identify
30.46% (6616/21,720) of patients with DM at an earlier
encounter, giving a mean time difference of 48 days. More
importantly, a significant proportion of these patients
(1314/6616, 19.86%) were identified 3 months or more before
a DM diagnosis code was noted. For those patients, this time
period is sufficient to initiate aggressive lifestyle interventions
that have a long-term impact to delay progression and prevent
complications of diabetes [48]. Thus, this early detection
capability is clearly an advantage of our DM NLP algorithm
such that these high-risk individuals can be selected for timely
initiation of targeted prevention, care, and treatment.

We noted that there are some limitations in our study. First,
although the use of statistical learning improved the performance
of the case finding algorithm, it has inevitable misclassification
errors. There were a couple of DM cases located close to the
“borderline,” that is, the cutoff point for the algorithm to
differentiate between DM cases and normal samples. The DM
cases with outputs closed to the cutoff point for the algorithm
were those who were susceptible to misclassification errors,
compromising false negatives. DM cases at borderline
represented DM patients with incomplete DM feature profile,
that is, patients having no DM-related risk factors or medication
records but having clinical notes confirming DM diagnosis, or
patients having no DM-related risk factors or clinical notes but
having medication records. Such incomplete profiles could
mislead the algorithm. Second, the relatively small sample size
of the “gold standard” dataset introduced the possibility that
some relatively rare clinical phenotypes of DM—where
clinicians documented diabetes in a nonstandard way—might
not be accounted for during model training. Third, we were
unable to identify whether the patients with DM found by the
NLP algorithm were those with newly diagnosed DM or those
with a long-standing diagnosis. Fourth, we acknowledge our
case finding method’s limitation that it depends on the
physician’s diagnosis of the disease and the documentation
quality in clinical notes. Finally, the model was developed on
the patient data in the state of Maine. Extra risk factors such as
sociodemographic factors may need to be considered for
adjustment purpose when this learning is transferred and applied
to other geographic regions.

A Web-based Identification Tool
Our NLP algorithm has been deployed online through
integration into the Maine State HIE workflow, currently
allowing real-time statewide identification of patients with
uncodified DM. It provides doctors, hospitals, and other
providers in the state HealthInfoNet network with an effective
online utility to achieve a more complete assessment of the DM
burden in their location. Incorporating the DM case finding
algorithm with the existing health care system makes the best
use of information available in EMRs. Together with the
previously successful integration of our other NLP case finding
algorithms, including that for congestive heart failure [14], there
is a strong potential to expand the application of this novel
method to enhance case finding for other diseases in Maine and
other states in the United States and in other countries.
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Conclusions
Our NLP-based DM case finding algorithm was developed and
validated on a population-based dataset in the state of Maine.
The results strongly support our hypothesis that the NLP-based
algorithm could identify additional patients with DM to
complement the existing ICD-code–based case finding method.
Online real-time integration of our DM case finding algorithm
into the Maine HIE workflow can enhance DM case detection
and facilitate efforts toward timely initiation of targeted
management and care for patients with DM. From the patient’s

perspective, many patients with DM across the state of Maine,
who were not identified from ICD codified diagnosis, would
benefit from information we provide by being able to take
initiatives to seek care and plan their personal strategies to
monitor and control their diabetes status. In this regard, our
online real-time DM case finding utility not only benefits all
stakeholders including payers, providers, and policy makers in
the Maine health care system, but also serves as a demonstrative
Web-based project for future application to improve DM case
finding for targeted care and treatment in other states and
countries, making a contribution to alleviate the DM burden.
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Abbreviations
BMI: body mass index
DM: diabetes mellitus
EMR: electronic medical record
HIE: health information exchange
ICD: International Classification of Diseases
ICD-9-CM: International Classification of Diseases, Ninth Revision, Clinical Modification
MDS: multidimensional scaling
MeSH: Medical Subject Headings
NLM: US National Library of Medicine
NLP: natural language processing
NPV: negative predictive value
PPV: positive predictive value
ROC: receiver operating characteristic
SNOMED CT: Systematized Nomenclature of Medicine – Clinical Terms
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