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Abstract

Background: Health level seven version 2.5 (HL7 v2.5) is a widespread messaging standard for information exchange between
clinical information systems. By applying Semantic Web technologies for handling HL7 v2.5 messages, it is possible to integrate
large-scale clinical data with life science knowledge resources.

Objective: Showing feasibility of a querying method over large-scale resource description framework (RDF)-ized HL7 v2.5
messages using publicly available drug databases.

Methods: We developed a method to convert HL7 v2.5 messages into the RDF. We also converted five kinds of drug databases
into RDF and provided explicit links between the corresponding items among them. With those linked drug data, we then developed
a method for query expansion to search the clinical data using semantic information on drug classes along with four types of
temporal patterns. For evaluation purpose, medication orders and laboratory test results for a 3-year period at the University of
Tokyo Hospital were used, and the query execution times were measured.

Results: Approximately 650 million RDF triples for medication orders and 790 million RDF triples for laboratory test results
were converted. Taking three types of query in use cases for detecting adverse events of drugs as an example, we confirmed these
queries were represented in SPARQL Protocol and RDF Query Language (SPARQL) using our methods and comparison with
conventional query expressions were performed. The measurement results confirm that the query time is feasible and increases
logarithmically or linearly with the amount of data and without diverging.

Conclusions: The proposed methods enabled query expressions that separate knowledge resources and clinical data, thereby
suggesting the feasibility for improving the usability of clinical data by enhancing the knowledge resources. We also demonstrate
that when HL7 v2.5 messages are automatically converted into RDF, searches are still possible through SPARQL without
modifying the structure. As such, the proposed method benefits not only our hospitals, but also numerous hospitals that handle
HL7 v2.5 messages. Our approach highlights a potential of large-scale data federation techniques to retrieve clinical information,
which could be applied as applications of clinical intelligence to improve clinical practices, such as adverse drug event monitoring
and cohort selection for a clinical study as well as discovering new knowledge from clinical information.

(JMIR Med Inform 2016;4(2):e12) doi: 10.2196/medinform.5275
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Introduction

Clinical Data Searches Through Knowledge Level
Queries
While secondary use of electronic medical records (EMRs) are
widely expected [1,2], medical data in general do not contain
adequate amounts of information or knowledge in their original
format, making it difficult to retrieve the desired data based on
the knowledge in the clinical domain. For example, when we
try to screen patients with medication history of "renin
angiotensin inhibitors" as possible candidates for a clinical
study, it is common for us to prepare a list of drug codes for
such drug classes and query a database with the prepared list.
If such a query is performed simply using an expression such
as "drugs classified as renin angiotensin inhibitors," it will
facilitate our use of the database. As a similar example, when
we try to screen patients with medication history of "drugs that
cause leucopenia," rather than having to list in a query hundreds
of codes for drugs showing the adverse events, if drugs that
cause leukopenia are identified using external knowledge
resources, and if a search is performed over medication data
based on the identified drugs, it would facilitate the research
use of EMRs.

Clinical Data Searches Using Life Science Knowledge
Resources
The Linked Open Data project [3] is an attempt to facilitate data
usage via the Internet by making data available in a standard
format based on the resource description framework (RDF). In
the field of life science, attempts are being made to further
increase the value of data sets by linking and integrating them
as Linked Data. The Bio2RDF project [4] aims at linking and
using over 20 types of data sets including the Kyoto
Encyclopedia of Genes and Genomes (KEGG) [5,6], the Open
Biological and Biomedical Ontologies [7], the Universal Protein
Resource [8], and the Gene Ontology [9]. In addition, the
National Bioscience Database Center and the Database Center
for Life Science in Japan act as primary driving forces and
conduct various activities to promote the use of life science data
resources and abroad as Linked Data [10,11].

Applying RDF to build clinical databases for secondary use
facilitates integration of external knowledge resources expressed
in RDF. Teodoro et al. [12] developed a Web-based
antimicrobial resistance monitoring system that uses a Semantic
Web-based approach to promote the integration of
heterogeneous data sources. Assélé et al. [13] developed a
framework to perform SPARQL Protocol and RDF Query
Language (SPARQL) queries on clinical databases to obtain
results about antibiotic resistance and compared their approach
with existing business intelligence approaches in terms of
usability and functionality. Riazanov et al. [14] developed an
ontology for the clinical domain and reported that SPARQL
queries can be expressed and executed in an ad hoc manner by
mapping the developed clinical domain ontology and clinical
data. Pathak et al. [15,16] used publicly available life science
data resources as Linked Data and searched over EMR databases
integrated with these resources through SPARQL federation
queries. The above studies attempt to improve search usability

and functionality by applying Semantic Web technologies to
supplement information lacking in the clinical data with
knowledge from external resources. However, these studies
dealt with only institution-specific EMR databases, and it is not
easy to apply their methods at other hospitals because schemas
of EMR databases generally differ between hospitals; thus, the
RDF data structures constructed from these schemas also differ.
To avoid these problems and make these technologies widely
available, we use health level seven version 2.5 (HL7 v2.5) [17]
messages as clinical data. HL7 v2.5 is a messaging standard for
information exchange between clinical information systems and
the most widely implemented standard for health care in the
world. It specifies a number of standards, guidelines, and
methodologies by which various clinical information systems
can communicate with each other. HL7 messages, although not
comprehensive, contain several important types of data for
clinical research, such as patient demographics and diagnostic
disease.

RDF for Developing Clinical Databases
Applying RDF in developing clinical databases for secondary
use provides the following benefits. First, because the RDF data
structure is simple, they can express highly heterogeneous data
sets including clinical data, disease concepts, drugs, clinical
tests, and genome information using a single data model, making
it possible to integrate and handle them in a coherent manner.
Second, the inference mechanism supports data sets with
hierarchical relationships, such as those containing disease and
drug information, through an RDF schema (RDFS) [18]
vocabularies. With the relational databases typically used in
clinical databases, special measures are required to express the
hierarchical structures that exist in data. With RDF, however,
this can be accomplished simply by adding the rdfs:subclassOf
relationship between the resources. Third, RDF identifies
resources through uniform resource identifiers (URIs); therefore,
data can be shared via HTTP between different network
locations. SPARQL federation query integrates publicly
available data sets and allows different network locations to
refer to and search over these integrated data sets, maintaining
high confidentiality of EMRs. This is expected to be useful
when developing clinical databases.

Aim of the Study
Using RDF as the format for HL7 messages, it is possible to
integrate large-scale clinical data and life science knowledge
resources. In this study, we implement the following measures
to verify this approach. We develop a method for converting
HL7 messages into RDF data. Noting that publicly available
drug databases constitute useful resources for query expansion
in clinical data searches, we show how SPARQL describes
adverse drug events (ADEs) and perform searches using such
SPARQL expressions. We also examine the search performance
and discuss the applicability of the proposed approach to the
searches over large-scale data.
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Methods

RDF and SPARQL
Semantic Web technologies use simple data structures to
integrate and use data on a Web-level scale. RDF is the most
basic technology for standardizing data expressions, and it
consists of a set of URI references (U), a set of blank nodes (B),
and a set of literals (L). An RDF triple is a tuple of three
elements, that is, a subject (s), a predicate (p), and an object (o),
that satisfy s ∈ (U ∪ B), p ∈ U, and o ∈ (U ∪ B ∪ L),
respectively. The RDF graph is a directed graph of RDF triples.
A data schema in RDF is defined by the vocabulary and
semantics of the RDFS. The RDFS is a set of vocabulary and
inference rules defined for the vocabulary, and the RDF
processor executes these inference rules to derive new RDF
triples, which are then added to the RDF graph. For example,
rdfs:subclassOf is a vocabulary that defines the class–subclass
relationship, and this vocabulary is defined by two rules (ie, a
transitive rule and a rule to express a lower class instance being
also an upper class instance). Through this inference rule, a
search over a lower class and its instances becomes possible by
using a higher level abstraction as the search terminology.

SPARQL is an RDF query language. It describes, in the query
condition, variables of a pattern to match and their values to
use for filtering and extracts the subgraphs that match the given
pattern from an entire RDF graph so that the corresponding
values of the specified variables are obtained. Filtering of values
is performed by using FILTER keywords and by computing a
boolean value using the values bound to the variables. Examples
of typical functions include a function that performs matching
of text strings in their regular expressions and functions that
perform logic operations. One beneficial feature of SPARQL
is that it can handle multiple RDF graphs as a single graph.
SPARQL 1.1 further enhances this feature, making it possible
for a single federated query [19] to inquire multiple RDF graphs
at different network locations. A federated query expression
first designates the SPARQL endpoint with a SERVICE
keyword and then describes variables of a pattern to match,
similar to a regular SPARQL query, in a clause that follows the
endpoint. Consequently, using variables, a federation query can
describe a query that can search local or remote RDF graphs.

SS-MIX2: HL7 Message-Based Clinical Data Storage
in Japan
We used HL7 messages stored in the Standardized Structured
Medical Record Information Exchange version 2 (SS-MIX2)
that has been developed to facilitate secondary use of EMRs as
a Ministry project in Japan [20,21]. SS-MIX2 defines the
specification of a container for storing EMRs, and the main
body of the EMRs is the HL7 v2.5 message. It consists of the
standardized storage and the annex storage. The standardized
storage contains structured clinical data in the form of an HL7
v2.5 message, such as patient demographics, diagnostic disease,
medication orders, laboratory test results, and several kinds of
examination orders. The annex storage contains nonstructured
clinical data, such as clinical reports, examination reports, and
imaging data in arbitrary format. Earlier than the development
of the SS-MIX2, standardized terminology for drugs, laboratory

tests, procedures, and diagnostic disease has also been developed
by the Medical Information System Development Center
(MEDIS-DC) [22], and exchange rules for clinical information
to be conformed with HL7 have also been developed by the
Japanese Association of Healthcare Information System Industry
[23]. In 2011, the Ministry of Health, Labor, and Welfare
adopted these terminologies and exchange rules as the standard
specifications for the health and medical care information field,
thereby facilitating the development of standardized medical
information systems. Against this background, as of July, 2015,
the SS-MIX2 storage has been deployed at 518 hospitals in
various regions of Japan [24]. Examples of SS-MIX2 storage
applications include (1) an intermediate storage linking
multivendor systems and electronic medical record/order entry
systems, (2) an intermediate storage for linking regional health
care systems, (3) a backup data storage for use in the event of
a disaster, and (4) a data source for postmarketing survey of
drugs and clinical research.

Structure of SS-MIX2 Storage and HL7 Message
The SS-MIX2 stores HL7 messages below the ordinary directory
trees. Under the root directory, patient identifier, administration
date, and SS-MIX2 data type are hierarchically located, and
corresponding HL7 messages are placed under the bottom
directory. The SS-MIX2 data types identify types of clinical
information, such as patient demographics, medication orders,
and laboratory test results, and these data types are semantically
mapped on HL7 message types. For example, HL7 message
types to update or delete patient demographics are ADT^A08
and ADT^A23, respectively. SS-MIX2 uses a single data type
(ie, ADT-00, for these two HL7 message types). In an HL7
message, each line is called a segment and contains a specific
category of information, such as patient identification (PID),
order-related information (ORC), and pharmacy (RXE). Each
segment consists of a field delimited by a pipe symbol, and the
field consists of a field's element delimited by a hat symbol.
For example, a patient identifier is located in the third field of
the PID segment and a drug code is located in the first field's
element in the second field of the RXE segment. Two or more
segments may be organized as a logical unit called a segment
group, which might or might not repeat. The boundary of the
segment group is not identical in a standard form of the HL7
message itself, but it appears in an extensible markup language
(XML)-encoded HL7 message described in the next section.
Some fields or a field's element may contain a code defined by
a certain terminology. In the SS-MIX2, terminologies are used,
such as MEDIS DRUG [22] for drugs, JLAC10 [25] for
laboratory tests and International Classification of Diseases,
and 10th Revision (ICD10) for diagnostic diseases, which are
all provided by MEDIS-DC as a nationwide standard. Although
these terminologies are unique to Japan except for ICD10, the
terminology for drugs can be mapped on the Anatomical
Therapeutic Chemical Classification System (ATC) and United
States Pharmacopeia (USP) [26] using intermediate resources
such as KEGG. This mapping information becomes the
key-point to supply an HL7 message with external knowledge
recourses by matching a code in the message to a class
represented in the recourses. Figure 1 shows examples of an
SS-MIX2 storage structure and an HL7 message.
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This example HL7 message (RDE^O11) contains information
on a medication order for a patient identified by 0123456789
administered on May 28, 2013. The message contains the

following segments: message header (MSH), patient
identification (PID), order-related information (ORC), pharmacy
encoded (RXE), and timing and quantity (TQ1).

Figure 1. Examples of an SS-MIX2 storage structure and an HL7 message. This example HL7 message (RDE^O11) contains information on a medication
order for a patient identified by 0123456789 administered on May 28, 2013. The message contains the following segments: message header (MSH),
patient identification (PID), order-related information (ORC), pharmacy encoded (RXE), and timing and quantity (TQ1).

Converting HL7 Messages Into RDF Data
In the standard form of an HL7 message, metadata for fields or
a field's elements are not included. For example, the patient’s
date of birth is located in the seventh field of the PID segment,
although, the message itself does not contain the information.
If the name of an RDF resource is determined based on its
metadata, HL7 messages are efficiently converted to RDF data.
Prasser et al. [27] proposed a method that uses a generic
Java-based parser provided by the HL7 Application
Programming Interface (HAPI), and that uses the Java class and
method names as metadata, traversing Java objects, to convert
an HL7 message to RDF data [28]. We also use the HAPI to
parse a standard form of the HL7 message, although, we first
encode the HL7 message to a form of XML that is also defined
in the HL7 specifications. In an XML-encoded HL7 message,
segments and segment groups are given in hierarchical XML
elements. For example, an XML form of an HL7 message for
a medication order starts with an <RDE_O11> tag that describes
the type of HL7 message, followed by a tag that describes the
segment of a message header <MSH> and segment groups of
patient information <PATIENT> and order information
<ORDER>. In the segment groups, the corresponding segments

are included, such as the PID segment in the PATIENT segment
group or the ORC and RXE segments in the ORDER segment
group. Similarly, each segment contains a tag for each of its
fields to describe either the field or the field's element, such as
a time stamp <TS> or a coded character string <CWR>, and
text data is marked up with these tags. We then applied a generic
method of transformation from XML to RDF [29], in which an
RDF resource is generated using the element name of the XML
as the name of the resource, creating a subject-predicate-object
triple by traversing the hierarchical structure, and mapping the
text content to an RDF literal. Note that the mapping needs to
be determined in advance because the XML-encoded HL7
message does not contain the data type of the text content. Thus,
we sought to map the numerical type of the text content to
xsd:decimal, the date type to xsd:date, the timestamp type to
xsd:dateTime, and all other types to xsd:string. In comparison
with the previously mentioned method, there is an advantage
to be able to use the names of the segment or field defined by
the HL7 specifications, which is not modified depending on the
implementation of the Java class and method names. Figure 2
shows a medication order in the standard form of an HL7
message, an XML-encoded HL7 message, and an RDF
representation after conversion.
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Figure 2. A medication order in the HL7 standard format, XML-encoded format, and after conversion to RDF.

URI Naming
To determine a URI of an RDF resource, we considered two
requirements: (1) the name of the URI should preferably contain
a structured path to facilitate the application’s access to RDF
resources [30], (2) the name of the URI should be generated
uniquely from the available information for an HL7 message
to avoid redundancy of referring to an RDF repository each
time when determining it. To satisfy these requirements, we
constructed the name of the URI by connecting a directory path
to an HL7 message file, which is already unique in SS-MIX2
storage, with a path to an element in XML that is encoded from
the HL7 message. Note that as several HL7 segment groups,
such as ORDER and RESULT may appear multiple times in
the same hierarchy layer in the XML, duplication of the path
names should be avoided by counting how many times they
appear in the path. As the HL7 message specifications define
which segment groups may appear multiple times, the name of

the URI can uniquely identify the deepest elements by
considering the duplication. This naming method depends on
SS-MIX2 in terms of using the directory path to an HL7
message, although, if only the path to an HL7 massage is
uniquely determined, any other way can be applied. Figure 3
shows a portion of a serialized RDF representation of a
medication order.

Depending on the purpose of use of the HL7 message, it may
contain numerous redundant segments, fields and field's
elements, and it may not be necessary to convert all content to
RDF data. For example, a MSH segment that provides header
information for communication between systems, as well as
fields other than the patient identifier, date of birth, and gender
in a PID segment, is not required in clinical research. Therefore,
when converting to RDF, the amount of RDF data to generate
is reduced by only using the segments and fields that are needed
for the purpose.
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Figure 3. Serialized RDF representation of a medication order in turtle format.

Query Expansion Using Linked Drug Data
If a type of drug is identified by its detailed information, it is
useful for a query to search for ADEs of a drug. By converting
drug databases to Linked Data, it is possible to identify drugs
through expressions that use their detailed information and to
resolve the identified drugs to their codes used in the HL7
message. For example, a medication order search for atypical
antipsychotic drugs that have an inhibitory effect on the
serotonin 2C (5HT2C) receptor or the histamine H1 (H1)
receptor consists of the following steps: (1) use the USP to
identify drugs classified as atypical antipsychotic drugs, (2) use
a link between the USP and KEGG to identify corresponding
KEGG drugs. Then, narrow down the list to those drugs that
have an inhibitory effect on the 5HT2C receptor or the H1
receptor, (3) use a link between the KEGG and MEDIS DRUG
to identify corresponding drugs on the MEDIS DRUG and to
identify the codes of the drugs to use in the HL7 message, and
(4) Use the identified drug codes to search for a medication
order over HL7 messages. Figure 4 illustrates relationships
between USP, KEGG, and MEDIS DRUG used in this search.

To enable this method, we converted publicly available drug
databases into RDF and provided explicit links among the
corresponding items to obtain linked data. Because there were
no data sources publicly available in RDF format, we converted
each source individually to RDF. We got the sources of ATC,
USP, and KEGG from a website of the KEGG and made the
explicit links based on the information obtained from the KEGG.
We used rdfs:subclassOf to describe the higher and lower level
relationship in the ATC and USP, and inference was executed
and materialized in advance. We also got the sources of SIDER
2 (SIDe Effect Resource) [31] and MEDIS DRUG from each
website. In the SIDER 2 dataset, drug classes are coded in
STITCH [32] identifiers and names of ADEs are coded in
MedDRA along with upper and lower bound of the frequency.
The information to link between the SIDER 2 and ATC were
obtained from website of STITCH. We used the MEDIS DRUG
to match the drug concept in the KEGG to the drug code used
in the HL7 message, and the information to link between them
were obtained from the the KEGG source. This linked drug data
set is hereafter referred to as Linked Drug Data. A summary of
the Linked Drug Data is shown in Table 1. The Linked Drug
Data is available from our project repository [33].
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Table 1. A summary of the linked drug data.

Number of drug classes

(triples)

Link to the oth-
er databases

DescriptionsOriginal drug databases

5770

(48,504)

KEGG,

SIDER 2

A drug classification system developed by World Health Organization.
It divides drugs into different classes according to the organ or system
on which they act or their therapeutic and chemical characteristics,
such as antihypertensives and the cardiovascular system. In converting
to RDF, we used rdfs:subclassOf to represent the hierarchical relation-
ships and added links to the drug classes of KEGG and SIDER 2 at the
chemical substance subgroup level.

Anatomical Therapeutic
Chemical Classification System
(ATC)

1459KEGGA drug classification system developed by the US Pharmacopeial
Convention. It contains approximately 50 categories, which are typically
based on diseases or symptoms that drugs are used to treat, such as pain
and psychosis. In the same way as ATC, the hierarchical relationships
were represented by rdfs:subclassOf.

United States Pharmacopeia
Classification (USP)

(7567)

997ATCA resource that contains ADEs and their frequency, which are extracted
from package inserts and publicly available documents. The drugs are
coded by STITCH compound identifiers, and the ADEs are described
in the preferred terms of MedDra.

SIDER 2

(7,848,862)

5780ATC,A resource that consolidates drug data from Japan, the Unites States,
and Europe. It organizes drug data based on their chemical structures
and ingredients and adds information on their molecular interactions
including chemical drug targets and metabolic enzymes. Many entries
also include their mapping to other drug databases, and we use the
mapping information to establish links to ATC, USP, and MEDIS
DRUG.

KEGG

(109,976)USP,

MEDIS DRUG

26,126KEGGA standard drug terminology that maps various drug terminologies
used in Japan. We used MEDIS DRUG to match the drug code in
KEGG to the drug code used in the HL7 message.

MEDIS DRUG

(387,319)
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Figure 4. Relationships between USP, KEGG, and MEDIS DRUG used in search for atypical antipsychotic drugs that have an inhibitory effect on the
5HT2C receptor or the H1 receptor.

Temporal Patterns to Determine Adverse Drug Events
To identify adverse events, a query condition needs to describe
the temporal relationship between the administration of a drug
and the adverse events that were assumed to be caused. We
classify the temporal relationships into the following four types
of basic temporal patterns and explain query expressions using
these patterns to identify adverse events.

Temporal Pattern 1: Searching for all Medication Orders
This pattern is used to retrieve all medication orders of a specific
drug without considering their temporal relationships with other
events. This is the most basic pattern of clinical data searches.

Temporal Pattern 2: Searching for Adverse Events
During Each Medication Period
This pattern estimates the medication period as beginning on
the day that a drug medication order was issued and continuing
for the number of days prescribed, and it searches for the adverse
events during the estimated medication period. Although the
medication period estimated in this pattern is likely to be close
to the actual drug administration period, irregular medication
orders, when issued, could make a period when a drug has been
administered appear as it had not been, and the estimated
medication period could erroneously exclude such periods.
Consequently, it is possible to overlook adverse events during
such excluded periods.
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Temporal Pattern 3: Identifying Adverse Events During
a Period Between the Initial and Final Medications
This pattern assumes that the impact of a certain drug extends
from its initial medication date to its final medication date, and
it is to identify the adverse events during this period. The drug
administration period estimated in this pattern could include
extended time periods during which the drug had not been
administered, and thus, it is possible that the defined drug
administration period significantly deviates from the actual drug
administration period. However, because the effects of some
drugs could continue for an extended time period after drug
administration has ended, this pattern identifies adverse events
of these types of drugs whose effects extend beyond the end of
the medication period.

Temporal Pattern 4: Excluding Adverse Events
Immediately Before an Initial Medication
This pattern is to increase the degree of certainty of a causal
relationship between a drug and an adverse event by excluding
the adverse events immediately before initial medication of the
drug.

Experiment Settings
In the next section, we first show a summary of created RDF
data to use in this experiment. To ensure the impartiality of the
benchmark results, all segments of the HL7 messages were
converted to RDF data, rather than arbitrarily deleting
unnecessary segments. We then explain three types of query in
use cases for detecting ADEs, which are available in our
proposed method and show the execution results of searches
using these queries. The goal of our experiments was not to
investigate specific adverse events, but rather show that it is
possible to search over the RDF-ized HL7 messages using
SPARQL queries that combine external knowledge and temporal
patterns. So, we finally present results of a benchmark that
measures the execution time to show that the searches over
RDF-ized HL7 messages through SPARQL provide a feasible
response speed.

To show the relationships between the execution time of the
query and the amount of data, we divided whole HL7 messages
equally into 10 subdatasets in which the HL7 messages were
arranged in ascending order of the date of administration. Then,
we measured the execution time of the queries issued five times
at each point by increasing every subdatasets. We tested two
types of query expressions for each three query in order to
compare our proposed query expression with a conventional
one. The proposed query uses the Linked Drug Data dynamically
by SPARQL federation function in the manner as shown in
Figures 5 to 7 below. The conventional query enumerates the

individual drug codes in SPARQL filter keyword in advance,
which were obtained from the Linked Drug Data separately.
Thus, the execution time of the proposed query included, (1) a
time to search for individual drug codes from an expression like
"renin angiotensin inhibitors" by accessing to Linked Drug Data
and (2) a time to search for medication records of RDF-ized
HL7 data based on the searched drug codes. On the other hand,
the execution time of the conventional query did not include a
time to search for the individual drug codes because they are
enumerated in advance.

We measured the execution time after relaunching the RDF
store and clearing the cache each time a query was executed.
Therefore, the execution time included the time it takes to load
the data to memory, execute the query, and display the execution
results. As we observed that the execution speed dropped
drastically when SPARQL queries were not completely
optimized through automatic optimization, we manually
optimized the execution sequences and then locked them using
functionality available in Virtuoso. With regard to the
environment for executing queries, the RDF-ized HL7 messages
and the Linked Drug Data were stored in two different SPARQL
endpoints on a secure network. For the RDF-ized HL7 messages,
we used hardware with Intel Xeon 2.60 GHz processors and
256 GB random access memory (RAM). For the Linked Drug
Data, we used hardware with Intel Xeon 2.20 GHz processors
and 128 GB RAM. Both pieces of hardware ran the CentOS6.5
operating system, and Virtuoso Open-Source Edition 7.1.0 was
used as the RDF store.

Results

Converted RDF Data
The University of Tokyo Hospital is an educational hospital
with more than 1100 beds and 760,000 visits annually. Since
2011, the hospital has been collecting data in the form of HL7
messages in a SS-MIX2 storage. From these collected data, we
used the medication orders and laboratory test results during
the 3-year period from January 1, 2011 to December 31, 2013.
There were approximately 148,000 unique patients, and the
number of HL7 messages included was 1.9 million for
RDE^O11 (medication orders) and 2.1 million for OUL^R22
(laboratory test results). We then converted them into RDF
using the method explained earlier. Approximately 650 million
RDF triples for RDE^O11 and 790 million RDF triples for
OUL^R22 were converted, and the average number of triples
in one message was 360. It was also that the approximate time
to convert HL7 messages into RDF were 17 hours and 30
minutes for RDE^O11 and 25 hours 10 minutes for OUL^R22
when we used single CPU (Table 2).

Table 2. Summary of the RDF-ized HL7 messages.

Time to convert HL7 messages
into RDF

Triples in a mes-
sage

Number of RDF
triples (million)

Number of HL7 mes-
sages (million)

Information contentType of HL7 message

17 hours 30 minutes3426501.9Medication orderRDE^O11

25 hours 10 minutes3767902.1Laboratory test re-
sult

OUL^R22

42 hours 40 minutes36014404.0-Total
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SPARQL Expressions for Searching Adverse Events

Query 1: Identifying Drugs Based on Pharmaceutical
Classification and Searching For All Relevant
Medication Orders
This is the most basic query searching medication orders that
are classified in a certain pharmaceutical category. The query
(Figure 5) searches for all medication orders for drugs classified
as renin angiotensin inhibitors. The SERVICE clause that
follows the WHERE clause queries the Linked Drug Data stored

at a SPARQL endpoint, identifies all ATC subclasses of renin
angiotensin inhibitors, and resolves their individual drug codes
through the KEGG and MEDIS DRUG. When this finishes,
triple pattern matching identifies the patients who were
prescribed drugs with the code that the SERVICE clause
resolved, and binds the dosage amount, medication date, and
number of medication days to their corresponding variables of
the patients. Query results are returned in a table with the
column names described in variables of the SELECT statement.
This query does not consider the temporal relationship with
other events; thus, it is for Temporal Pattern 1.

Figure 5. SPARQL expression of Query 1. This query searches all medication orders for drugs classified as renin angiotensin inhibitors.

Query 2: Identifying Drugs Based on Known Adverse
Events and Searching for Adverse Events During the
Relevant Medication Periods
This query identifies drugs from known adverse events
registered in SIDER 2 and searches for clinical cases that may
include adverse events resulting from the identified drugs.
Specifically, we consider a query (Figure 6) to identify drugs
that cause leukopenia or neutropenia as adverse events in SIDER
2 and to search for the clinical cases where the identified drugs
were prescribed and a drop in the leukocyte counts was observed
during each medication period. Similar to Query 1, the

SERVICE clause identifies the drugs that cause leukopenia or
neutropenia at a frequency of 30% or higher in SIDER 2 and
resolves their individual drug codes through the ATC, KEGG,
and MEDIS DRUG. When this finishes, triple pattern matching
binds the drug codes of the prescribed drugs, dosage amounts,
medication dates, duration of each medication, leukocyte counts,
and its examination date to their corresponding variables, and
then searches for clinical cases where the leukocyte counts was
3000 or less during the medication period (defined as the period
starting on the day of the medication order and continues for
the number of prescribed days). Because this query searches
for adverse events during each medication period, it is for
Temporal Pattern 2.
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Figure 6. SPARQL expression of Query 2. This query searches all cases for which a leukocyte count of 3000 or less was observed during the medication
period of drug types having leukopenia or neutropenia as adverse events.

Query 3: Identifying Drugs Based on Pharmaceutical
Classification and Their Targets, and Searching for
Adverse Events During the Relevant Drug Medication
Periods
This query illustrates that when multiple drug data resources
are used, drugs can be identified with more detailed
characteristics. In clinical backgrounds, atypical antipsychotic
drugs are known to have a tendency to trigger diabetes. It is
hypothesized that these drugs cause chronic bulimia by blocking
5HT2C and H1 receptors and bring about obesity and
hyperinsulinemia, thereby inducing diabetes [34]. This query
may help examine this hypothesis through identifying the drugs
that demonstrate these characteristics and extracting clinical
cases that satisfy the criteria for diabetes during the medication

period. As mentioned above, this query (Figure 7) first narrows
down drugs classified as atypical antipsychotic drugs in the
USP classification to those in KEGG having an inhibitory effect
on 5HT2C or H1 receptors, and then resolves individual drug
codes through MEDIS DRUG. It then uses a filter operation to
derive the initial and final medication dates for each patient
from the medication orders of the drugs with the resolved drug
codes, and extracts clinical cases where the HbA1c value or the
serum glucose satisfies the criteria for impaired glucose
tolerance during the medication period. Note that as the HbA1c
value changes gradually, we used the period between the initial
and final medications, rather than using each medication period.
We also added a condition to exclude clinical cases satisfying
the same criteria within 60 days of the initial medication.
Therefore, this query is for a combined temporal pattern of
Temporal Patterns 3 and 4.
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Figure 7. SPARQL expression of Query 3. This query searches all cases satisfying the criteria for impaired glucose tolerance during a period between
the initial and final medications of atypical antipsychotic drugs that have a 5HT2C or H1 receptor inhibitory effect. The clinical cases that satisfy the
above criteria within 60 days of the initial medication are excluded. In this query, two subqueries are used. In subquery 1, the cases having the period
of initial and final medications of the atypical antipsychotic are identified. In subquery 2, the cases satisfying the criteria for impaired glucose tolerance
during the period are identified.

Execution Results of Each Query
Table 3 shows the results of executing each query over the
RDF-ized HL7 messages for a 3-year period. The Query 1
expression of "drugs classified as renin angiotensin inhibitors"
yielded 476 different types of drug codes by the Linked Drug
Data, and there were a total of 197,366 medication orders found
for these drugs. Similarly, the Query 2 expression of "drug types

having leukopenia as adverse events" yielded 131 types of drug
codes using SIDER 2, and the Query 3 expression of "of the
atypical antipsychotic drugs, those having a 5HT2C or H1
inhibitory effect" yielded 78 drug types, with Queries 2 and 3
obtaining 1171 and 58 results, respectively.
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Query Execution Performance
Figure 8 shows, for each three query, the average measured
execution times of the two types of query expression (ie, our
proposed query that use Linked Drug Data dynamically with
SPARQL federation function and a conventional query in which
the individual drug codes are enumerated in SPARQL filter

keyword). The average execution time of the proposed queries
were significantly longer than the conventional one, and these
were 49% longer in Query 1, 43% in Query 2, and 51% in Query
3, in total. It was also that the execution time of the Query 1
showed logarithmic growth, and the Query 2 and the Query 3
showed linear growth. The coefficient of determination in these
regressions ranged from 0.94 to 0.97.

Table 3. Summary of each query and the respective execution results.

ResultsNo. of resolved
drug codes

Drug data sources to resolve the
expression

Summary of query conditionNo.

197,366476ATCCases for which drug types classified as renin angiotensin inhibitors
were prescribed, and all medications of such drugs.

1

KEGG

MEDIS DRUG

1171131SIDER 2Cases for which a leukocyte counts of 3000 or less was observed
during the medication period of drug types having leukopenia or
neutropenia as adverse events, and all corresponding medications.

2

ATC

KEGG

MEDIS DRUG

5878USPCases satisfying the criteria for impaired glucose tolerance during
a period between the initial and final medications of atypical antipsy-
chotic drugs that have a 5HT2C or H1 receptor inhibitory effect.
Clinical cases that satisfy the above criteria within 60 days of the
initial medication are excluded.

3

KEGG

MEDIS DRUG
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Figure 8. The average measured execution times of Queries 1, 2, and 3 obtained through the experiments are shown in a), b), c), respectively. In each
subfigure, bar graphs represent the average measured execution times of the two types of query expression with standard errors, and solid or dashed
line represent the approximate average execution times.
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Discussion

Primary Findings
To further improve the usability of EMRs, EMRs need to be
integrated with external data sources that serve as knowledge
resources. Currently, clinical specialists provide and interpret
the knowledge used in making clinical data inquiries and, in
many cases, manually translate the knowledge into codes of
terminology and describe them in queries. This not only requires
time and increases the number of errors [13,15] but also leads
to the possibility of differing interpretations of coding, resulting
in incompatibility among query results. Semantic Web
technology provides a framework for integrating heterogeneous
data sets using RDF and enables the extraction of data from
multiple endpoints on a network using queries in a uniform
format and standard Web protocols. This makes it possibly not
only to integrate heterogeneous knowledge resources but also
to share publicly available resources as knowledge sources and
to handle highly confidential clinical data without compromising
their confidentiality.

We converted drug databases to the Linked Drug Data, used
them as the knowledge for query expansions, and searched over
the RDF-ized HL7 messages. We showed three queries
illustrated by the queries for drugs including renin angiotensin
inhibitors, as well as more advanced expressions for drugs that
cause leukopenia and also for atypical antipsychotic drugs. We
only show three queries, although, we believe that wider ranges
of queries are possible by combining four temporal patterns and
various search expressions to identify drugs. These query
expressions require clinical knowledge, and such knowledge
must be supplied from external knowledge sources, as clinical
data do not contain such knowledge. Our query expression used
knowledge of drugs separate from clinical data that exist at a
different endpoint on a network through SPARQL's federation
query. This suggests that enhancing knowledge resources would
improve the search usability of clinical data and the possibility
to search over clinical data on a shared knowledge basis.

The Query 1 example resulted in 476 drug code types for renin
angiotensin inhibitors. However, in reality, it is unlikely that
one hospital adopts all types of renin angiotensin inhibitors, and
only a few types are actually adopted by any one hospital.
Because different hospitals may adopt different drug types, the
drug codes listed for one hospital may not apply to another. The
proposed method dynamically resolves the expression like "renin
angiotensin inhibitors" using external knowledge resources,
enabling clinical data searches using expressions at a level close
to the knowledge without considering specific types of drugs
that different hospitals may adopt. This not only improves the
usability of query expressions for specialists but also suggests
the possibility of reusing queries (ie, using the same query at
multiple hospitals) [34,35].

The Query 2 example showed a use case for ADEs, which used
SIDER 2 to search drugs that potentially cause leukopenia. As
for the database of ADEs itself, there is another publicly
available database named ADEpedia 2.0 that use RxNorm codes
for medications and SNOMED CT or MedDRA codes for
phenotypes related to ADEs [36]. In this database, the

relationships between the drugs and ADEs are represented by
predicates such as 'contraindicated_drug' for information of
contraindications and 'causative_agent_of' for adverse drug
effects. Although SIDER 2 and ADEpedia 2.0 is useful to search
known relationships between the drugs and ADEs, they are not
necessarily enough for a use case to investigate unknown ADEs
that may be discovered from EMR. To enable this, we needed
to complement them by using the different type of drug database.
We showed Query 3 example that make use of the information
of drug class and type of receptor, which are enabled by linking
USP and KEGG. Although this query shows a limited example,
increasing variation of the search expression by using multiple
drug database is assumed to be useful for investigating ADEs,
and in order to do so, it is primarily important that these
databases can be linked each other.

We showed a method for converting RDF data not by selecting
arbitrary elements contained in the HL7 message but by using
all the elements as they are. The reason why is because it was
difficult to specify which elements are necessary for a clinical
study in advance. As a trade-off, the SPARQL query we showed
may be difficult to describe unless we are familiar with the
specifications of the HL7 message. The difficulty of describing
this SPARQL query will be summarized in the following three
points. First, when describing the pattern matching of SPARQL,
nesting up to reaching the necessary elements would be
considerably deep. For example, until reaching the drug code,
it is necessary to pass through five nodes: RDE_O11, ORDER,
RXE, RXE.2, and CE.1. For this reason, the user must be
familiar with the structure of the HL7 message. In order to solve
this problem, it is conceivable to select the elements that are
required for a clinical study from the HL7 message,
reconstructing a simpler model of RDF data composed of only
its elements. To do this, a guideline for which elements should
be converted might be useful, and to make such a guideline, it
is desirable that Health Level Seven and some associations
related to clinical research discuss and select the required
elements necessary for clinical researches in general. Second,
the vocabulary that is reusable to represent the RDF resource
is not used. Some properties such as "patient ID," "birthdate,"
and "gender" shown in Figure 2 might be good to associate them
with the existing vocabulary that is defined in the ontology such
as foaf and vCard. However, the vocabulary corresponding to
almost all other HL7 elements, including the drug code,
medication dose, unit of the dose, and so on did not exist as far
as we know. Therefore, in this study, we gave greater importance
to keeping the consistency of the method of converting the HL7
to RDF by using the names of the tags obtained when converting
the HL7 to XML as the vocabulary rather than reusing only
those few vocabulary. Finally, temporal reasoning is important
for investigation for ADEs, although, it might be difficult to
write it against our RDF-ized HL7 data with SPARQL. We used
filter-based solution in Queries 2 and 3 to compare the date of
laboratory test results and the date of the medications in order
to be able to consider the causal relationships between them.
We also used subquery solution in Query 3 to identify the first
and the last time of medications of atypical antipsychotic drugs
in order to identify diabetes that occurred or not occurred during
time frames based on the two time points. Although we showed
these queries as possible as simple, they might be typically
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verbose and difficult to write. It is conceivable that using Allen’s
temporal predicates such as "before," "after," and "during" in
the pattern matching of the query [14] is useful to avoid the
SPARQL filter-based comparison of the time. In order to do
that, an interval-based temporal information should be given to
the comparable events and they should be connected according
to their relationships when the RDF data are created. It might
be also that giving a mark to specific time events such as the
first and the last time of medications is useful to identify them
without the subquery solution. These methods make the
description of the query more concise at the expense of
computational complexity at the time of creating RDF data. In
this study, we did not apply these methods because we focused
on using all elements in HL7 message as they are, it would be
worth to consider to make the expression of temporal reasoning
concise.

Regarding the query execution time, we tested two types of
query expression for each three query to show the difference of
the execution time between our proposed query expression and
a conventional one. As for the conventional expression, the
number of the drug codes enumerated in each query were 476,
131, and 78, respectively, as shown in Table 3. The advantage
of the proposed query is that the expression is concise and
human readable in comparison to the conventional one, and that
allows identification of drugs based on the detailed information
rather than the drug codes can be listed. On the other hand, the
disadvantages are that it is inferior in execution time, it takes
approximately 40% to 50% more time than conventional one.
It was also that what kind of drug code will be searched is
unknown until the query is run. These comparative aspects
indicate a trade-off between simplicity of the query expression
and the execution time of the query as well as search reliability.
In particular, as it is necessary to separately consider the
reliability of the drug code obtained by the Linked Drug Data,
this can be noted as one of the limitations of this study.

The result of the experiment also showed that the average
execution time of the Query 1 showed logarithmic growth, and
the time of the Queries 2 and 3 showed linear growth with the
coefficient of determination ranged from 0.94 to 0.97. This
indicates that these regressions approximated the query
execution time well. These results might be counterintuitive
especially in the logarithmic growth in Query 1, although, it
was assumed to be possible that the logarithmic growth is
consistent with computational complexity of B-Tree indices is
O(log n), which are used in the RDF database we used. Although

the result will not be generalized because an execution time of
a query depends on various settings, such as amount of data,
the content of the query, and the kind of the database system,
the execution time of these queries increased with the amount
of data without diverging in our experiments.

Limitations
We converted HL7 messages to RDF data automatically without
changing the HL7 message structures. This suggests that the
proposed method can be applied not only at the University of
Tokyo Hospital that has adopted SS-MIX2 storage but also at
numerous other hospitals that use HL7 messages. To
demonstrate this, future research is required to verify the
applicability of the proposed method at multiple hospitals. In
addition, we considered adverse events cases in our research,
and thus, it was medication orders and laboratory test results
that were converted to RDF data. However, HL7 messages
contain other types of clinical data such as patient demographics,
diagnostic disease, and some kind of order information. When
these types of clinical data are converted to RDF data, a wider
variety of query expressions are required to search over the
converted RDF data, and future research should examine such
query expressions. We have not verified the drugs identified
through our query expansions, nor verified extracted clinical
data against the gold standard, and these are the limitations of
the research.

Conclusions
This study applied Semantic Web technology to use publicly
available drug databases as the knowledge for query expansions
and demonstrated clinical data searches through SPARQL. The
proposed method executed queries with knowledge resources
separate from clinical data, suggesting that enhancing knowledge
resources would improve the usability of clinical data. This
study also converted HL7 messages to RDF data using an
automatic way without modifying the HL7 message structures
and demonstrated searches over the converted RDF data using
SPARQL. This suggests that the proposed method can be
applied not only at the University of Tokyo Hospital that has
adopted SS-MIX2 storage but also at numerous other hospitals
that use HL7 messages. We have not verified the drugs identified
through query expansions, nor verified extracted clinical data;
such verifications will be performed in future research. Future
research also includes applying the proposed method at other
hospitals and supporting a wider variety of HL7 messages.
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Abbreviations
5HT2C: serotonin 2C
ADE: adverse drug event
ATC: Anatomical Therapeutic Chemical Classification System
EMR: electronic medical record
H1: histamine antagonist of the H1 receptor
HAPI: Health Level Seven application programming interface
HL7: Health Level Seven
ICD10: International Classification of Diseases, and 10th Revision
KEGG: Kyoto Encyclopedia of Genes and Genomes
MEDIS-DC: Medical Information System Development Center
MSH: message header
ORC: order-related information
PID: patient identification
RAM: random access memory
RDF: Resource Description Framework
RDFS: Resource Description Framework Schema
RXE: pharmacy
SIDER 2: SIDe Effect Resource
SPARQL: SPARQL Protocol and RDF Query Language
SS-MIX2: Standardized Structured Medical Record Information Exchange version 2
TQ1: timing and quantity
URI: uniform resource identifier
USP: United States Pharmacopeial Convention Classification System
XML: Extensible Markup Language.
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