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Abstract

Background: Heart Failure (HF) is a common reason for hospitalization. Admissions might be prevented by early detection of
and intervention for decompensation. Conventionally, changes in weight, a possible measure of fluid accumulation, have been
used to detect deterioration. Transthoracic impedance may be a more sensitive and accurate measure of fluid accumulation.

Objective: In this study, we review previously proposed predictive algorithms using body weight and noninvasive transthoracic
bio-impedance (NITTI) to predict HF decompensations.

Methods: We monitored 91 patients with chronic HF for an average of 10 months using a weight scale and a wearable
bio-impedance vest. Three algorithms were tested using either simple rule-of-thumb differences (RoT), moving averages (MACD),
or cumulative sums (CUSUM).

Results: Algorithms using NITTI in the 2 weeks preceding decompensation predicted events (P<.001); however, using weight
alone did not. Cross-validation showed that NITTI improved sensitivity of all algorithms tested and that trend algorithms provided
the best performance for either measurement (Weight-MACD: 33%, NITTI-CUSUM: 60%) in contrast to the simpler rules-of-thumb
(Weight-RoT: 20%, NITTI-RoT: 33%) as proposed in HF guidelines.

Conclusions: NITTI measurements decrease before decompensations, and combined with trend algorithms, improve the detection
of HF decompensation over current guideline rules; however, many alerts are not associated with clinically overt decompensation.

(JMIR Med Inform 2016;4(1):e3) doi: 10.2196/medinform.4842
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Introduction

Chronic heart failure (HF) is common [1] and a substantial drain
on scarce healthcare resources [2]. Much of the costs of HF are
due to the high rate of unplanned admissions for worsening HF.
For patients who survive an admission for worsening HF,
rehospitalization rates are high and >20% will die within one
year [3,4]. Furthermore, the high prevalence and costs associated
with HF are projected to rise as the population ages [5].
Telemonitoring could reduce costs and improve outcomes [6]
by substituting infrequent assessments at a clinical facility by
a health professional with frequent remote monitoring done by
patients themselves. This could facilitate more timely and
tailored interventions. The efficacy of telemonitoring would be
greatly improved if decompensation events could be detected
before the onset of severe symptoms [7,8].

Worsening heart failure may lead to weight gain as a
consequence of fluid retention and edema and, if uncorrected,
can lead to hospitalization and ultimately death. The Heart
Failure Association of America (HFSA) and the European
Society of Cardiology (ESC) guidelines both recommend daily
weight monitoring. The ESC recommends that patients
experiencing a weight increase of 2 kg or more in 3 days should
alert healthcare professionals and increase their diuretic dose
[9]. The HFSA recommends the restriction of sodium and water
after an increase of more than 2 lbs (0.9 kg) in 1 day, or more
than 4 lbs (1.8 kg) over a week, followed by an alert to
healthcare professionals if the increase continues [10].

Worsening hemodynamics with increased vascular resistance,
afterload mismatch, congestion, and diastolic dysfunction are
thought to precede fluid accumulation [11]. Increased
end-diastolic pulmonary arterial pressure (PAP), a direct
measure of hemodynamic overload, and decreased intrathoracic
impedance (ITI), an indirect measure of pulmonary congestion,
have both been observed in the days and weeks prior to
decompensation [12-14]. Thoracic impedance can also be
measured noninvasively (NITTI) [15], which correlates with
ITI [16], making measurement possible in a far broader range
of patients. NITTI measures a much larger field; however, the
variability in measurements may depend on the patients’
willingness and ability to position electrodes accurately.
Recently, several new wearable devices have been proposed
for this purpose, such as specialized vests [17,18] or adhesive
patches [19,20].

An increased risk of decompensation has been shown for both
weight gain [21] and decline in ITI [22]; however, recent studies
have shown that absolute changes in weight over short time
periods are not sensitive in detecting impending decompensation
[23-25], and that ITI may have high sensitivity but a high rate
of false alarms per patient-year [26]. However, to the authors’
knowledge, recently proposed prediction algorithms comparing
body weight and impedance head-to-head have not been
investigated using noninvasive technology.

The aim of this investigation was to evaluate and compare the
predictive value of previously published algorithms using
measurements of daily body weight, and noninvasive measures

of NITTI from a smart-textile vest, to detect decompensation
prior to the onset of severe symptoms leading to hospitalization.

Methods

Patient Population
The data for this analysis were collected as part of the MyHeart
heart failure management observational study [27]. The MyHeart
study was unique in its collection of several different vital signs
and innovative markers using noninvasive sensors and a
home-telemonitoring system. Six HF clinics in Germany and
Spain participated in the collection of the clinical data. Patients
were included in the study if they had chronic HF with an
elevated N-terminal of the prohormone brain natriuretic peptide
(NT-proBNP ≥ 500 pg/ml), were taking at least 40 mg/day of
furosemide or an equivalent, and were in the New York Heart
Association (NYHA) functional class II, III, or IV. They were
excluded if they had the following: severe chronic obstructive
pulmonary disease (COPD GOLD Class > 2), primary
pulmonary hypertension, renal insufficiency requiring dialysis,
a psychiatric or neurological disorder of moderate to severe
degree (eg, dementia, schizophrenia, substance disorder,
psychotic depression), prior acute myocardial infarction or
coronary artery bypass grafting (CABG) in the previous 3
months. Ethical approval was provided by the Medical Ethics
Committees in the 2 respective countries.

Of 148 patients recruited from October 2008 to July 2010, 108
had the system installed and data recorded; 3 did not fit the
criteria, 3 were unavailable at installation, 1 died before
installation, and 33 withdrew before system installation. Of the
remaining 108 users, 17 used the system on less than 30
occasions, leaving 91 patients as the focus of this exploratory
analysis. Their mean (SD) age was 63 (12) years and 64 were

men. Mean weight was 84 (19) kg, mean BMI was 29 (6) kg/m2,
and mean left ventricular ejection fraction (LVEF) was 31 (12)
%. Most patients had mild (NYHA class II: 60%) or moderate
(NYHA class III: 36%) symptoms. Etiology was ischemic in
47%, idiopathic dilated cardiomyopathy in 31%, valvular disease
in 5%, and other in 9%. Comorbidities included hypertension
(68%), diabetes (37%), atrial fibrillation (36%), renal
dysfunction (28%) and COPD (13%). Treatment included
angiotensin converting enzyme (ACE) or angiotensin receptor
blockers (ARB) (87%), beta-blockers (88%), MRA (53%),
diuretics (84%), digoxin (21%), and implantable
cardioverter-defibrillator/cardiac resynchronization therapy
(ICD/CRT) (23%/14%). The average monitoring time was 10
months, during which 19 patients were hospitalized one or more
times due to decompensated HF, with a total of 24
decompensated HF hospitalizations. The adverse events were
adjudicated by an advisory committee.

Daily Measurements of Body Weight and NITTI
Patients were instructed on how to perform measurements of
body weight and NITTI. Measurements were carried out in the
morning before eating breakfast. Body weight was collected
using a weight scale (Philips Medical Systems, Andover,
Massachusetts, USA), which automatically logged the
measurements (accuracy ± 0.1 kg). TTI was measured using a
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wearable bio-impedance vest [28], shown in Figure 1. The vest
measures TTI at several electrical frequencies (10 kHz-1MHz).
These recordings give a characterization of the electrical
properties of the tissue, as described by the Cole-Cole model
[29]. At low measurement frequencies, biological tissue
impedance is mainly determined by the extracellular fluid
content and characteristics. At higher frequencies, electrical
properties are determined by both the intracellular and
extracellular fluid content. Multi-frequency measurements of

thoracic bio-impedance therefore allow isolation of the Cole
parameters that indirectly reflect either the intracellular or
extracellular fluid content. We used the external resistance
derived from the Cole-Cole model, since this indirectly reflects
extracellular water, which is the component associated with
decompensation. In another study, we have shown that this
metric tracks changes in symptoms and fluid loss during
treatment for decompensated HF [17].

Figure 1. The bioimpedance vest shown by a model subject correctly applying it across the chest. Textile electrodes on each side of the flexible
measurement panel inject currents at different frequencies and register the resulting voltage to calculate the impedance parameter relating to extracellular
fluid volume.

Alarm and Event Definition
The weight and NITTI data were applied to published algorithms
(detailed description in Multimedia Appendix 1), to predict the
onset of decompensation prior to subsequent hospitalization
due to worsening heart failure. The output of these algorithms,
the output index, could be as simple as the difference between
the current measurement and the measurement made 2 days
previously, or a more complex calculation (eg, one based on
cumulative sums). An alert is triggered when the output index
exceeds a specific threshold.

The predictive power of the algorithms was assessed by
exploring their ability to alarm within a prespecified period
before a hospitalization due to worsening heart failure. Changes
in NITTI are thought to precede changes in weight prior to
hospitalization [12,21]. Depending on the measure used,
previous studies have considered alerting periods from 2 weeks
[23] up to one month [30] before hospitalization. In this study,
a 2-week period was chosen as an adequate period before a
hospitalization, during which alarms should be raised, giving
time for the patient or clinician to act. Alerts occurring outside
of this period were counted as false alarms. Short periods of a
few days at the start of monitoring, end of monitoring, and
directly following a hospitalization did not fit into any 2-week
division and were subsequently removed from the analysis.

Performance Assessment of Algorithms
Three types of alert algorithms are compared in this study:
rule-of-thumb (RoT) [21,23,26], moving average convergence
divergence (MACD) [23], and cumulative sum control chart
(CUSUM) [31]. The qualitative differences between these are
shown in Figure 2. Rule of thumb (RoT) methods provide a
noisy measure for which chance readings have a large effect,
sometimes with no underlying trend; however, they also provide
a fast response to changes. Moving averages (MACD) react
more slowly but follow underlying trends better, in both
directions. Cumulative sums (CUSUM) provide uni-directional
detection and lead to longer sustained alerts. For a detailed
description of the definitions of each algorithm see Appendix
1. The predictive performance of the algorithms was compared
using receiver operator curve (ROC) analysis. The sensitivity
and specificity of each algorithm was calculated by dividing
the measurement data into periods of 2 weeks, in such a way
that a period containing a decompensated hospitalization would
end when the hospitalization event occurred. This led to the
following definitions:

1. True positive: An alarm during the 2 weeks preceding a
hospitalization;

2. False positive: An alarm during any other 2-week period;

3. True negative: A 2-week period without any alarms;

4. False negative: A 2-week period ending in a hospitalization
without any alarms.
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Figure 2. Generated example data with the underlying trend in NITTI are shown in the top graph. The resulting output of the three algorithms, normalized
to the last measure to show the qualitative difference between the algorithms, is shown in the bottom graph.

Algorithm Selection and Optimization
Each of the algorithms considered in this study (RoT, MACD,
CUSUM) have modifiable parameters that will alter their
behavior and ultimately their predictive performance. We tested
the performance of each algorithm for a range of possible
parameter values. For the RoT algorithms, the number of days
(d) between the measurements used to calculate the difference
was varied from 1 day to 21 days. In the MACD algorithm, the
long-term average parameter Nl was varied between 10 and 50
days in increments of 5 days, and the short-term moving average
parameter Ns was varied between 1 and 10 days. In the CUSUM
algorithm, the parameter determining the length of the running
mean and standard deviation (d) was varied between 10 and 30
days in increments of 5 days, and the parameter determining
the depreciation of the accumulated sum (c) was evaluated
between 0.5 and 1.5, in increments of 0.2.

Segmentation of the data into 2-week periods results in
substantially more periods without an HF-related hospitalization
compared to those with one. To avoid producing algorithms
that raise a large number of false positive alarms, previous
studies have focused only on alarms with high specificity
[20,30]. In this investigation, the best parameters were chosen
to be those that maximized the area under the curve for
thresholds with a specificity >95%. The output index for each
algorithm was then normalized to allow the correct estimation
of the ROC curves during the cross-validation procedure
described below.

Parameter optimization can lead to models that overfit the data,
which then would not generalize well to other data sets. To
minimize these effects, we implemented a stratified
leave-patient-out cross-validation (CV) method for the

parameters in the RoT, MACD, and CUSUM algorithms. This
procedure randomly splits the data into 8 groups, while
maintaining the number of patients and decompensation events
in each group. The parameters were then optimized for the data
with one group left out. The data from the left-out group were
then used to evaluate the performance of the optimized
parameters. This was repeated until all groups had been left out
once. The left-out groups were then recombined to provide an
unbiased ROC curve. The optimal threshold for the output index
was chosen to be the Youden point with specificity larger than
90%.

Statistics
Comparisons between the recorded measurements and the output
index for the different algorithms in the 2 weeks preceding
hospitalization and all other periods were tested with a
mixed-effect model using patient specific intercepts as random
effects. An arbitrary significance of 0.05 was assumed
throughout. Missing data due to adherence issues were removed
from the analysis by excluding periods in which less than 3 [32]
measurements per week were found. In the case of algorithms
that needed previous data points to estimate trends, a linear
imputation between adjacent data points was carried out. It
should be noted that when the algorithms processed the data,
imputations were only made on data that would have been
available for a system running in real time; no imputations using
future values were done. NITTI measurements were
log-transformed to adjust for skewness. All listed algorithms
were developed and evaluated using the software suite
MATLAB 7.13.0.564.
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Results

Data Characteristics
Among the 91 patients for whom data were included in the
analysis, 24 heart failure-related hospitalizations occurred in
19 patients. Of the 24 hospitalizations, 9 had less than 3 weekly
weight recordings and 12 had less than 3 weekly impedance
recordings preceding the hospitalization, and were excluded
from the analysis. The minimum window for the CUSUM
algorithm excluded an additional 2 for its analysis.

Prediction Performance
The predictive performance of guideline-based rules and
published algorithms using weight are presented in Table 1.
With the exception of those rules with very low specificity (ie,
<60%), all rules based on short-term increases had low
sensitivity when applied to the data (typically <25%). Rules

based on longer-term increases showed higher sensitivity;
however, only one had a specificity >90%. The MACD
algorithm with the parameter proposed by Zhang et al. [23]
outperformed the other weight algorithms.

The cross-validation analyses of the developed models based
on published algorithms are presented in Figure 3. The
RoT-based algorithms using weight have poor sensitivity at a
specificity between 90-100%, with performance close to random
chance. This poor sensitivity was also observed when evaluating
previous published guidelines using windows between 2 and 3
days (Table 1). As expected, this sensitivity increased when
longer windows and/or lower thresholds were used, but at the
cost of a lower specificity.

The MACD algorithm improved performance for both weight
and impedance. The CUSUM algorithm improved performance
for NITTI. The performance of trend algorithms was superior
to previously published algorithms (Table 1).

Table 1. Performance of different weight algorithms in anticipating an upcoming decompensation.

NPVb

%

PPVa

%

Specificity

%

Sensitivity

%

Weight algorithmSource

99.51.45667>2 lbsc in 1 day [10]Guideline issuing bodies

99.10.98713>2 kg in 3 days [9]

99.21.88727>4 lbsc in 1 week [10]

99.10.95050Random chanceExisting literature

99.51.35073>2 lbs in 1 day or >3 lbs in 3 days [26]

99.41.45667>2 lbs in 1 day or >5 lbs in 3 days [26]

99.10.78213>3 lbs in 1 day or >5 lbs in 3 days [26]

99.00.4837>3 lbs in 1 day or >7 lbs in 3 days [26]

99.10.9937>4 lbs in 1 day or >7 lbs in 3 days [26]

99.10.9937>4 lbs in 1 day or >9 lbs in 3 days [26]

99.1—1000>5 lbs in 1 day or >9 lbs in 3 days [26]

99.61.34580>2 lbs in 1 week [21]

99.22.79420>5 lbs in 1 week [21]

99.36.39720>4 lbs in a 5 to 80 days MACDd [23]

aPPV: positive predictive value
bNPV: negative predictive value
cTo convert to kilograms multiply by 0.45
dMACD: moving average convergence divergence
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Figure 3. ROC curves from the cross-validated evaluation for the three considered algorithms in the specificity range from 0.9 to 1. A shows the rule
of thumb algorithm, B the MACD algorithm, and C the CUSUM algorithm. Performance using NITTI measures is shown with the dashed green line,
weight is shown with the blue line, and random chance is portrayed by the red dotted line.

Optimal Parameters
The output of the 2 best performing algorithms for weight and
impedance with optimal parameters (maximum Youden index
with specificity >90%) is shown in Figure 4. Clear trends in
both weight and impedance can be seen for Patient 1 and both
algorithms managed to alert before the decompensation; a full
week in advance for impedance and a day in advance for weight.

Patient 2, on the other hand, had no or weakly visible trends,
which were not enough to trigger an alert. The patient did exhibit
large daily weight fluctuations, which could have indicated
instability; however, this was not picked up by the algorithms.
The optimal parameters for all 3 algorithms for weight and
impedance are shown in Table 2, together with the
cross-validated performance measures. Both trend algorithms
using NITTI outperformed the weight algorithms.

Table 2. Cross-validated performance measures of the algorithms at the maximum Youden index within a specificity of 90-100%.

NPVc

%

PPVb

%

Specificity

%

Sensitivity

%
Optimal algorithmsa

Weight

99.21.959020RoTd: >2.7 kg in 17 days

99.33.29133MACDe: >0.62 kg (Ns=9, Nl= 20 days)

99.11.49113CUSUMf: >8.7 with 10-day average, c=0.75

NITTI g

99.24.29233RoT: <-0.27 (log ohm) in 21 days

99.55.99250MACD: <-0.059 (log ohm) (Ns=9, Nl= 35
days)

99.610.99660CUSUM: <-7.8 with 20-day average, c=0.75

aThe optimal parameters and thresholds were estimated from the full data (for stability and variance of cross-validated parameters and thresholds, see
Table 3).
bPPV: positive predictive value
cNPV: negative predictive value
dRoT: rule of thumb
eMACD: moving average convergence divergence
fCUSUM: cumulative sums
gNITTI: noninvasive transthoracic bio-impedance
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Figure 4. Three weeks of telemonitoring data from two patients with high compliance before an upcoming decompensation. Circles correspond to
NITTI measurements and the NITTI-CUSUM algorithm and crosses correspond to weight measurements and the weight-MACD algorithm. Optimal
thresholds are shown as dash-dotted lines in green for NITTI and dotted blue lines for weight.

Algorithmic Stability
The use of a cross-validation procedure to minimize biased
performance measures generated several plausible parameters
for the tested algorithms; these are presented in Table 3. In
general, RoT had lower variance in estimated parameters than
MACD, which in turn had lower variance than CUSUM,
coinciding with the increasing complexity of the algorithms.

Parameter variance was especially high for the weight CUSUM
algorithm, which could explain the poor performances when
compared to MACD.

Mean values for weight, impedance, and the respective output
indices of the optimal algorithms during periods preceding a
hospitalization compared to the other periods are shown in Table
4. A statistically significant difference was only found for the
NITTI measurements and algorithms based upon NITTI.
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Table 3. Mean, standard deviation, and individual values for the estimated optimal parameters in each of the 8 folds created using the described stratified
cross-validation procedure.

Transthoracic impedanceBody weightMeasure

8765432187654321CV a step

RoT b

-0.31 (0.035)3.5 (0.08)Threshold

-0.4-0.3-0.3-0.3-0.3-0.3-0.31-0.33.43.43.63.453.563.43.563.5

20.5 (1.41)14.4 (3.7)Days

21212121212117211111201717111711

MACD c

-0.10 (0.014)0.8 (0.38)Threshold

-0.13-0.09-0.09-0.1-0.1-0.1-0.1-0.120.950.620.970.620.620.310.621.59

8.1 (0.99)8.6 (1.19)Short-term avg. window

69988889991099898

36.3 (3.54)25.6 (10.84)Long-term avg. window

35353535353535452520302520152050

CUSUM d

-8.13 (2.65)11.0 (7.87)Threshold

-4.64-11.14-4.40-11.1-7.8-7.8-10.3-7.88.18.78.16.98.78.78.730

18.8 (2.31)26.9 (18.3)Days

20152015202020204510404010101050

0.75 (0.19)1.13 (0.40)Depreciation

10.5010.500.750.750.750.751.50.751.51.50.750.750.751.5

aCV: Cross-validation
bRoT: rule of thumb
cMACD: moving average convergence divergence
dCUSUM: cumulative sums

Table 4. Population mean output index values for RoT, MACD, and CUSUM algorithms using the optimal parameters (see 2) in the 2-week period
preceding a hospitalization compared to all other periods.

Statistical significancedMean (SD) value in nondecompensa-
tion periods

Mean (SD) value in 2-week period be-
fore decompensation

Measure

.9784 (19)83 (10)Weight (kg)

.760.06 (0.87)0.3 (1.2)Weight-RoT a (kg)

.240.02 (0.22)0.08 (0.30)Weight-MACD b (kg)

.580.8 (1.3)1.9 (2.7)Weight-CUSUM c (kg)

<.0013.4 (0.3)3.0 (0.3)TTI (log Ohm)

<.0010.00 (0.08)-0.07 (0.12)TTI-RoT (log Ohm)a

<.0010.003 (0.028)-0.032 (0.044)TTI-MACD (log Ohm)a

<.001-0.7 (2.0)-6.4 (9.4)TTI-CUSUM (log Ohm)a

aRoT: rule of thumb
bMACD: moving average convergence divergence
cCUSUM: cumulative sums
dEstimated with a mixed-effect model with patient specific random effects. For the algorithms the cross-validation output was used.
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Discussion

Principal Findings
The main finding of the present study is that change in NITTI
is a stronger predictor of an impending decompensation
compared to changes in weight (cross-validation estimate was
60% for NITTI-CUSUM vs 33% for Weight-MACD) and that
both measurements benefit from trend detection algorithms.
Mean values of NITTI in the 2-week period preceding a
decompensation event were lower than in nondecompensation
periods (P<.001).

Fluid overload is one of the leading causes for HF
hospitalization and body weight increase has been linked to an
increased risk of hospitalization [21]. However, directly applying
a weight gain difference to predict imminent decompensation
is challenging. This study corroborates the findings of Zhang
[23] and Abraham [26], who also reported low predictive ability
of alarms using short-term weight change. Short-term weight
increase will detect a large and rapid fluid accumulation. Our
evaluation of the rule suggested by the ESC guidelines is that
it has high specificity but it is not a very sensitive method to
predict HF hospitalization, as gradual weight increases are
missed. A moving average algorithm focuses on progressive
changes in weight, removing much of the inherent variability
in weight measurements and errors due to the home setting in
which patients might deviate from the measurement protocol,
and daily changes due to dietary and fluid intake are averaged
out. This could explain why lower threshold values led to higher
sensitivity while still retaining specificity.

The increase in thoracic fluid due to congestion should decrease
impedance measurements. Several studies have reported positive
results from algorithms using impedance to detect
decompensations [19,20,33]. To test algorithms proposed for
decompensation detection using impedance measurements, we
employed a cross-validation procedure to estimate performances.
The results are similar, although on the lower side of what has
been reported for ITI in terms of sensitivity (76.4% [26], 76.9%
[33], 60% [34]), perhaps partly accounted for by the robust
methods we employed. Reported performances from feasibility
studies usually decline in later prospective studies [35], which
the leave-subject-out protocol is designed to emulate.

Comparisons between predicted performances of weight and
impedance measurements in Figure 3 show that impedance is
the stronger predictor. This is also suggested by the analyses of
the mean output index in the 2 weeks preceding a
decompensation (Table 4), for which a statistical difference was
found compared to periods without decompensation for all
impedance algorithms as well as the impedance value, but not
for any of the weight algorithms. Abraham et al. [26] also
showed a higher sensitivity for impedance measurements when
compared to weight. However, we showed that the gap in
performance could be made smaller with more sophisticated
weight trend algorithms compared to the rules suggested by
Abraham (in which the 3 rules with a specificity >90% had a
maximum sensitivity of 7%). Sensitivity to fluid build-up in the
lungs, whether through redistribution of fluids or retention,
could explain the increased performance of impedance when

compared to body weight [11]. Similarly, weight loss from
malnutrition might mask fluid accumulation in weight
measurements, which would still be picked up by NITTI. The
focus in this study on high specificity algorithms might also
have put weight algorithms at a slight disadvantage; evidence
of this can be found in the stability analysis (Table 3), in which
the high parameter variance for the weight-CUSUM algorithm
could have resulted from the difficulty of finding a highly
specific algorithm, which led to a negative impact on its
cross-validated performance.

The difficulty in assessing prediction algorithms is known [36].
Different evaluation metrics can show diverging results, because
they shed light on different aspects of performance. Definitions
of what constitutes a true positive and false positive have a great
effect on performance. In this study, we focused on algorithms
with high specificity evaluated using 2-week intervals, with the
best-performing alarm having a sensitivity rate of 60%.
Although this catches several patients at a high specificity, it
still raises unexplained alarms and has a relatively low positive
predictive value of 10.9% for impedance and 3.2% for weight.
A measure focusing on the workload associated with managing
these alerts, such as false alarms per patient year has been used
by several other studies as a surrogate specificity metric
[26,33-35]. Defined as an alert not resulting in a hospitalization,
the NITTI-CUSUM algorithm has a cross-validated estimate
of 0.48 false alarms per patient year. These seemingly
contradictory performance measures can be explained by the
rarity of 2-week periods resulting in hospitalization, when
compared to the full amount of telemonitoring data. An alarm
that goes on for 5 weeks would cross three 2-week periods and
could generate 3 false positives; however, using the false-alarm
metric it would only add one false alarm.

Therefore, the positive predictive value of 10.9% should be seen
in the context of 2-week windows having both high specificity
and sensitivity and compared to the relatively low predictive
value of current weight algorithms.

Low levels of positive predictive value have also been observed
in many other studies evaluating prediction algorithms from
daily measurements [35,37,38]. The concept of predicting future
events might be less realistic than providing indications that
could be acted upon. This approach could tailor actions
depending on which monitored sign was detected. Indeed, many
signs that have been linked to deterioration, for example,
arrhythmias [39], breathing rates [38], and heart-rate variability
[40], can be detected noninvasively and may be included in
such an approach. Importantly, the implementation of better
decompensation algorithms will reduce the number of clinical
alerts that would need to be dealt with by a telehealth nurse or
physician. This will result in better resource utilization, with
the management of larger patient caseloads and, therefore, a
reduction in the costs of patient management.

Limitations
Although clinicians were blinded to the observational data, they
could have intervened based on increased weight data for
worsening patients. If such interventions did not result in a
hospitalization, they were not recorded in this study and might
have negatively affected the results. In the SENSE-HF trial [37],
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a substantial increase in positive predictive value was reported
after including signs and symptoms of worsening HF diagnosed
by a physician rather than only adjudicated HF hospitalizations;
therefore, it could also be expected that several false positives
were due to “mild” decompensations. Indeed, it is possible that
patients often self-correct decompensation by reducing dietary
salt, increasing adherence to medication, or even by taking extra
doses of diuretic. Changes in environmental temperature might
also affect compensation. In this study, high specificity alerts
were explored. However, sacrificing specificity for improved
sensitivity may be a good complement if management of alerts
can be handled by patients without resorting to professional
advice. Combining specific alerts with a strategy of health
maintenance might be superior to one of only crisis detection
and management [41]. Most patients are interested and able to
contribute to their care if they are given the information and
confidence to do so. Remote monitoring provides a safe
environment or safety net to encourage such behavior.

Incorrectly using the measurement equipment could have caused
erroneous values with the net effect of lowered performances.
The surface on which the scales sit, their accuracy, clothing,
and use by other family members can all cause problems with
measurement. Bio-impedance weight scales (a different
technology from NITTI) require patients to remove their socks
and shoes and hence may improve the consistency of
measurement. Giving patients feedback and asking them to
recheck their weight if it falls out of the expected range are all
likely to improve the data quality on which the algorithms are

based. The limited amount of data available for this study makes
generalizations difficult. Application of cross-validation
procedures were employed to minimize this effect; however,
the calculated percentage values were ultimately derived from
a small set of subjects and should therefore be seen as qualitative
indicators of performance.

Conclusion
Daily measurements of transthoracic impedance using a vest
with textile electrodes is a feasible way to monitor HF and
provides a more accurate indication of upcoming
decompensations when compared to weight for all 3 algorithms
tested (RoT, MACD, and CUSUM). Trend detection algorithms
outperformed RoT measures suggesting that tracking the
progression is more important than direct measures of change,
which currently are suggested by guidelines.

However, the low positive predictive value of all the algorithms
tested did not allow accurate prediction of impending HF
hospitalizations. Implementation of trend detection algorithms
might better serve as indications of worsening, which, when
integrated with other clinical measures, could be useful for
treatment management. The promising results from this
investigation warrant further trials with noninvasive TTI as a
technology for the management of HF, perhaps connected to
actionable alerts. These alerts would promote a strategy of
“health maintenance” to keep the patient as close to their ideal
state as possible on a daily basis, which could be combined with
a strategy of “crisis detection and management” if the first
strategy failed.
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