
Original Paper

Real-Time and Retrospective Health-Analytics-as-a-Service: A
Novel Framework

Hamzeh Khazaei1, MIEEE, MACM, MEAI, PhD; Carolyn McGregor2, AM, MACM, SMIEEE, PhD; J Mikael Eklund3,

SMIEEE, PhD; Khalil El-Khatib2, MIEEE, PhD
1IBM, Canada Research and Development Center, Markham, Toronto, ON, Canada
2University of Ontario Institute of Technology, Faculty of Business and IT, Oshawa, ON, Canada
3University of Ontario Institute of Technology, Department of Electrical, Computer and Software Engineering, Oshawa, ON, Canada

Corresponding Author:
Hamzeh Khazaei, MIEEE, MACM, MEAI, PhD
IBM
Canada Research and Development Center
IBM Canada
3600 Steeles Avenue East
Markham, Toronto, ON, L3R 1H5
Canada
Phone: 1 905 721 8668 ext 3697
Fax: 1 416 567 8167
Email: hamzeh.k.h@ieee.org

Abstract

Background: Analytics-as-a-service (AaaS) is one of the latest provisions emerging from the cloud services family. Utilizing
this paradigm of computing in health informatics will benefit patients, care providers, and governments significantly. This work
is a novel approach to realize health analytics as services in critical care units in particular.

Objective: To design, implement, evaluate, and deploy an extendable big-data compatible framework for
health-analytics-as-a-service that offers both real-time and retrospective analysis.

Methods: We present a novel framework that can realize health data analytics-as-a-service. The framework is flexible and
configurable for different scenarios by utilizing the latest technologies and best practices for data acquisition, transformation,
storage, analytics, knowledge extraction, and visualization. We have instantiated the proposed method, through the Artemis
project, that is, a customization of the framework for live monitoring and retrospective research on premature babies and ill term
infants in neonatal intensive care units (NICUs).

Results: We demonstrated the proposed framework in this paper for monitoring NICUs and refer to it as the Artemis-In-Cloud
(Artemis-IC) project. A pilot of Artemis has been deployed in the SickKids hospital NICU. By infusing the output of this pilot
set up to an analytical model, we predict important performance measures for the final deployment of Artemis-IC. This process
can be carried out for other hospitals following the same steps with minimal effort. SickKids’ NICU has 36 beds and can classify
the patients generally into 5 different types including surgical and premature babies. The arrival rate is estimated as 4.5 patients
per day, and the average length of stay was calculated as 16 days. Mean number of medical monitoring algorithms per patient is
9, which renders 311 live algorithms for the whole NICU running on the framework. The memory and computation power required
for Artemis-IC to handle the SickKids NICU will be 32 GB and 16 CPU cores, respectively. The required amount of storage was
estimated as 8.6 TB per year. There will always be 34.9 patients in SickKids NICU on average. Currently, 46% of patients cannot
get admitted to SickKids NICU due to lack of resources. By increasing the capacity to 90 beds, all patients can be accommodated.
For such a provisioning, Artemis-IC will need 16 TB of storage per year, 55 GB of memory, and 28 CPU cores.

Conclusions: Our contributions in this work relate to a cloud architecture for the analysis of physiological data for clinical
decisions support for tertiary care use. We demonstrate how to size the equipment needed in the cloud for that architecture based
on a very realistic assessment of the patient characteristics and the associated clinical decision support algorithms that would be
required to run for those patients. We show the principle of how this could be performed and furthermore that it can be replicated
for any critical care setting within a tertiary institution.
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Introduction

Over the past few decades, our society has transitioned to a state
where bottlenecks have shifted from a lack of data to limitations
in extracting meaningful knowledge from an abundance of data
and subsequently using that knowledge to drive decisions. This
data-rich, knowledge-poor oxymoron is particularly true in
computationally driven clinical decision support systems
(CDSSs), where advances in automated high-throughput data
acquisition and electronic health records (EHRs) have yet to be
translated into knowledge extraction [1].

Adoption of EHRs and systematic collection of physiological
data by health care providers were predicted to vastly improve
the efficiency and quality of patient care [2]. Unfortunately,
despite advances in data collection and storage, these gains have
yet to be realized [3,4]. One reason for this failure is that our
power to utilize complex, large-scale datasets to generate
knowledge and inform clinical decisions remains limited. For
example, while CDSSs have existed for decades, they are mostly
limited to local alert systems and (data-oblivious) agent-based
suggestions that rely on hard-coded criteria.

Recently, enabled by cloud computing Web services, advanced
analytics methods have been applied and utilized across a wide
spectrum of health care settings for many purposes. Cloud
computing has special features for clients (eg, radiologists,
physicians, researchers, and patients), aiming to reduce the
burden of heavy investments and to utilize resource outsourcing,
software, hardware, automated resource management, parallel
computing, virtualization, and utility computing [5]. The
objectives of such usage include improving patient care,
augmenting less-sophisticated rules-based systems, analyzing
continuous feeds of physiological data, optimizing financial
processes, and resource utilization [6].

Health analytics offers many different methods for the potential
improvement of patient care [7]. For example, one predictive
risk assessment platform involves using risk assessment
analytics to process EHR data to identify patients at the greatest
risk for utilizing more resources than their peers with the goal
of improving patient outcomes and managing costs. The EHR
data were input into a common data model that was then
processed by various analytic techniques to stratify patients as
“high risk” [8]. Another method described in the literature
focused on the potential value of aggregating data enhanced
with real-time analytics to provide point-of-care information to
oncologists that was tailored to individual patients [9]. One
group reported the application of predictive analytics for better
targeting of disease management and innovative patient care
approaches, while also warning of the unintended consequences
that may arise such as excluding disadvantaged populations
[10]. Unlabeled and free-text databases such as mammography
data can be transformed into computationally accessible

collections that are usable for large-scale health analytics
[11,12]. Analytics can supplement real-time analysis of
physiological data streams in the neonatal intensive care unit
(ICU) for earlier detection of worsening medical conditions
[13].

Analytics is also utilized in health care applications outside of
the traditional inpatient and outpatient patient care settings, such
as wearable monitors that patients use at home. Wearable health
monitoring systems consist of a variety of sensors, actuators,
and multimedia devices, and enable low-cost, noninvasive
options for continuous monitoring of health, activity, mobility,
and mental status, both indoors and outdoors [14]. Thus,
wearable monitoring systems provide continuous physiological
data that may reflect the general health of the monitored
individuals. The use of wearable sensors in health monitoring
systems is an emerging health care field that necessitates data
mining and analytics of physiological measurements in a
nonclinical setting [15]. Such health monitoring systems may
reduce health care costs by disease prevention and enhance the
quality of life with disease management and can be tailored to
specific uses such as intelligent health monitoring of the elderly
individuals in nursing homes and for individuals with dementia
or Parkinson’s disease [16,17].

These rich sources of data along with aforementioned analytics
capabilities have potential for an increased understanding of
disease mechanisms and better health care; however, the volume,
velocity, variety, veracity, and value of medical data (ie, big
data characteristics) present many challenges that limit the
effectiveness of outcome for all stakeholders [8]. One promising
solution that addresses all these barriers is the
Health-Analytics-as-a-Service (HAaaS) paradigm.
Analytics-as-a-service (AaaS), in general, is a new
“as-a-service,” and it is more than just simplifying access to
technology. AaaS combines the on-demand aspects of cloud
computing with the democratization of information enabled by
big data analytics.

In this paper, we present and evaluate a cloud-based reference
framework for providing HAaaS for both real-time and
retrospective analysis. The framework has the capability to
provide all 4 types of analytics, that is, descriptive, predictive,
prescriptive, and discovery [18], in a service-oriented fashion.
It leverages the latest technologies and best practices for big
data analytics and also utilizes the security and privacy measures
appropriate for health and medical data. The architecture has
been realized (or customized) for neonatal intensive care units
(NICUs) at The Hospital for Sick Children (SickKids Hospital)
in Toronto and is known as the Artemis project. We have also
developed an analytical model for evaluating the performance
and availability of an Artemis-IC platform in preparation for
migrating Artemis to Artemis-IC. We discuss the important
aspects of the system performance and capacity planning
process. The main functionalities of the framework are presented
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via one of our developed algorithms (ie, Sepsis disease
detection). We also present a high-level security and privacy
schema for the framework that can be customized and extended
for different health applications and use cases. We show the
principle of how this could be performed and show that it can
be replicated for any critical care setting within a tertiary
institution that has critical care.

Methods

In this section, we highlight the functional and nonfunctional
characteristics of the framework. Two editions of the framework,
research and clinical editions, are designed in such a way that
support acquisition and storage of physiological data as well as
clinical information, for example, EHR, for the purpose of
real-time/retrospective analytics and visualization. The
framework is capable of gathering physiological data from a
vast variety of medical devices and transfers them in a secure
way toward the back-end system residing on the cloud.
However, anonymization and potential translation are in order
before data leave the hospitals.

The framework has an interface for communication with each
hospital’s clinical information management system to obtain
complementary information (eg, admission information,
laboratory test results) of patients. The framework utilizes a
hospital interface, which facilitates the management of hospitals’
connectivity in various geographic locations. A hospital interface
can also be used for “extract, transform, and load” (ETL)
purposes as well as load balancing.

Even though the research edition is for retrospective analysis
and historic data visualization, it is capable of medical rule
deployment and real-time analytics. This is only for testing the
new and modified medical rules before undergoing further
assessment and auditing. By contrast, the clinical edition was
specifically designed for real-time monitoring/visualization,
and here human domain experts deploy new or modified medical
rules after being extensively validated and certified.

Research Edition
Researchers are the main users of the research edition (RE).
This edition can be considered as a comprehensive solution that
facilitates retrospective analysis on large numbers of patient
data from different places. In addition to real-time analytics
capabilities, the RE is able to provide at-rest analytics for stored
data. Incorporating a big data analytics solution, that is, Apache
Hadoop, offers great power of analysis as well as persistent
storage. More specifically, the RE provides clean and
ready-to-process medical data (ie, physiological, medical,
laboratory, and other complementary data) along with the tools
from the Hadoop ecosystem for the researchers to perform their
analytics much easier than in the past. Researchers may apply
knowledge discovery techniques, for example, temporal data
mining [13], machine learning, and statistical modeling, against
vast amounts of stored data and find new rules that may help
earlier detection of diseases. Such new rules or modified
parameters can be deployed to the real-time analysis framework
seamlessly. As can be seen in Figure 1, four distinct processes
can be identified in the research edition framework.

1. Data Ingestion: A process that makes sure that RE stores
all relevant data in the Hadoop-based platform.

2. Data Enrichment: Historical context that is generated from
the data analytics component to bootstrap analytics and
enrich incoming data on real-time processing component;
more specifically, patient medical data or other related
persistent data to enrich the live physiological data during
the online processing.

3. Adaptive Analytics: Models that are generated by analytics
such as data mining, machine learning, or statistical
modeling in Hadoop platform used as basis for analytics
on incoming physiological data in the real-time component
and updated based on online observations.

4. Data Visualization: A process that visualizes data and
information for different types of users.

In the “Sepsis Case Study” section, we elaborate the data flow
and processing steps of the RE in which we describe one of our
developed algorithms for detecting sepsis in neonates.
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Figure 1. General architecture of the framework (research edition).

Clinical Edition
Clinicians, nurses, specialists, and other authorized hospital
staff may use the clinical edition (CE; see Figure 2) to monitor
their patients in a much more effective manner in real time. The
CE can be considered as a CDSS that can continuously monitor
a large number of patients simultaneously and automatically.
This edition is capable of monitoring large numbers of patients’
physiological/clinical data and producing appropriate alarms in
case of any medical complication onset. In addition, it can
visualize a specific patient’s data either live or historically back
a week or more. The ontology for the collection of high-speed

synchronous physiological data provides a standardized
terminology for acquired physiological data, including
measurement metrics, sampling frequency, and acceptable
ranges for the received values [19]. As with the collection of
physiological data, asynchronous clinical data collection is
supported by an ontology that specifies acceptable ranges for
the collected values. Examples of clinical data include age,
gender, medical history, and laboratory results. The core of the
CE is a stream computing middleware component, which
provides scalable processing of multiple streams of high-volume,
high-rate data.
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Figure 2. General architecture of the framework (clinical edition).

High-Level Security and Privacy Schema
In this section, we present a high-level security architectural
view of the framework. The details and implementation could
vary depending on circumstances and applications. As can be
seen in Figure 3, hospitals and research institutes are connected
to the framework back end through secure channels. Two
firewalls have been designed to isolate the framework from the
outside world sequentially. The outer one separates the proxy
server (ie, framework gateway), which is the edge server of the
framework from the Internet. The inner firewall isolates the
core of framework from the proxy server. Depending on the
granularity of health analytics services, different type of users

with various permission and data access levels could be defined.
In Artemis-IC, we used a deidentification technique by which
we eliminate the properties that might be used to identify
patients. Personal data such as medical record number (MRN),
name, address, and exact birth date were removed. The MRN
was replaced with a study identifier with the translation between
the two known only within the hospital. The exact date of birth
was replaced with an admission age range of the form 0-3 days
old, 4-7 days old, 8-10 days old, and greater than 10 days old.
These ranges were chosen for clinically significant reasons.
This process is performed in the De/Reidentification Server at
hospitals (Figure 2).

Figure 3. Security and privacy perspective of the Artemis-IC framework.
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Tailoring of the Method for Monitoring Premature
Babies
Premature birth, also known as “preterm birth,” is defined as
birth before 37 weeks’ gestational age. It has been identified as
one of the most important perinatal health problems in
industrialized nations. NICUs internationally provide critical
care for premature and ill term infants. Premature infants in
NICUs can be as young as 23 weeks’ gestation [20].

Vital organ monitoring together with ventilation support and
nutrition or drug titration through smart infusion pumps all
generate large volumes of data at high frequency. An
electrocardiogram (ECG) graph can be generated based on 1000
readings a second. Heart rate, respiration rate, and blood oxygen
are displayed each second resulting in 86,400 readings each
day. A premature newborn infant’s heart beats more than 7000
times an hour, which is approximately 170,000 times a day. Yet
traditional charting protocols, whether documented on paper or
within an EHR, typically enable the persistent storage of one
value per hour of an indicative heart rate for that hour. A
newborn infant’s neurological function could also be monitored
resulting in multiple waveforms each generating tens of millions
of data points per patient per day. Drug and nutrition infusion
data from smart infusion pumps can be more than 60 different
fields provided every 10 seconds. Given that these infants can
have more than 10 infusions concurrently, infusion can generate
more than 1 GB of drug infusion data from a single patient per
day [21].

We propose a customized version of the framework, Artemis-IC,
for monitoring preterm/surgical babies at NICUs. The
Artemis-IC provides HAaaS for concurrent multipatient,
multistream, and multidiagnosis through temporal analysis to
support real-time clinical decision support and clinical research
[22,23]. We deployed a pilot project by implementing
Artemis-IC at Toronto’s SickKids hospital and proposed an
analytical model [24] to enable performance evaluation and
capacity planning in advance of final deployment. In addition,
there is another pilot of the Artemis-IC at Women and Infants
Hospital of Rhode Island (WIHRI), which is collecting

physiological data for analytical and simulation modeling
purposes. Figure 4 shows the customization and tools that we
employed to deploy Artemis-IC framework in SickKids
Hospital. As IBM is one of the partners in this research, we
used IBM products to implement the framework.

To date, these environments (ie, SickKids and WIHRI
deployments) support clinical studies on late-onset neonatal
sepsis [22,25]; apnea of prematurity, in which the infant
experiences pauses in breathing and reductions in heart rate and
blood oxygen saturation [26]; retinopathy of prematurity, which
can result in permanent blindness [27]; and pain [28].

Clinicians and researchers are leading these studies from
different institutes toward the certification and formal approval
of the medical algorithms. Algorithms for the Artemis-IC
platform are developed either using data mining techniques that
have not previously been detectable, such as our work on
late-onset neonatal sepsis [22,25] or identifying patterns
described in the medical literature using automated methods
such as our work on apnea of prematurity [26]. These algorithms
are validated in robust clinical trials before being used to provide
decision support for clinicians. For example, the clinical rule
states that “If a pause in breathing occurs for greater than 20
seconds, or a pause in breathing that is associated with a change
in heart rate, or blood oxygen saturations happens,” then a
reportable condition of apnea is present [26].

The current Artemis-IC implementations at SickKids and
WIHRI have no impact on bedside care, as yet. We are
comparing analytical results with current clinical observation
and treatment practices to discover new patterns in real-time
physiological data that could lead to the earlier detection and
prevention of various diseases [26]. From first quarter 2015,
we plan to deploy new research where we will be able to
compare the results of using Artemis-IC with clinical outcomes
using current clinical practices. Some of the algorithms that we
have validated when they were running in parallel are due to
be certified in 2015/2016 and will be deployed in target clinical
institutions. We plan to provide experimental evaluation from
multiple deployments of the Artemis-IC in our future reports.
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Figure 4. Artemis deployment at SickKids Hospital.

Sepsis Case Study
In this section, we elaborate the interactions between the main
components of Artemis-IC for sepsis detection. Sepsis is a
potentially life-threatening complication of an infection, which
causes whole-body inflammation. In addition to real-time
detection, we also demonstrate the knowledge extraction process
in detail. The Unified Modeling Language (UML) sequence
diagram shown in Figure 5 illustrates all steps including data
acquisition, online detection, temporary data storage, persistent
data storage within the big data platform, knowledge discovery,
knowledge translation, and rule deployment.

Initially, multiple concurrent physiological data streams along
with related clinical data are received by the hospital interface.
Data are sent to the physiological and clinical database via the
stream-computing platform. At the same time, the
stream-computing platform runs the current deployed medical
rule for sepsis detection. Upon patient discharge, their data
including physiological and clinical data will be loaded into the

big data platform by the relational database management system
(ie, bulk move). Temporal abstractions (TAs) are then performed
for the specific service of critical care, in this case sepsis
detection, which involves (1) reading from the clinical rules
and physiological/clinical tables, and (2) writing the patient TA
to the TA table. Temporal data mining then can be performed
on the TA results, possibly resulting in updates to the clinical
rule table, after null hypothesis-based testing or other rule
assessment, for example. Note that the resulting clinical rules
are modeled in a UML concurrent activity diagram [19]. The
rule modifier is notified of a rule modification and translates
the UML representations of the new clinical rule to stream
processing language (SPL) based on the SPL mappings active
ontology. Finally, the new rule can be deployed on the
stream-computing platform for upcoming real-time analysis.
Note that the rule deployment on the Artemis-IC clinical edition
will be performed under supervision of domain human experts
as opposed to here where we consider the Artemis-IC research
edition.
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Figure 5. UML sequence diagram of sepsis detection and temporal data mining steps.

Quality of Service
As the framework has a service-oriented architecture (SOA),
the quality of service (QoS) is of great importance. To assign
the proper amount of resources to each hospital, we present a
method to create an analytical model to enable an accurate
estimation of storage, memory, and computation power for the
real-time health analytics components and retrospective analytics
components. The model utilizes realistic patient population
distribution that is based on gestation age characteristics and
condition onset probabilities within those contexts. Both of
these variables dictate the predicted length of stay for that infant.
In the following section, we present the model within the context
of SickKids hospital. In future work, we will do this for other
hospitals before deployment. We also leave performance
modeling of the research edition as our future work in which
we concentrate on another type of users of the framework (ie,
researchers).

Analytical Modeling of the Method
The analytical modeling of Artemis-IC deployment at SickKids
hospital’s NICU is required before any deployment because
critical care units (CCUs)/ICUs are different in terms of types
of patients, arrival process of patients, mean hospitalization
time, type of services, required QoS, etc. Figure 6 shows the
patient journey in the NICU at SickKids hospital. SickKids has
36 NICU beds including different types of patients. Depending
on the type of patients, different numbers of algorithms for
various periods will be triggered.

After discharging of a patient, a new patient will be submitted
to NICU in 4-6 hours. Fifty percent of patients are term babies
who are referred to SickKids for surgical purposes. Surgical
babies stay in hospital for 5 days approximately, and 8 medical
algorithms will be applied for after-surgery monitoring. The
rest of patients, that is, preterm babies, are classified into three
categories: babies who are born at 32-35, 27-32, and 23-27

weeks of their gestation age. The first group (ie, 30% of the
patients) will be monitored by at most 8 medical algorithms for
a mean period of 8 days. The second group (15%) of preterm
babies will be monitored by 10 or fewer algorithms for an
average time of 1 month. The third group is divided into two
subclasses depending on medical conditions: 80% of this group
(ie, 4% of the whole population) needs to be monitored by 20
or more algorithms for 4 months, and 20% (ie, 1% of the whole
population) needs to be monitored by 20 or more algorithms
for approximately 6 months. As Figure 6 suggests, SickKids
NICU can be modeled as a single heterogeneous finite queue
with multiple service facilities. Each type of patient has distinct
characteristics in terms of length of stay and number of
algorithms. Algorithms are also different in terms of required
computational resources.

The SickKids NICU receives more admission requests than it
has space for and prioritizes neonatal surgical patients. Other
patients are typically redirected to either Sunnybrook Hospitals
or Mount Sinai Hospital’s NICU when SickKids is operating
at or near capacity. The total number of bed spaces available
for admission is thus 118, with 40 and 42 of these spaces
available at these other 2 hospitals, respectively. We model the
Artemis-IC platform as an M/G/m/m queuing system (M stands
for Markovian, ie, Poisson), which indicates that the interarrival
time of patient’s arrival is exponentially distributed with the
mean value of λ while patients’ resident time at NICU is
independently and identically distributed random variables that
follows a general distribution. The system under consideration
contains m servers (ie, bed spaces) that renders service in order
of patients’ arrivals (first-in-first-serve [FIFS]). The capacity
of system is m, which means there is no extra room for queuing
patients. As the population size of newborns is relatively high
while the probability that a given newborn baby to be preterm
is relatively small, the arrival process can be modeled as a
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Poisson process. The details of the performance modeling can be found in [24].

Figure 6. Types of patients and their medical service path at SickKids NICU.

Results

The analytical model has been implemented in Maple 17 [29]
in order to obtain the numerical results. First, we characterize
the performance metrics for the current configuration of
Artemis-IC at SickKids that was described earlier in the section.
Table 1 shows the performance metrics and important exogenous
parameters. The average length of stay for patients is 16 days,

and each patient requires 9 algorithms on average on the stream
computing platform (ie, IBM Streams). The mean number of
monitored patients (ie, occupancy rate) is 34.9, so that 311
algorithms will be running on Streams. Each algorithm is
consuming approximately 110 MB of memory, which indicates
the requirement of at least 32 GB of memory for the
stream-computing cluster. Note that this amount of memory is
just for application hosts and the management hosts require at
least 2 GB more of memory.
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Table 1. Configuration parameters and performance metrics for current capacity of SickKids NICU.

ValueParameter

36Beds in NICU, n

4.5Patient arrival (patient/day), mean rate

16Length of stay for patients (days), mean

9Number of algorithms for 1 patient, mean

311All running algorithms on Streams, n

0.062NICU’s service (patient/day), rate

0.455Blocking probability

34.9Number of patients in NICU, mean

110Memory per algorithm, mean MB

32Required memory on Streams cluster, GB

16Required CPU cores for Streams cluster, n

700Required storage for a patient’s data (per day), MB

8.6Required storage on BigInsights cluster (per year), TB

As can be seen in Table 1, the amount of minimum storage for
the Hadoop cluster (ie, BigInsights cluster) to only support the
accommodation of raw physiological data for 1 year is 8.6 TB.
Depending on the data schema design on the BigInsights cluster,
additional storage might be required for the metadata. Moreover,
the storage required for nonphysiological data such as patient
information, laboratory results, and other related medical data
should be added on top of this calculation.

Figure 7 shows the amount of storage for the BigInsights cluster,
for 10, 36, 50, 60, 70-120 beds in the NICU. Note that this
amount is only for raw physiological data acquired from NICU.
The amount of storage increases linearly with respect to NICU
capacity up to 60 beds. Then between 60 and 80 beds, it is
increases sublinearly and in the end flattens. After reaching the
capacity of 90 beds, the amount of required storage remains
unchanged, which indicates that the NICU entered into the
unsaturated regime and can accommodate all new patient
arrivals. In other words, for 1 year, 16 TB of storage is sufficient
for the SickKids NICU regardless of NICU’s capacity (ie, the
number of bed spaces).

We are also interested in studying the number of patients who
get blocked, that is, redirected to another NICU, due to the
capacity limitations of the NICU of interest. To this end, we

characterize the blocking probability for the NICU with the
capacity of 10-120 beds. As can be seen in Figure 8, for the
current capacity of SickKids NICU (ie, 36 beds), 46% of patients
get blocked. However, by increasing the capacity to 150 beds,
the blocking will be less than 1%.

We also investigated the amount of memory and computation
power for the stream-computing cluster for different
configurations. Figure 9 shows the trend of required memory
and number of CPU cores with respect to number of beds. For
up to 70 beds, there is a linear dependency between the required
memory and capacity; however, results show 60 GB of memory
suffices for the Streams cluster based on these arrival and
departure rates.

Our calculation for computation power is based on the standard
CPU cores, that is, 2.00-GHz core, on IBM Softlayer
cloud-based servers [30] and our experiments, which revealed
that for each 20 algorithms we need a dedicated CPU core. The
trend for computation power is almost similar to memory,
explained above. We shall repeat the fact that these amounts of
memory and computation power are just for application hosts.
Depending on the deployment of management servers, extra
resources might be needed.
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Figure 7. Required storage for BigInsights cluster for different configurations.

Figure 8. Blocking probability for different configurations.
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Figure 9. Required memory and computation power for Streams cluster for different configurations.

Discussion

Principal Considerations
We have described and evaluated the design, implementation,
and pilot deployments of a framework that provides health
analytics as services. This framework can be considered as a
general architecture that can be tailored for different use cases
in the health informatics domain. One such customization is the
Artemis-IC project that provides a way for clinicians to have
online, real-time execution of the clinical rules in an intensive
care environment. Moreover, Artemis-IC provides researchers
with a rich set of easy access data and analytics tools by which
knowledge discovery will be much more attainable than in the
past. Because Artemis-IC’s target environments are critical care
units, we have carried out extensive performance evaluation in
order to guarantee expected quality of service and a high level
of availability in particular. This work has three main aspects
to be compared with similar works in the area, namely, data
collection, real-time, and retrospective analysis. In the following
sections, we compare our research to related work with regard
to these three aspects.

Data Collection
Collection of the physiological data is the first step in the
development of a CDSS. As technology has progressed, the
amount of physiological data as well as clinical information
about patients, for example, EHR, has grown significantly [31].
As such, developing systems that record these data securely and
at a suitable sampling rate and make them highly available is a
research topic on its own [26,32,33].

Sukuvaara et al [34] developed a system called DataLog, which
would connect to bedside monitors through an RS232 serial
interface to collect physiological signals every 5 seconds. They
performed some trending analysis on the signals and combined
it with heuristic “if-then” rules to create a knowledge-based
alarm system. However, capturing a data point once every 5
seconds is not enough to implement complex algorithms in the
real-time environment, which is a part of our solution. In
addition, only numeric signals are collected with DataLog, and
no waveform data are captured, which is an important
component of detecting conditions in real time.

Moody et al [35] developed customized software to log the
signals coming from the Hewlett Packard content management
system (Merlin) bedside monitors that were being used in the
medical, surgical, and cardiac ICUs of Beth Israel Hospital,
Boston, using a pair of RS232 serial interface cards in the
monitor and communicating the data to a standard personal
computer over a serial interface. They were able to record 3
ECG signals each sampled at 500 Hz and 4 or 5 other signals
sampled at 125 Hz, in addition to periodic measurements and
alarm messages. While the amount of data collected is
impressive, their approach was to strictly record and store the
data for the purpose of retrospective analysis. There was no
functionality to serve the data for any online processing.

Saeed et al [36] designed a system that collected physiological
and clinical data from the information management system on
the hospital’s local area network for creating a temporal ICU
patient database called MIMIC II. They monitored patients
admitted to an 8-bed medical ICU and an 8-bed coronary care
unit. The physiological data consisted of 4 continuously
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monitored waveforms (2 leads of ECG, arterial blood pressure,
pulmonary artery pressure) sampled at 125 Hz, 1-minute
parameters (heart rate, blood pressure, oxygen saturation, and
cardiac output), as well as monitor-generated alarms. The
strength in their approach is the ability to vary the presentation
of data depending on the specific type of research for which the
data are being used. Users of the database can extract a detailed
record of a single signal, or more temporal analysis data from
many signals can be displayed in one view. However, this ability
to provide data temporally can be done only after considerable
preprocessing and data fusion and is inherently retrospective.

A pilot and customized implementation of our method (ie,
Artemis-IC) in SickKids Hospital is capable of collecting 15
data streams including 12 scalars (reading 1 integer per second)
and 3 waveform streams (reading 60 doubles per second) and
ECG (reading 512 double per second). In addition, the
Artemis-IC clinical information system (CIS) adapter interfaces
with the clinical information management system (CIMS) to
access the SickKids CIMS patient EHR and stream the data into
the framework [22].

Real-Time Patient Monitoring
Current cutting-edge health informatics research projects aim
to discover new condition onset behaviors that are evident in
physiological data streams earlier than traditional detection of
conditions in critical care data [23]. To this end, some hospitals
may participate in pilot programs that aim to collect real-time
patient data from network-enabled monitoring devices. These
collected data are then analyzed to extract relevant temporal
behaviors and usually stored for future data mining and analysis
operations.

Historically, physiological stream monitoring of ICU patients
has been provided by “black box” regulatory body-approved
medical devices located at the patients’ bedside. While there
has been a growing body of biomedical engineering and clinical
research over the past 20-30 years proposing newer approaches
for advanced physiological stream monitoring, they still
predominantly have a physiological stream, clinical condition,
or patient-centric approach [37]. Zhang et al [38] have discussed
the implementation of a Health Data Stream Analytics System
called the “Anesthetics Data Analyzer,” which has been
developed to provide anesthetists with the ability to monitor
and query trends in physiological signals data, a kind of stream
data from the health care domain.

The BioStream [39] research project was designed to support
the continuous monitoring of heart information of a patient on
top of a general-purpose stream processing software architecture.
The ECG was the main signal of interest. The goal of the group
was to develop the prototype and collaborate with a medical
institution on a pilot study. A Drexel University research team
set out to design a system that performed online continuous
processing of an ICU patient’s data stream and data capture to
perform offline analysis to develop new clinical hypotheses
[40].

As we propose a programmable component for the real-time
processing in our solution, it can be customized to track a vast
variety of diseases simultaneously. This capability is in part

because of a comprehensive data collection followed by efficient
ETL techniques that we employed in the design and
implementation process. Moreover, there exist five active studies
for developing and certifying medical algorithms to be deployed
on the real-time component.

Retrospective Analysis and Knowledge Discovery
The taxonomy for analytic workflow systems has already been
presented [41]. Based on the taxonomy and a study of the
existing analytic software and systems, the authors proposed
the conceptual architecture of CLoud-based
Analytics-as-a-Service (CLAaaS). They outline the features
that are important for CLAaaS as a service provisioning system
such as user- and domain-specific customization and assistance,
collaboration, modular architecture for scalable deployment,
and service level agreement (SLA). We considered the
aforementioned outlined features for designing the proposed
framework in this work.

Analytics have been utilized in various aspects of health care
including predictive risk assessment, clinical decision support,
home health monitoring, finance, and resource allocation [6].
The proliferation of big data and analytics in health care has
spawned a growing demand for clinical informatics professionals
who can bridge the gap between the medical and information
sciences.

John Tukey pioneered the use of exploratory data analysis nearly
four decades ago [42]. Various packages and languages that
support exploratory data analysis have been developed since.
This includes S, S-Plus, R, SPSS, SAS, OLAP, and MATLAB
[43,44]. A recent view of modern data exploration practices is
available from Behrens and Yu [45]. All these approaches can
be used as the knowledge discovery engine in our proposed
architecture.

The retrospective analysis of previously persistently stored
physiological data through the determination and assessment
of TA-based qualitative behaviors from the analysis of
quantitative physiological data has been widely employed.
However, research is either physiological stream-clinical
condition or patient centric [1]. A structured approach for the
translation of the knowledge gained from this research, which
is predominantly statistical and sometimes more recently data
mining in nature, has been lacking [37,46].

One approach to the Software-as-a-Service utilizes the SOA
approach to software design where software services are made
available to the cloud through a series of Web services.
Examples of early work showing the potential for the use of
cloud computing in health care are emerging [11,47]; however,
these research efforts do not provide functional support to
critical care. McGregor [48,49] proposes a functional set of
Web services to support critical care as part of her solution
manager service as applied to health care. However, aspects
such as rule definition are not clearly defined within that
functional set. The application of cloud computing for the
provision of a service of critical care supporting both real-time
patient monitoring and retrospective clinical research remains
an open research problem.
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Strengths and Limitations
One of the main strengths of our work is the openness of the
proposed framework. It is general enough to be applied to
various scenarios in health informatics. The stream computing
platform in the clinical edition can be programmed for
monitoring different types of patients including but not limited
to neonates, children, adults, and the elderly in critical care
units, home, work, and even in transit. Any medical diagnostic
approach that can be described algorithmically can be deployed
and programmed on a real-time processing unit. Another key
strength of the framework is the modular design of the
architecture. In the research edition, any interested big data
solution can be utilized. For example, any Hadoop distribution
(eg, Cloudera [50], Hortonworks [51]) or other big data analytics
tools such as Spark [52] can be employed for different types of
retrospective analytics, provided that different types of analytics
such as machine learning, statistical modeling, batch processing,
interactive, streaming, graph, and in-memory analysis are
accessible to researchers. In addition, our experience in
customization of the framework for the NICU revealed that it
could be deployed with minimum intervention with current
procedures and policies. For example, for Artemis-IC
deployment at SickKids we used only the spare port at the
bedside monitors. We also developed an interface to interact
with the clinical management information system to get the
EHR from the hospital. Moreover, the systematic performance
modeling can be easily extended or customized to support other
medical care units. Estimation and prediction of the appropriate
underlying infrastructure is no longer an unknown question.

However, there exist some limitations that need to be addressed
properly and according to the target deployment. First and
foremost is adopting appropriate privacy mechanisms for the
physiological and medical data. For Artemis-IC, we used a
simple deidentification technique that might not be completely
secure and efficient. We use this technique to enable a simple
reidentification process at hospitals. A more robust approach
may apply encryption and perform analytics on encrypted data
[53]. A second challenge is the ETL process for physiological
data. This process should eliminate noise inputs from valid data
efficiently; this is a research topic on its own [54,55]. Third,
the process of medical algorithms certification is a complex and
time-consuming process that prevents acquiring actual benefits
out of the system in a timely manner. In other words, the lack
of standardization seems to be an obstacle toward the adoption
of systems such as Artemis-IC.

Conclusion
Our work fills the gap by providing a solution that can utilize
the latest achievements in cloud-based analytics for health care
informatics; it provides both real-time and retrospective analysis
capabilities for various stakeholders. Moreover, we proposed a
performance model that can be used for the capacity planning
of the Artemis-IC in advance of its physical deployment.
Artemis-IC and the corresponding performance model can be
tailored for other ICUs as well; the architecture is plug-in–based
so that similar open-source or commercial components can be
integrated to realize the solution. Artemis-IC can also be
deployed on any other cloud environment (ie, cloud agnostic).
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