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Abstract

Background: Telehealth care is a global trend affecting clinical practice around the world. To mitigate the workload of health
professionals and provide ubiquitous health care, a comprehensive surveillance system with value-added services based on
information technologies must be established.

Objective: We conducted this study to describe our proposed telesurveillance system designed for monitoring and classifying
electrocardiogram (ECG) signals and to evaluate the performance of ECG classification.

Methods: We established a telesurveillance system with an automatic ECG interpretation mechanism. The system included:
(1) automatic ECG signal transmission via telecommunication, (2) ECG signal processing, including noise elimination, peak
estimation, and feature extraction, (3) automatic ECG interpretation based on the support vector machine (SVM) classifier and
rule-based processing, and (4) display of ECG signals and their analyzed results. We analyzed 213,420 ECG signals that were
diagnosed by cardiologists as the gold standard to verify the classification performance.

Results: In the clinical ECG database from the Telehealth Center of the National Taiwan University Hospital (NTUH), the
experimental results showed that the ECG classifier yielded a specificity value of 96.66% for normal rhythm detection, a sensitivity
value of 98.50% for disease recognition, and an accuracy value of 81.17% for noise detection. For the detection performance of
specific diseases, the recognition model mainly generated sensitivity values of 92.70% for atrial fibrillation, 89.10% for pacemaker
rhythm, 88.60% for atrial premature contraction, 72.98% for T-wave inversion, 62.21% for atrial flutter, and 62.57% for first-degree
atrioventricular block.

Conclusions: Through connected telehealth care devices, the telesurveillance system, and the automatic ECG interpretation
system, this mechanism was intentionally designed for continuous decision-making support and is reliable enough to reduce the
need for face-to-face diagnosis. With this value-added service, the system could widely assist physicians and other health
professionals with decision making in clinical practice. The system will be very helpful for the patient who suffers from cardiac
disease, but for whom it is inconvenient to go to the hospital very often.

(JMIR Med Inform 2015;3(2):e21) doi: 10.2196/medinform.4397
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Introduction

Telehealth care is a global trend affecting clinical practice
around the world. It allows for the remote care of patients at a
distance using information and communication technology
(ICT). Telehealth care is a continuous, automatic, real-time,
and home-based remote monitoring system of patients that
provides person-centered facilities to support individual health
care. A previous study has reported that telehealth care may
help patients and families to optimize adherence to therapy and
may promote early intervention of abnormal signs by long-term
telehealth monitoring [1]. In addition, several surveys in
telehealth programs revealed beneficial results in clinical
outcomes. A study of telemonitoring programs indicated that
the all-cause mortality, the length of hospital stay, and the
hospitalization rate were significantly reduced in telehealth
users [2]. For these reasons, recent developments in Web-based
telehealth care systems were designed to continually monitor
the health status of chronic disease patients and elderly people
[3-5]. People with heart disease problems, especially, should
be warned to take particular care in daily life. However, it is
difficult to follow up the situation of patients in real time and
to provide early intervention in emergency cases. Fortunately,
with the progress and development of telecommunication
technologies, particularly in networks and electrical signal
devices, telecom facilities have afforded telehealth care as an
appropriate approach for disease management [6-9]. A real-time,
computer-based support system is suitable for patients and health
care providers in clinical practice [10]. Generally, information
and communication technology has been recognized as an
important tool in helping reduce health care costs while
maintaining a high level of quality. A general-purpose telehealth
care system must fully integrate remote management programs,
including wireless telecommunication, a sensor network, a user
interactive platform, and the information technology to deliver
the synchronous service. Therefore, to provide ubiquitous
monitoring and to offer value-added services, a comprehensive,
reliable, and efficient data-reporting and analyzing system and
its extendable modules must be established.

The electrocardiogram (ECG) is commonly used to detect
abnormal heart rhythms and investigate the cause of heart
abnormalities. An ECG, which can be acquired by a noninvasive
procedure, is a transthoracic interpretation of the heart electrical
activity over a period of time by using electrodes attached to
the surface of the skin. In clinical practice, an ECG is a critical
tool in diagnosing and identifying heart abnormalities by several
features. Some features observed by ECGs are the RR interval
(ie, the time measurement between the R waves of two
heartbeats), the QRS complexes (ie, the duration of ventricular
depolarization from Q wave to S wave), the ST segment (ie,
the interval between ventricular depolarization and
repolarization, between S wave and T wave), the T wave (ie,
repolarization of the ventricles), and the amplitude of R-wave
peaks (ie, electrical stimulus passing through the ventricular
walls). An ECG also gives important information about human

heart status related to critical healthy or unhealthy parameters.
Most heart diseases can be detected by analyzing the ECG
signal. The ECG is characterized by a cyclic occurrence of
patterns with different frequency contents. A good ECG analysis
method can accurately detect the morphological characteristics
of the QRS complexes as well as the peaks. In the ECG analysis
process, one of the most important procedures is to detect
R-wave peaks. When the position of the R-wave peak is found,
the locations of other feature points of ECG signals, such as Q
peaks and S peaks, can be found by the relative position to the
R-wave peak. Therefore, the accuracy of R-wave peak detection
in ECG signals becomes very important. There have been
several R-wave peak detection algorithms proposed in the past
decades. Generally, these algorithms can be categorized into
time-based detection algorithms [11-14], which are easy to
implement but sometimes sensitive to noise, and
frequency-based detection algorithms [15-18], which require
more computation time but have better detection performance
because of good robustness-to-interference, or noise, ratio.

In recent years, there were some research studies about atrial
premature contraction (APC) heartbeat detection from ECG
signals. Most algorithms of APC detection are time based and
use the QRS morphology information for APC heartbeat
classification [19-23]. On the other hand, some APC detection
algorithms [24-26] are frequency based and adopt the Fourier
transform or the wavelet transform. In these R-wave peak
detection and APC detection algorithms, the support vector
machine (SVM), the rule-based decision tree, the artificial neural
network, or fuzzy logic are used as classifiers.

Over the past decades, many studies have put effort into ECG
peak identification and heartbeat classification. However, few
of them specifically focused on multidisease interpretation from
ECG signals. Additionally, despite the numerous classification
approaches in the literature, no study has convincingly
demonstrated the hybrid model using a large, real-world ECG
database.

In general, interpretation of ECG signals is a complicated and
time-consuming task for cardiologists, especially when the data
size is very large. Hence, to mitigate the increasing workload
of cardiologists, and to provide continuous telehealth care and
offer value-added service, the aim of this study was to construct
a clinical decision support system (CDSS) with a
knowledge-based ECG recognition program based on the
support vector machine and rule-based processing approaches.
The proposed software was designed to aid medical practitioners
in decision making and clinical practice. The entire system
included the automatic mechanism of data transmission, data
storage, signal processing, and classification analysis. With the
information from electronic medical records and analysis results,
medical staff could use this telesystem to provide ubiquitous
health care for patients.
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Methods

Electrocardiogram Signal Analysis Using the Proposed
Telesurveillance System
The data flow of ECG signal analysis is illustrated in Figure 1.
In this study, we divided the flowchart into two parts. The first
part represents the data flow on the patient side. The flowchart
shows how we derived the ECG signal from patients. Patients
can use the ECG recorder, which is similar in size to handheld
mobile phones, to derive single-lead ECG signals as
independently as possible. The recorder can securely and quickly
transmit the measured data to the hospital server over Ethernet
connection or the wireless local area network (WLAN). The
other part of the flowchart shows the data processing on the
hospital side. Data preprocessing is an important process for
data analysis. We adopted the finite impulse response (FIR)
filter to remove noise and the drift caused from the baseline.
After noise reduction, we extracted the key features of the ECG
waveforms and used SVM or rule-based processing to construct
a classification model, which could suggest diagnoses. Finally,
the medical practitioners were able to make decisions with the
help of the suggested diagnoses from the system.

The interpretation mechanism is the critical part of an automatic
classification system. The process of the automatic ECG
recognition algorithm is shown in Figure 2. We divided the
process into four sections: noise reduction, peak estimation,
feature extraction, and diagnosis interpretation. Noise reduction
could enhance the signal part of the ECG from a contaminated
record. Peak estimation was used to detect the locations of the
P, Q, R, S, and T peaks for further analysis. Feature extraction
was used to extract the key information of signals as the
interpretation criteria of classifiers. Finally, we used the
classifiers for the purpose of heartbeat status monitoring in this
study.

The clinical decision support system was implemented using
the C# language in the ASP.NET Model-View-Controller
(MVC) architecture. The model is an application object and the
controller is a function between the user interface and input.
The concept of MVC (see Figure 3) is to connect the human's
mental model with the digital model, which exists in the
computer. At the very least, the concept was adopted as a design
pattern which is able to separate different sections. First, the

user interface, including representation and the input control,
is designed. Second, users can view and manage the data.
Finally, the data bank will be updated. Microsoft Structured
Query Language (SQL) Server 2008 was used for data
computation and analysis. For the purpose of timely transmission
and efficient delivery of the needed data to the user, the system
was developed using the asynchronous JavaScript and XML
(AJAX) technology and service-oriented architecture (SOA).
AJAX, a group of client-side technologies, is based on existing
standards that allows asynchronous communication by
exchanging small amounts of data with the server in the
background. The main purpose of AJAX is to enhance the speed,
performance, and usability of Web applications. SOA is
basically a collection of services that may be under the control
of different ownership domains, and is able to interact, share,
and exchange information without knowing the inner mechanism
of the different systems. In this study, to provide individualized
health management, we used the Web service to derive
electronic medical records (EMRs) from the National Taiwan
University Hospital (NTUH), which included such information
as prescriptions, allergy records, laboratory data, and
comorbidities.

Before analyzing ECG signals, the process of noise reduction
was applied, as in Figure 2. Noise reduction was used to remove
the interference and the baseline from signals. Its purpose is to
address ECG enhancement and to accurately interpret a
contaminated ECG signal. In this study, the denoising approach
was based on a finite impulse response filter, which has become
one of the most effective and popular denoising methods in
many biomedical signal fields in recent years [27,28]. A
band-pass FIR filter can reduce the noise and remove the
baseline. The ECG signal has always suffered from the baseline
drifting problem, which may lead to misdiagnosis if the drifting
is severe. Therefore, baseline removal was very important to
the ECG signal analysis. After removing the baseline, the
locations and amplitudes of the P, Q, R, S, and T peaks can be
determined accurately. Instead of using the median filter, which
was adopted by many existing algorithms, we applied an
innovative method to remove the baseline based on a gradient
weighting function and a baseline ratio index [29]. These
functions could improve the detection accuracy of the ECG
R-wave peak for feature extraction, as discussed in the next
section.
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Figure 1. Flowchart of ECG signal analysis in the telesurveillance system. Patients use the handheld recorder to obtain the single-lead ECG signal,
which will be automatically transmitted to the Telehealth Center at the NTUH for monitoring.

Figure 2. Flowchart of the automatic ECG recognition algorithm. Several preprocessing steps (ie, denoising, baseline removal, and feature extraction)
and the classifiers of SVM and rule-based processing are applied to analyze the ECG signal.
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Figure 3. The high-level description of the user-environment system architecture, Model-View-Controller (MVC). Based on the MVC architecture,
the modules of the platform can be clean, flexible, reusable, and extendable for programmers.

Peak Estimation and Feature Extraction
The R-wave peak of an ECG complex signal is a dominant and
essential characteristic which usually has the greatest height in
a QRS complex. In this paper, R-wave peak candidates were
identified by using the local maximum or minimum in a sliding
window [30]. To enhance the detection accuracy, we took
advantage of an adaptive peak-height thresholding method and
a search-back method for sifting through R-wave peaks
precisely. Moreover, the Q, S, P, and T peaks are also
representative characteristic features. Their locations highly
influence the accuracy of feature extraction. In the proposed
system, several techniques were applied to estimate the P, Q,
S, and T peaks accurately and efficiently. For efficiency, the
sliding detection window technique and the second-order
difference method were applied. For accuracy, the Mexican hat
function was applied as a template-matching filter to
approximate the PQRST complex. Based on the proposed
algorithm, the Q, S, P, and T peaks can be detected in an
accurate way even if the ECG signal suffers highly from noise.

The detection performance of R-wave peaks is based on the
Massachusetts Institute of Technology-Beth Israel Hospital
(MIT-BIH) arrhythmia database, which contains 48 half-hour,
two-channel ambulatory ECG records. The characteristics of
the MIT-BIH arrhythmia database include 11-bit resolution and
a sampling frequency of 360 Hz. There are total 650,000
sampling points per ECG signal record. All 48 records, including
2546 atrial premature contraction heartbeats, 7130 ventricular

premature contraction (VPC) heartbeats, and a total number of
109,494 heartbeats, were evaluated in the proposed method.

The features adopted in the classifiers of the entire system are
summarized in Table 1. They were grouped into three parts.
First, we employed a general extraction method based on the
wavelet transform. It can extract both the detailed and the
large-scale information. In this study, we applied three types of
wavelet transforms: the spline 5/3 wavelet, the
Cohen-Daubechies-Feauveau (CDF) 9/7 wavelet, and the
Daubechies wavelet. Second, as another part of feature
extraction, we calculated peak segments. For example, we first
detected R-wave peaks, then the R-wave peak was utilized to
calculate the vector between nearby peaks. Hence, we could
derive all peak points of the ECG signal. Third, we acquired
the features by computing the correlation and the segment
lengths among these peak points. Most importantly, we
established several features for specific diseases. For example,
atrial fibrillation (AF) is the most common abnormal heart
rhythm disease. The irregularity of RR intervals and the absence
of P waves are used as the features to identify AF. Hence, we
used the variant RR interval lengths to detect the irregular RR
intervals and used fake P waves to detect the absence of P
waves.

Furthermore, in a rule-based processing classifier, to detect the
morphological characteristics of the ECGs we also applied the
wave pattern and the time-based features among peaks, as seen
in previous studies [31,32].
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Table 1. Features of classifiers.

DescriptionsModel and extraction methods

Support vector machine

The maximum, minimum, mean, and variance using each wavelet transform. The number of features
extracted by the three wavelet transforms is 12.

Wavelet transform 5/3, 9/7, and
Daubechies

Local maximums of RR interval widths/R-wave peak amplitudes in different scales

Local minimums of RR interval widths/R-wave peak amplitudes in different scales

Local means of RR interval widths/R-wave peak amplitudes in different scales

Local variances of RR interval widths in different scales

The number of local maximums between two R-wave peaks

The rate of the case where the P peak does not exist

Local mean of PR-segment lengths

Local mean of QT-segment lengths

Local mean of ST-segment lengths

Local mean of P-wave widths

Local mean of T-wave widths

Local mean of QRS-complex width

Local mean of P-wave amplitudes

Local mean of T-wave amplitudes

Peak-segment features

Rule based

The amplitude of the R-wave peak

The amplitude of the S peak

The amplitude ratio of the R-wave peak and the maximal amplitude of the S peak and the Q peak

The distance between the Q and S peaks in a QRS complex

The distance between the R and S peaks in a QRS complex

The distance between the Q- and R-wave peaks in a QRS complex

The ratio of the current RR interval to the local average RR interval

Amplitude and time analysis

Data Collection
The ECG data were collected from the telehealth program of
the Telehealth Center at the National Taiwan University Hospital
from February 14, 2012 to December 31, 2014. The dataset
contained 213,420 ECGs from 530 patients. For classification,
we divided the data into the training dataset and the validation
dataset. We selected the data from 2012 as the training dataset,
and the remaining data as the validation dataset. Out of 213,420
ECGs, the training dataset and validation dataset contained
26,181 (12.27%) and 187,239 (87.73%) ECGs, respectively.
The training data were used to construct the SVM classification
model, whereas the validation data were used to validate the
accuracy of the models. The parameters of the ECG signals in
this study were as follows: the time to acquire a continuous
ECG signal was 15 seconds, the sampling frequency was 256
samples/second, the input dynamic range was ±2 mV, and the
bandwidth was 0.004 Hz to 40 Hz.

Diagnosis and Electrocardiogram Heartbeat
Classification
For the purpose of ECG signal classifications, we applied the
algorithm that is a combination of support vector machine and
rule-based processing. The SVM [33] is a nonlinear
classification method. It is a supervised learning model with
automatic learning algorithms that analyze data patterns for
classification and discrimination analysis. The concept of the
SVM method is to transfer the input features into a

multiple-dimensional space. In this space, a set of hyperplanes
is constructed by the attributes transformed from the features.
The ultimate goal of the SVM method is to generate the optimal
hyperplanes that are used as the classification principles to
separate all subjects [34]. The SVM method has become more
and more popular in signal and image processing [35-37]. In
our system, the radial basis function (RBF) kernel was applied
for constructing SVM models, and the model parameter for the
slack variable was set to 100.

The classification method of rule-based processing is to interpret
ECGs using expert knowledge in designing. The method is
generally suitable for analyzing the morphological
characteristics of ECGs. For this reason, we could discriminate
abnormal heartbeats, such as APC and VPC, using the
QRS-wave pattern and the RR interval. Generally, these kinds
of heartbeats do not have a normal morphology and impose an
arrhythmic change in normal ECG patterns. Thus, we applied
a rule-based, weighted Bayesian classifier to detect abnormal
heartbeats. According to the medical definition of heartbeats,
we applied the following rules for classification: (1) the current
RR interval is smaller than the average RR interval, (2) the
current QRS-complex width is larger than the average
QRS-complex width, and (3) the amplitudes of the current R,
S, and Q peaks are higher than those of other heartbeats.

Due to the diversity of the ECG waveforms and the purpose of
optimization classification, we constructed an integrated
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surveillance decision algorithm that integrates the SVM model
and rule-based processing according to their discrimination
performance. In addition, the overfitting problem should be
avoided as it may overrepresent the performance of models.
Therefore, we did not discriminate the data using the principle
“OR” among classifier results.

To test the performance of the proposed algorithm, the statistical
indicators of sensitivity (SE), the positive prediction rate (+P),
the detection error rate (DER), specificity (SP), and accuracy
(ACC) were adopted for evaluating the results. An accurate
algorithm will have higher SE, +P, SP, and ACC values and a
smaller DER value. The formulas of SE, +P, and DER are listed
in equations (1) and (2) where true positive (TP) is the number
of the true cases that are successfully recognized as true cases,
false negative (FN) is the number of true cases that are regarded
as false cases, false positive (FP) is the number of false cases
that are treated as true cases, and true negative (TN) is the
number of false cases that are validly identified as false cases.

SE(%) = TP/(TP+FN),+P(%) = TP/(TP+FP), DER(%) =
(FP+FN)/(TP+FN) (1)

SP(%) = TN/(TN+FP), ACC(%) = (TP+TN)/(TP+TN+FP+FN)
(2)

To validate the capability of the proposed classification models,
we conducted a retrospective study using the confirmation ECG
data that were used for diagnosis by cardiologists as the gold
standard to verify the models.

Results

Telesurveillance System
To provide ubiquitous telehealth care, a telesurveillance system
at the Telehealth Center of the NTUH was deployed under an
SOA framework with the Health Level Seven (HL7) standard.
By providing long-term informative interaction and long-term
health monitoring, the presented telehealth care system is more
than a health monitoring system—it is also helpful for clinical
decision making. The service provided must be able to take care
of routines and subroutines and act as a health information center
to share the data among heterogeneous platforms, such as
hospital information systems and health information systems.
Hence, our system successfully provides a continuous, real-time,
secure, Web-based telehealth care service for both patients and
medical staff. A screenshot of our system is shown in Figure 4.
The menu on the left side of the screen includes a patient list
with the personal serial number and name of each patient. The
right-hand section contains the following menu items: (1)
VitalSign, which contains uploaded biometric data, including
single-lead ECGs, blood pressure, heart rate, oximetry, and
glucometry—in diabetic patients with impaired fasting glucose
and impaired glucose tolerance, (2) Plan, which contains
telephone interview records and health care planning, (3) Profile,

which contains the patient’s individual profile, (4) Report, which
is the monthly statistical report, (5) EMR, which is the electronic
medical record, including the history of prescriptions,
medications, allergies, and laboratory data at the NTUH, (6)
Image, which contains uploaded wound photos, (7) Feedback,
which contains the user’s satisfaction survey and nutritional
assessment, and (8) Renew, which refreshes the page and data.
For example, the section VitalSign illustrates the main uploaded
information, including the recording date/time, uploading
date/time, and estimated heartbeat. It also provides the list of
patients’ECGs. Users are able to access the required information
by clicking the tabs. Moreover, in order to reduce the workload
of medical practitioners, the user can switch between sinus and
disease ECGs. These tags are labeled by the automatic
classification mechanism. Sinus data are normal rhythm ECGs
and disease data are ECGs associated with any disease. After
selection, the ECG data will be displayed on the platform.

To provide value-added service, the system is equipped with
an automatic interpretation function to help medical personnel
in clinical practice. We designed a Web-based user interface
for medical staff, which can review the ECG data on the
platform and make a decision with corresponding classification
suggestions. The diagnostic interface of an ECG record is
illustrated in Figure 5. The left-hand section shows a continuous
15-second ECG signal with the common standard unit. In a
standard ECG, the width of a single, small square represents
0.2 seconds and the height of the square is 0.5 mV. Moreover,
users can click on the bottom, left-hand buttons to indicate the
R, P, and T peaks, and the baseline of the ECG. By the same
token, they can not only switch the height of the ECG figure to
15 mm/mV or to 10 mm/mV, but they can also use the filter to
eliminate the frequency noise. Items on the right-hand side
include the date/time of uploading and measuring, estimated
heartbeats, diagnosis selection, and the marked area. If “Show
in patient’s report” is selected, the ECG and judgment will
appear in the patient’s monthly statistical report. At the
Telehealth Center of the NTUH, there are 20 types of ECG
diagnoses built into the database, such as sinus rhythm, atrial
fibrillation, and first-degree atrioventricular block (AVB1). We
employ an icon to easily represent the diagnosis suggestion by
classification models. The information is relayed to the
cardiologist who makes the final clinical decision and health
care suggestions. For example, in Figure 5, the “AF” cell is
labeled with a blue dot by the model in this ECG case. Hence,
the physician could pay more attention to this icon, whether the
suggestion is consistent with their diagnosis or not. In particular,
the supported information is very important with some
complicated data—it could provide assistance to physicians in
enhancing the accuracy of decision making. After diagnosis,
for high quality of care, the serious abnormal data would
immediately alert case managers, who could then make phone
calls to patients or their caregivers.
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Figure 4. A screenshot of the telesurveillance system. Users are able to access the required information on the platform, such as patients’ biometric
data, electronic medical records, and monthly statistical reports.
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Figure 5. A screenshot of ECG diagnosis using the telesurveillance system. The ECG waveform and the corresponding classification suggestions are
revealed on the screen. The suggested heartbeat classification is marked with a blue dot. Health professionals can make decisions using this information
in clinical practice.

Peak Evaluation Results
The performance of the proposed R-wave peak detection
algorithm, based on a total of 48 records from the MIT-BIH
arrhythmia database, was analyzed. Out of a total number of
109,494 heartbeats in the MIT-BIH arrhythmia database, the
algorithm detected 73 false negatives and 134 false positives,
giving it a detection error rate of 0.19%. The sensitivity of the
algorithm was 99.93% (109,371 true positives/[109,371 true
positives plus 73 false negatives]). The algorithm had a positive
prediction rate of 99.88% (109,371 true positives/[109,371 true
positives plus 134 false positives]) (see Table 2). In particular,

for healthy and semihealthy cases, the average detection error
rate was 0.1% (SD 0.002). One thing to notice is that the R-wave
peak detection algorithm was very simple to implement without
using any transform-domain methods, such as the Fourier
transform and the wavelet transform. This algorithm also used
the adaptive threshold method to increase the ECG R-wave
peak detection accuracy rate and reduce the numbers of false
positives and false negatives by considering the cases of
irregularity and noise-like peaks on ECG signals. When
implemented by MATLAB, the average detection time for each
30-minute ECG dataset in the MIT-BIH database was less than
0.65 seconds.
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Table 2. Performance of R-wave peak detection algorithm.

n or %Characteristics of dataset and algorithm

Type of beats, n

109,494Total beats

109,371True positives

73False negatives

134False positives

Algorithm performance measure, %

0.19Detection error rate

99.88Positive prediction rate

99.93Sensitivity

Descriptive Statistics
The automatic ECG classification mechanism proposed by this
study was evaluated using the diagnostic data at the Telehealth
Center of the NTUH. The distribution of the ECG data is shown
in Table 3. There were 213,420 heartbeats from 530 patients
measured between February 14, 2012 and December 31, 2014.
Overall, the number of sinus, disease, and noise cases from the
entire dataset of 213,420 heartbeats were 151,040 (70.77%),
54,218 (25.40%), and 10,514 (4.93%), respectively.

Additionally, the heartbeat problem that occurred most often
was atrial fibrillation (21,580/213,420, 10.11%). Other common
problems—sorted by the number of cases—out of 213,420
heartbeats were atrial premature contraction (11,181, 5.24%),
atrial flutter (7858, 3.68%), first-degree atrioventricular block
(6304, 2.95%), and pacemaker rhythm (6040, 2.83%). To
compare the differences between the training dataset and the
validation dataset, the proportion of the sinus, disease, and noise
cases in the training dataset was made to be similar to that of
the validation dataset.

Table 3. Electrocardiogram dataset from 530 patients from the Telehealth Center of the National Taiwan University Hospital.

Number of heartbeats, n (%)Diagnosis

Validation dataset

(n=187,239)

Training dataset

(n=26,181)

Total

(n=213,420)

187,239 (100)26,181 (100)213,420 (100)All

132,611 (70.82)18,429 (70.39)151,040 (70.77)Sinus

6569 (3.51)1593 (6.08)8162 (3.82)Uncertain

Disease a

48,059 (25.67)6159 (23.52)54,218 (25.40)Allb

19,348 (10.33)2232 (8.53)21,580 (10.11)AF

7058 (3.77)800 (3.06)7858 (3.68)AFL

4607 (2.46)1433 (5.47)6040 (2.83)Pacemaker rhythm

9947 (5.31)1234 (4.71)11,181 (5.24)APC

625 (0.33)107 (0.41)732 (0.34)VPC

2757 (1.47)307 (1.17)3064 (1.44)TWI

1064 (0.57)92 (0.35)1156 (0.54)ST-segment down

5963 (3.18)341 (1.30)6304 (2.95)AVB1

224 (0.12)39 (0.15)263 (0.12)JEB

5 (0)0 (0)5 (0)QT>450

8610 (4.60)1904 (7.27)10,514 (4.93)Noise

aAtrial fibrillation (AF), atrial flutter (AFL), atrial premature contraction (APC), ventricular premature contraction (VPC), T-wave inversion (TWI),
first-degree atrioventricular block (AVB1), junctional escape beat (JEB), QT-segment length is more than 450 milliseconds (QT>450).
bSince two or more problems may occur at a heartbeat at the same time, the sum of individual disease heartbeats is more than the number of all disease
heartbeats combined.
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Automatic Electrocardiogram Classification Results
In this study, we used the validation data to obtain an objective
performance evaluation with several indicators. The capability
of the proposed ECG classification mechanism is shown in
Table 4. The experimental results show that the accuracy,
sensitivity, and specificity in sinus (ie, normal rhythms) cases
were 53.32% ([47,036 true positive plus 52,804 true
negative]/187,239 total), 35.47% (47,036 true positive/[47,036
true positive plus 85,575 false negative]), and 96.67% (52,804
true negative/[1824 false positive plus 52,804 true negative]),
respectively.

Since we hope that, when the disease case occurs, the clinician
can be informed, it is important to prevent the classification
model from missing any possible disease data. Therefore, the
model with higher specificity for sinus cases and higher
sensitivity for disease cases is preferred. Table 4 shows that, in
the disease case, our model yielded a sensitivity of 98.50%
(47,339 true positive/[47,339 true positive plus 720 false
negative]). In the sinus case, the model yielded a specificity of
96.67%.

For the detection performances of specific diseases, the
recognition models generated sensitivity values of 92.70%
(17,935 true positive/[17,935 true positive plus 1413 false
negative]) in atrial fibrillation, 89.10% (4105 true positive/[4105
true positive plus 502 false negative]) in pacemaker rhythm,
88.60% (8813 true positive/[8813 true positive plus 1134 false
negative]) in atrial premature contraction, 72.98% (2012 true
positive/[2012 true positive plus 745 false negative]) in T-wave
inversion, 62.21% (4391 true positive/[4391 true positive plus
2667 false negative]) in atrial flutter, and 62.57% (3731 true
positive/[3731 true positive plus 2232 false negative]) in
first-degree atrioventricular block. Moreover, the accuracy,
sensitivity, and specificity to detect the noise cases were 81.17%
([6984 true positive plus 144,995 true negative]/187,239 total),
81.11% (6984 true positive/[6984 true positive plus 1626 false
negative]), and 81.17% (144,995 true negative/[33,634 false
positive plus 144,995 true negative]), respectively. Since the
noisy ECG signals could be identified by the algorithm
accurately, it could be adjusted by denoising approaches to yield
good-quality ECG signals.

Table 4. Electrocardiogram classification performance for the dataset from the Telehealth Center of the National Taiwan University Hospital.

Characteristics of dataset and algorithmDiagnosis

Algorithm performance measure, %Type of beats, n

SpecificitySensitivityAccuracyTrue nega-
tive

False posi-
tive

False nega-
tive

True posi-
tive

96.6635.4753.3252,804182485,57547,036Sinus

Disease a

31.8698.5048.9644,33894,84272047,339All

87.8892.7088.37147,53420,357141317,935AF

93.0562.2191.88167,65112,53026674391AFL

35.4689.1036.7864,756117,8765024105Pacemaker rhythm

72.4588.6073.31128,45448,83811348813APC

97.5450.7297.38182,0194595308317VPC

87.7472.9887.52161,85922,6237452012TWI

94.6344.2794.34176,16810,007593471ST-segment down

91.3062.5790.39165,50515,77122323731AVB1

97.4913.3997.39182,317469819430JEB

94.3220.0094.32176,60410,63041QT>450

81.1781.1281.17144,99533,63416266984Noise

aAtrial fibrillation (AF), atrial flutter (AFL), atrial premature contraction (APC), ventricular premature contraction (VPC), T-wave inversion (TWI),
first-degree atrioventricular block (AVB1), junctional escape beat (JEB), QT-segment length is more than 450 milliseconds (QT>450).

Discussion

Principal Findings
In this study, a telesurveillance system with automatic
recognition of the ECG in real time was implemented. Our
system was intentionally designed for monitoring and classifying
the ECG signals of telehealth users who are being cared for at
home. Ultimately, ECGs could not only be transmitted to the

hospital over the telecommunication system, but could also be
recognized using automatic ECG classifiers for offering a
suggestion for diagnosis. Therefore, the system provides the
24-hour service every day. It can automatically identify
abnormal ECGs and send alarms to health care providers. In
ECG preprocessing, we used a denoising approach based on an
FIR filter and performed baseline drift removal with a gradient
weighting function. Both techniques can enhance the signal
portion of a contaminated ECG record and improve the accuracy
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of feature extraction. Next, a fixed sliding window, an adaptive
peak-height thresholding scheme, and a search-back method
were applied for ECG peak detection. According to the
preliminary results of R-wave peak evaluation from the
MIT-BIH arrhythmia database, our algorithm achieved a
detection error rate of 0.19%, a sensitivity of 99.93%, and a
positive prediction rate of 99.88%. Moreover, wavelet
transforms, relative locations, matched filters, and the regularity
test were also employed for feature extraction. For abnormal
heartbeat classification, we adopted the interpretation approaches
of the support vector machine and rule-based processing. The
experimental results of the proposed ECG classification
mechanism showed the classifiers yielded a specificity of
96.66% for normal heartbeats, a sensitivity of 98.50% for
disease cases, and an accuracy of 81.17% for noise cases. For
diagnosing specific heartbeat problems, the interpretation model
generated sensitivities of 92.70% for atrial fibrillation, 89.10%
for pacemaker rhythm, 88.60% for atrial premature contraction,
72.98% for T-wave inversion, 62.21% for atrial flutter, and
62.57% for first-degree atrioventricular block. For medical staff,
they would be able to upload the ECG signals of patients through
this clinical decision support system. Then, the immediately
automatic interpretation of the ECG could provide physicians
with a suggested diagnosis to help them make a decision
accurately. This system is very helpful especially when the data
size is very large. Moreover, we also integrated electronic
medical records into the system, which include such information
as prescriptions, food allergies, and drug allergies. With this
information, the medical staff could provide more adequate
advice to patients.

Limitations
There were some limitations to this study. First, the SVM model
is not suitable to use with the imbalanced data, since it tends to
classify the instances into the majority class. To overcome this
problem, we first applied the rule-based approach to recognize
the minority class. The rule-based classifier could immediately
detect the disease cases using some specific features. Second,
we adopted a genetic algorithm to generate the most relevant
features for constructing SVM models, whereas the total features
were selected as input features for training in order to create
optimal classifiers. As well, additional rule-based features were
required to augment the current automated classification models
to consider all of the features for classifying. For the rule-based
classifier, all selected features were determined after discussions
with ECG-domain knowledge experts (ie, hospital doctors), and
also from in-depth consultation of several ECG textbooks. Third,
we classified abnormal heartbeats with specific features. Hence,
for these classifiers it is hard to identify heartbeat problems
without significant features. For example, ventricular
tachycardia (VT) and ventricular fibrillation (VF) usually do
not have normal waves, complexes, and segments due to
improper electrical activity and the uncoordinated contraction
of the cardiac muscle. Moreover, the number of cases of these
diseases is fairly small and it is not suitable to construct SVM
models. These kinds of ECGs may usually be classified into
the noise class. Fortunately, with the progress and development
of the implantable cardioverter defibrillator (ICD), this therapy
could save patients with sudden cardiac disease. Finally, the

accuracy of ECG diagnosis depends on the coding of
cardiologists [38,39]. This is an innate disadvantage of big
database analysis. Nevertheless, these kinds of studies reveal
real-world information that can be used for medical science
research studies, and they offer a meaningful contribution in
the form of generating evidence to solve current medical issues.
Besides, this study resulted in 96.18% (205,258/213,420)
readable ECGs—the ECGs that were not classified as uncertain
cases in Table 3. We believe that the reliability of this data is
sufficient for conducting research studies and for making
diagnosis suggestions for physicians.

Comparison With Prior Work
With the advances in modern telecommunication technologies,
telehealth care is one of the trends in medical treatment. Previous
studies have confirmed that telehealth care is an efficient
approach in disease management [2,40-42]. The telehealth care
system in this study is not only a health monitoring system, but
also a tool that assists in decision making. Fortunately, our
previous studies have shown that the Telehealth Center of the
National Taiwan University Hospital has provided effective
telehealth care for chronic cardiovascular disease patients and
has reduced medical costs and the burden on caregivers [43-45].
A previous study has also indicated that the data analytics in
the telehealth care system could assist clinicians at the point of
care [46]. In this study, we established an automatic mechanism
for ECG signal collection, transmission, and processing, and
then used this massive amount of data to implement a clinical
decision support system, which was codesigned by the clinicians
at the NTUH.

ECG R-wave peak detection is one of the most important parts
of a fully automated ECG analysis algorithm. Many R-wave
peak detection algorithms have been proposed. The methods in
some previous studies [13,15,47] are time-domain based, and
those in two other studies [48,49] are transform-domain based.
Cui [13] proposed an algorithm based on zero-crossing counting.
It achieved a sensitivity of 99.8% and a detection error rate of
0.6%. The algorithm by Chen et al [15] mainly applied
morphology and background noise removal, and achieved a
sensitivity of 99.7% and a detection error rate of 0.7%. Wang
et al [47] proposed another QRS-detection algorithm—it
generated a sensitivity of 99.8% and a detection error rate of
0.5%. Arzeno et al [48] proposed an algorithm that is based on
the discrete wavelet transform (DWT) with a sigma-delta
modulator—it achieved a sensitivity of 98.0% and a detection
error rate of 2.8%. The algorithm by Hamilton and Tompkins
[49] used the biorthogonal spline wavelet and applied the Mallat
algorithm to detect feature points—it had a sensitivity of 99.7%
and a detection error rate of 0.5%. By contrast, the real-time
R-wave peak detection algorithm adopted in our system used
slopes to find the local maxima or minima within a fixed time
slot. The QRS R-wave peak usually happened at the local
maxima or minima with the largest change of slope. In addition,
an adaptive thresholding scheme, the regularity of heartbeats,
the matched filter, and the sharpness of the peak were also
adopted for R-wave peak detection. Evaluation results showed
that the proposed method achieved a positive prediction rate of
99.88%, a sensitivity of 99.93%, and a detection error rate of
0.19% when applied to data from the MIT-BIH arrhythmia
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database, which indicates better performance than that of the
other methods. Moreover, since R-wave peak candidate sifting
is applied, our algorithm can be implemented in an efficient
way.

In recent years, there were several related research studies about
detecting cardiac anomalies from ECG signals. The first study
proposed an arrhythmia disease diagnosis method based on the
artificial neural network (ANN) classifier using the University
of California at Irvine (UCI) 12-lead arrhythmia data. Their
model classified ECGs into normal or abnormal (ie, arrhythmia)
cases. They obtained a sensitivity and a specificity of 93.8%
and 93.1%, respectively [50]. Another method that applied the
feed-forward artificial neural network to identify normal, VPC,
and other heartbeats was proposed by Ince et al [51]. For the
MIT-BIH arrhythmia database, Ince et al’s method achieved
99.4% sensitivity and 98.9% specificity for identifying normal
heartbeats, 93.4% sensitivity and 93.3% specificity for
determining VPC heartbeats, and 87.5% sensitivity and 97.8%
specificity for other heartbeats. Sankari and Adeli [52] proposed
a mobile cardiac monitoring system for identifying three cardiac
pathologies: atrial fibrillation, atrioventricular block, and
myocardial infarction. The system yielded a sensitivity of
95.0%—detecting 95.0% of the pathologies—and a specificity
of 100%. However, the system was tested using 60 simulated
pathologic ECG datasets rather than a big database. A recent
study that investigated the autoregressive model for atrial
fibrillation screening was proposed by Parvaresh and Ayatollahi
[53]. The experimental results using the MIT-BIH AF database
showed that the model’s sensitivity and specificity were 96.1%
and 93.2%, respectively [53]. Similarly, in another research
study, Lian et al [54] developed an AF detector based on the
change of RR intervals. It yielded 94.3% sensitivity and 95.1%
specificity when applied to the MIT-BIH atrial fibrillation
database, and 98.1% sensitivity and 77.0% specificity when
applied to the MIT-BIH arrhythmia database. However, it only
generated a specificity of 84.1% for non-AF detection when
applied to the MIT-BIH normal sinus rhythm database. In fact,
we also tested the performance of our algorithm using the
MIT-BIH database. Most of the VPC heartbeats were detected
successfully with an average sensitivity value of 98.08% and

an average specificity value of 99.31%. For APC feature
extraction and classification, the proposed algorithm yielded
an average sensitivity value of 97.45% and an average
specificity value of 99.52%. Compared with the previous studies,
our methods have an even better performance when applied to
the MIT-BIH database.

Although these studies have algorithms that achieve good
performance for ECG classification, they are generally not
suitable for multiple heartbeat problem diagnoses. In addition,
the performance of these models was evaluated using the
MIT-BIH database rather than real-world data, which can be
significantly affected by various environmental factors and can
be much more complicated to analyze.

To make the proposed telesurveillance system really helpful to
practical clinics, we developed an automatic ECG interpretation
algorithm using real-world, multiple-diagnosed ECG data from
the telehealth care program. The proposed system yielded a
much higher specificity for normal cases and a much higher
sensitivity for disease cases than those of other algorithms. As
a result, our mechanism is reliable enough to obviate the need
for the physician’s diagnosis and confirmation.

Conclusions
Via the telesurveillance system, the telehealth care and
communication devices, and the automatic ECG interpretation
mechanism, telehealth users can be monitored and cared for at
home anytime, whereby real-time ECG signals are collected,
transmitted, and displayed, and the corresponding classification
suggestions are revealed on the system. Furthermore, this paper
presents several methods for ECG signal preprocessing and
classification. Traditional techniques aim at identifying
heartbeats and adjusting the waveforms of ECG signals. In
contrast, our proposed interpretation mechanism combines SVM
and rule-based processing, and is intentionally designed to
automatically analyze the ECG signals of patients in the
telehealth care service system. With this value-added service,
this intelligent system could widely assist physicians and other
health professionals with decision-making tasks in clinical
practice, which is important for making users accept remote
medical assistance technologies in general.
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MVC: Model-View-Controller
NTUH: National Taiwan University Hospital
QT>450: QT-segment length is more than 450 milliseconds
RBF: radial basis function
SE: sensitivity
SP: specificity
SOA: service-oriented architecture
SQL: Structured Query Language
SVM: support vector machine
TN: true negative
TP: true positive
TWI: T-wave inversion
UCI: University of California at Irvine
VF: ventricular fibrillation
VPC: ventricular premature contraction
VT: ventricular tachycardia
WLAN: wireless local area network
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