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Abstract

Background: The Unified Medical Language System (UMLS) contains many important ontologies in which terms are connected
by semantic relations. For many studies on the relationships between biomedical concepts, the use of transitively associated
information from ontologies and the UMLS has been shown to be effective. Although there are a few tools and methods available
for extracting transitive relationships from the UMLS, they usually have major restrictions on the length of transitive relations
or on the number of data sources.

Objective: Our goal was to design an efficient online platform that enables efficient studies on the conceptual relationships
between any medical terms.

Methods: To overcome the restrictions of available methods and to facilitate studies on the conceptual relationships between
medical terms, we developed a Web platform, onGrid, that supports efficient transitive queries and conceptual relationship studies
using the UMLS. This framework uses the latest technique in converting natural language queries into UMLS concepts, performs
efficient transitive queries, and visualizes the result paths. It also dynamically builds a relationship matrix for two sets of input
biomedical terms. We are thus able to perform effective studies on conceptual relationships between medical terms based on their
relationship matrix.

Results: The advantage of onGrid is that it can be applied to study any two sets of biomedical concept relations and the relations
within one set of biomedical concepts. We use onGrid to study the disease-disease relationships in the Online Mendelian Inheritance
in Man (OMIM). By crossvalidating our results with an external database, the Comparative Toxicogenomics Database (CTD),
we demonstrated that onGrid is effective for the study of conceptual relationships between medical terms.

Conclusions: onGrid is an efficient tool for querying the UMLS for transitive relations, studying the relationship between
medical terms, and generating hypotheses.

(JMIR Med Inform 2014;2(2):e23) doi: 10.2196/medinform.3387
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Introduction

Since Swanson’s discovery of the connection between fish oil
and Raynaud’s syndrome via blood viscosity [1], transitive
associations have been important sources of hypothesis
generation in biomedical science. In Swanson’s paradigm, an
association between concepts A and C may be possible if both
are related to a third concept, B. A number of discoveries and
hypotheses have been made under this model. For instance,
Hristovski et al proposed literature-based discovery to search
disease candidate genes [2], to investigate drug mechanisms
[3], and to identify novel therapeutic approaches [4]. As another
example, Petric et al used this model to study autism by
literature mining and found the connection between autism and
calcineurin [5]. With the Unified Medical Language System
(UMLS), such transitive association studies are becoming more
efficient and powerful in generating novel hypotheses.

In biomedical science, the UMLS [6] is the largest thesaurus
widely used in various applications. It is a collection of more
than 160 source vocabularies (version 2012AA). The UMLS
consists of three parts: the Metathesaurus, Semantic network,
and Specialist lexicon. The Metathesaurus is the main body of
the UMLS and has over 2 million concepts, each with a concept
unique identifier (CUI), and over 15 million links (associations)
between pairs of CUIs. The UMLS Terminology Services
(UTS), hosted by the National Library of Medicine, provides
an online query tool for these concepts under its Metathesaurus
browser. To make use of the rich information contained in the
UMLS, the interactive biomedical discovery support system
(BITOLA) developed by Hristovski et al [2,7] supports the input
of UMLS CUIs, concept, semantic types, and chromosome
locations, in searching for hypothetic relations such as disease
candidate genes.

BITOLA is based on Swanson’s one transitive relationship
model. It is quite natural to ask if multiple transitive
relationships will generate more rich hypotheses. Wilkowski et
al [8] showed that by extracting paths from a graph modeling
the concept relations, it is possible to extend this one transitive
relationship model to a multiple-transitive relationship model
for novel hypothesis discovery. For the UMLS, if we consider
each CUI as a vertex, and links connecting two CUIs as an edge,
we obtain a graph modeling the UMLS. The transitively
associated queries on the UMLS can be regarded as queries on
the UMLS graph. In fact, a number of works [9-14] have
successfully used multiple-transitive relationships in the UMLS
to study the closeness between two medical concepts. However,
these works have two major limitations.

First, similar to [8], they rely on ad-hoc path search algorithms,
such as Depth-First Search (DFS), which limit their searching
ability on very large graphs. This is because the running time
of DFS or similar ad-hoc search algorithms is proportional to
the size of the graph being searched. As a result, it is not
efficient to perform a large number of searches on a large graph
using these algorithms. Thus, these works put major limitations
on their search ranges, such as within a very small number of
data sources in the UMLS, or very short search paths (eg, no
more than 5 concepts in a path in [11]), to reduce the search

space and thus to reduce the search time. Second, they generally
rely on the distance to determine the closeness between two
concepts. Since the distance between two concepts is determined
by the shortest transitive relationship(s) and does not take into
account other non-shortest transitive relationships, a false
shortest transitive relationship may nullify the whole hypothesis.
Given this observation, we conclude that this is not as reliable
as a measurement on a large collection of paths. In fact, the
effective measurement of relationship between two concepts in
[2] and [15] can be viewed as a measurement on a collection of
very short paths.

To overcome the two limitations, we developed a
k-neighborhood Decentralization Labeling Scheme (kDLS) to
efficiently index the UMLS [16]. kDLS supports efficient
path/distance queries on the whole UMLS, as well as a
measurement on the closeness between any two UMLS concepts
by a collection of paths found between them. Efficiently
querying such a large graph is a significant challenge for the
graph database community. In fact, even the very recent graph
indexing scheme [17] does not demonstrate the ability to
efficiently answer distance queries on graphs with similar size
and density. kDLS utilizes the power-law property of the UMLS
for designing the indexing algorithm and turns out to be very
effective in indexing the UMLS for both answering graph
queries and discovering knowledge. Explained briefly, the
indexing algorithm of kDLS iteratively removes a high degree
vertex from the UMLS graph and broadcasts its information to
the remaining vertices in the k neighborhood of the removed
vertex. When the indexing ends, each vertex has a list of records
that is considered its label. By comparing the labels of two
vertices, it is possible to find a collection of paths (including
but not limited to shortest paths) between the two vertices. We
have proven that kDLS is guaranteed to find at least one shortest
path if the two vertices are within k hops on the UMLS graph.
On average, the number of paths discovered by kDLS is much
larger than by the DFS or the Breadth-First Search (BFS), as
we have shown previously [16]. Subsequently, the measurement
between two concepts is based on the number of paths
discovered as well as their lengths. kDLS has demonstrated its
power in medical concept coreference resolution in clinical text
[18].

However, kDLS has several major disadvantages: (1) it does
not take into account the semantic networks in the UMLS
ontologies, (2) it does not accept natural language–based queries,
and only accepts queries on UMLS CUIs, and (3) it is time
costly and difficult to configure and use kDLS for one study,
regardless of the size of the study. To address these
disadvantages, we developed an efficient online conceptual
study platform using Graph indexing, onGrid, to study the
conceptual relationships between biomedical terms.

Methods

System Framework
The cost to load the kDLS index is a major limitation of kDLS.
Typically, it requires more than 20GB of memory [16] and takes
several hours to load the kDLS index into memory before it can
be used to efficiently answer queries and output discovered
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results. To provide an efficient solution for studies on conceptual
relationships between medical terms, we developed onGrid, an
online conceptual study platform using Graph indexing. onGrid
provides a user-friendly Web interface to accept natural
language-based queries and convert the queries to index-based
searching on the UMLS and is expected to support future graph
index engines on the UMLS. In addition, we proposed a new
indexing method for onGrid that takes into account the concept
semantic types, and our study on conceptual disease
relationships demonstrated the advantages of the proposed
indexing method over the original kDLS indexing method.

The general framework of onGrid consists of two parts: the
client side, which was implemented in JavaScript and PHP
(Hypertext Preprocessor), and the server side, which was
implemented in C++, a general purpose programming language.
The client side receives query requests from users and transmits

them to the server, which then executes the query requests and
sends the results back to the client. This design pushes the light
and fast pre-computation and post-computation tasks to the
client side, which has limited resources, and the
computing-intensive tasks to the server. To realize this, the
server side program first loads the graph index into memory
and iteratively checks for new requests from the client side.
Once a new query request is received, the server side program
dispatches a new thread to handle the request by using the loaded
graph index. When the thread completes the request, it saves
the results to be retrieved from the client. We use a MySQL
database as the interface to facilitate the communication between
the client side and the server side. All requests and results are
posted to the database, which is regularly checked by both the
server and client side programs. The flowchart of the system
framework is illustrated in Figure 1.
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Figure 1. Flowchart of the onGrid framework.

Web-Based Natural Language Processing
To enable natural language-based queries on the UMLS, we
developed LDPMap [19], a layered dynamic programming
approach that maps a biomedical concept to a UMLS concept.
Since UMLS is very comprehensive, nearly all medical concepts
can find their corresponding part in the UMLS. Our study shows
that LDPMap is an effective tool for mapping a biomedical
concept to a UMLS concept. In this work, we integrate LDPMap
into onGrid such that biomedical terms in a query will be
mapped to UMLS concepts before the query is executed. To
avoid mapping errors, the system will automatically provide a
list of mapped UMLS terms with CUIs in order of relevance

for querying the relationship between two medical terms. Users
can accurately select the terms for further querying.

Network Visualization
Querying for relationships between two concepts returns a
collection of paths between two query concepts. To provide
users intuition on the path query results, onGrid visualizes the
shortest paths among these paths. Visualizing all paths may not
be feasible because the path query results often contain
thousands of paths or more, which are hardly discernible
considering the visual clutter. On visualizing the shortest paths
between two vertices u and v, we organize all vertices that have
the same distance to vertex u (or v) into a set Sk where Sk =
∪p∈P’(u,v){x|x∈p, distance(x,u)=k} (P′(u,v) is the set of shortest
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paths among the collection of paths between u and v. All vertices
in a set Sk will be visualized on a line perpendicular to the line
connecting u and v. In this way, we are not only able to observe
paths connecting two vertices but also observe shared vertices
and edges among those paths.

Concept Similarity Measurement
To measure the closeness between two concepts, onGrid takes
into account the semantic type of each concept (vertex). UMLS
(version 2012AA) has a total of 133 concept semantic types
such as “Event”, “Disease or Syndrome”, etc. They are
organized in a directed acyclic graph known as the UMLS
concept semantic network. The semantic types closer to the root
level are more abstract than those closer to the leaf level.
Abstract semantic types are more likely to be related to a large
number of concepts, and therefore we consider such
relationships weak. To put more emphasis on concrete concepts
in a path, the closeness between two concepts are measured by:

R(u,v)=∑p∈P(u,v)Πx∈pg(x)

where P(u,v) is the collection of all paths between u and v
discovered by kDLS, excluding paths with lengths equal to 1.
g(x) is the semantic function on vertex (concept) x. In the onGrid
implementation, we let g(x) = 1/h where h is the reverse
topological level of vertex x. All leaves in the concept semantic
network have reverse topological level 1. After removing all
these leaves, all new leaves in the new network have reverse
topological order 2. Iteratively applying this approach, we can
determine a reverse topological level for all concept semantic
types. When one concept has multiple semantic types, we assign
the concept a semantic type closest to the leaves of the concept

semantic network. Under this measurement, two concepts are
likely to be close if there are many short and concrete paths
between them.

Results

Transitive Relationship Queries and Visualization
onGrid supports both graph queries and conceptual relationship
studies on UMLS data sources. For graph queries, it supports
distance and shortest path queries on a conceptual network built
upon UMLS data sources. To use this function, users can input
a start biomedical concept (or CUI) and an end biomedical
concept (or CUI), in which the system will output shortest paths
visualized in a network structure. Figure 2 provides an
illustration of such a network of structured paths between
Peptide Metabolism (Semantic Type: Molecular Function) and
Digestive System Disorders (Semantic Type: Disease or
Syndrome). Users can choose to see an edge’s semantic type
by moving their  mouse to an edge (eg,
Sacrosidase—“may_treat”—Digestive System Disorders), or
simply selecting the option to show all of them.

In the current version, the basic settings of onGrid, including
neighborhood search range, sink and source vertex handling,
and semantic restrictions, follow our preliminary study [16],
which demonstrates that this setting is cost-effective for
knowledge discovery on the UMLS. In this setting, since k is
configured to be 6, the system guarantees finding exact distances
no more than 6 hops, or at least one shortest path no more than
6 hops, on the underlying graph built upon the selected UMLS
data sources.

Figure 2. An illustration of visualized paths between two biomedical concepts.

Large Scale Relationship Matrix Generation
In addition to the path queries, onGrid supports powerful
conceptual relationship studies by allowing users to input two
sets of biomedical concepts (or CUIs) and builds a distance

heatmap/matrix as well as a relationship heatmap/matrix (as
illustrated in Figure 3).

The distance heatmap provides a distance between every two
concepts. However, distance alone may not be a good
measurement for the relationships between medical concepts.
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Thus, onGrid provides the relationship heatmap using the
concept relationship measurement function R(u,v) defined above,
which extends the measurement in [16] by giving more weight
to concrete paths, that is, paths with fewer abstract concepts.
Similar to [16], paths with only one edge (ie, direct relations)
are not counted in R(u,v) to avoid bias towards existing
knowledge. Below we examine a large scale study on conceptual
relationships between medical terms that uses the relationship
matrix generated under this measurement. Finally, onGrid
provides a very convenient feature for exploring these two

matrices: If users are interested in any particular pair of CUIs,
they can click the corresponding unit and onGrid will provide
the result for the shortest path query on those two medical
concepts.

onGrid also supports studies on large sets of medical concepts
for users who wish to use this functionality due to the large
amount of processing time required. onGrid supports these types
of applications by allowing users to upload files, track their
jobs, and download the results (a valid email address is required
for these purposes).

Figure 3. An example of relationship matrix and distance matrix generated by onGrid (in the relationship matrix, a higher number means a closer
relationship).
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Validating onGrid by Studying Conceptual
Relationships Between Diseases
onGrid can be applied to study the relations in a set of medical
concepts or between two sets of medical concepts. To carry out
the study, one can map these concepts to ontology terms in the
UMLS using the natural language processing method described
above and then generate a relationship matrix for these terms.
In order to crossvalidate our results by an available source, we
used onGrid to study the disease relationships in the Online
Mendelian Inheritance in Man (OMIM) ontology dataset, which
is a database collection of diseases with a genetic component.
First, we use onGrid (on the full UMLS data source
configuration) to generate a relationship matrix between diseases
in OMIM and genes in the Human Genome Organization
(HUGO). Then, given a threshold δ, we are able to convert the
relationship matrix into a 0-1 relationship matrix. We construct
weighted relations T over OMIM diseases by the number of
genes shared by two diseases in the 0-1 relationship matrix. To
crossvalidate our results, we build the same weighted disease
relations S on the Comparative Toxicogenomics Database (CTD)
[20]. We use fold enrichment to measure our results. The fold
enrichment function is defined as f(α) = (|S′(α)|/|S′|)/(|T(α)|/|T|)
where S′ = S∩T; S′(α) is the number of elements in S that are
ranked in the top α percent of T according to the weight of
disease pairs; T(α) is the number of elements in T that are ranked
in the top α percent of T. It is quite intuitive that f(α) will be
close to 1 if T is random, and if f(α) is much larger than 1, it
suggests that T is statistically significant with respect to S.

Here we give a small hypothetical example to illustrate the
above fold enrichment measurement. Let T = (<A,B> , <A,C>
, <B,D> , <E,F> , <A,E> , <B,C> , <B,E> , <D,E> , <D,F> ,
<C,D>), which contains 10 pairs of diseases ranked in the
descending order of their closeness. Let S = {<A,C>, <B,D>,
<A,E>, <E,F>, <H,G>, <E,H>}, which contains six pairs of

confirmed disease pairs. Then S′= S∩T = {<A,C>, <B,D>,
<A,E>, <E,F>}, and S′(α = 20%) = {<A,C>}. Thus, the fold
enrichment at α = 20% is f(α = 20%) = (|S′(α)|/|S′|)/(|T(α)|/|T|)
= (1/4)/(2/10) = 1.25, and the maximum fold enrichment f(α)
= 3.75 (when α = 40%).

The fold enrichment results of the OMIM disease relationships
generated by onGrid with respect to CTD are provided in
Figures 4 and 5. To understand the advantage of onGrid over
kDLS, we also include the kDLS in the study.

From Figures 4 and 5, we can see that fold enrichment values
are much larger than 1. They generally increase when the
threshold δ increases. This is because when the threshold δ is
high, only the disease pairs sharing the most genes (ie, most
significant disease-disease pairs) are left for study. Thus, to
avoid studying too few disease pairs, the thresholds in this study
were set to an upper limit. We also noticed that these values get
smaller when percentage α increases. This is understandable
because according to the definition, when α increases, the
difference between the numerator and denominator tends to get
smaller, and f(α) = 1 when α = 100. These fold enrichment tests
suggest that the disease pair results obtained by onGrid are
statistically significant in the crossvalidation with an external
dataset, CTD.

In addition, Figures 4 and 5 include corresponding results
generated from the original kDLS algorithm (indicated by
dashed lines). To ensure the results are comparable, the
percentiles of relationships (ie, entries) for δ thresholds in the
onGrid matrices were obtained and used to determine
appropriate δ values for the kDLS matrices. Table 1 lists their
respective δ values for each threshold level. onGrid tends to
generate higher fold enrichment values for each respective α,
suggesting that incorporating semantic types leads to more
focused and correlated diseases and genes.
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Table 1. Corresponding thresholds δ for kDLS and onGrid.

δ for kDLSδ for onGridThreshold level

0.730.451

0.80.52

0.870.553

0.930.64

10.655

1.080.76

1.150.757

1.230.88

1.290.859

1.350.910

1.410.9511

1.48112

1.531.0513

1.591.114

1.681.1515

1.741.216

1.821.2517

1.91.318

21.3519

2.071.420

Figure 4. Maximum Fold Enrichment for both kDLS and onGrid.
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Figure 5. Fold Enrichment f(α) for both kDLS and onGrid.

Comparing onGrid and Comparative Toxicogenomics
Database on Conceptual Disease Relationships
We are able to further study any interested diseases to observe
other diseases most related to them. For demonstration purposes,
we use adenocarcinoma of lung and glioblastoma in this study.
The relationship between two diseases is measured by the
number of genes shared between them. This measurement can
be used to study the disease relationships in both onGrid results
and in the CTD. According to the role of the threshold δ, one
can infer that when δ decreases the differences among
relationships (ie, edge thickness) blur, and when δ increases the
differences among relationships become sharp, and at some
point only the thickest edges will show. For conciseness in this
paper, we show only the results under δ = 1.1 as a balanced
result of the two effects. The top-ranked diseases related to the
two diseases are presented in Figures 6 and 7 in circular arc
graphs. The edges (relationships) connected to the studied
diseases (adenocarcinoma of lung or glioblastoma) are shown
in red, and other edges are shown in gray. An edge thickness is
proportional to the normalized edge weight, which is obtained
by categorizing the number of shared genes into 10 levels.

To demonstrate the advantage of onGrid, we also conducted
the same analysis using CTD (Figures 8 and 9).

In Figures 6-9, we can see that the disease relationships
generated by onGrid have a larger weight variation (visualized
by the thickness of edges) compared to the disease relationships
of CTD. Thus, it is easier to distinguish closeness between
diseases in onGrid than CTD. In addition, the top-related
diseases by onGrid (Figures 6 and 7) are mostly leukemia and
carcinoma for adenocarcinoma of lung, and mostly carcinoma
for glioblastoma. They are consistent with the disease
mechanisms contained in the UMLS ontologies. Furthermore,
we found that other independent studies partially confirm the
results generated by onGrid. For example, the loss of
heterozygosity on chromosome 3p was observed for both
patients of small cell carcinoma of lung and patients of
adenocarcinoma of lung [21], validating their relationships
revealed by onGrid. As another example, lymphoma, a
top-related disease to adenocarcinoma of lung by onGrid, was
observed to have the same effect with adenocarcinoma of lung
in the combined inactivation of oncogenes MYC and K-ras in
a study using mouse models [22]. Similarly, we also found
studies between glioblastoma and top diseases related to
glioblastoma by onGrid. In contrast, the top-related diseases by
CTD (Figures 8 and 9) are quite general, mostly reflecting the
toxicology viewpoints of liver necrosis and kidney damage.
These observations suggest that onGrid provides important
information for studying the conceptual relationships between
diseases.
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Figure 6. Top diseases related to adenocarcinoma of lung by onGrid (δ = 1.1).

Figure 7. Top diseases related to glioblastoma by onGrid (δ = 1.1).
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Figure 8. Top diseases related to adenocarcinoma of lung according to CTD.
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Figure 9. Top diseases related to glioblastoma according to CTD.

Discussion

Studying Concept Relationships Using onGrid
Above we have shown the effectiveness of using onGrid for
studying disease-disease relationships. These results can be
used to assist other studies such as analyzing electronic health
records. In addition, onGrid can be used for studying many
conceptual relationships other than disease-disease or
disease-gene relationships. We can use onGrid to study the
relationships among many important biomedical concepts,
including drugs, diseases, genes, side effects, etc. To perform
these studies, we may use corresponding ontologies such as
RxNorm (for drugs), International Classification of Diseases,
9th Revision, Clinical Modification (ICD-9-CM) (for diseases),

OMIM (for diseases with a genetic component), Gene Ontology
(GO) (for genes), and Medical Dictionary for Regulatory
Activities (MedDRA) (for side effects). These studies can be
used to assist many biomedical applications, such as identifying
drug side effects and drug repurposing candidates. We can
further leverage these studies with research on external datasets
or ontologies.

Limitations of the Conceptual Relationship Study
Using Unified Medical Language System
Since UMLS is a collection of ontologies, it is essentially a
body of knowledge. Although knowledge discovery on such
data will produce transitive associations that may not have been
noticed before, it will not produce knowledge that is out of the
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given ontological data. Consequently, the discovered
relationships are likely to concentrate on well-studied concepts.
In addition, since UMLS does not provide a weight on the
concept relationships, it is not clear how important a relationship
is. Thus, a transitive relationship on the UMLS may not be
reliable. onGrid provides an advanced heuristic solution by
considering both the discovered paths and semantic types. The
crossvalidation demonstrates that the discovered results are
statistically significant in aggregation. However, for one
individual relationship between two concepts, it is difficult to
further identify its statistical significance with the given resource
in the UMLS. To complement this disadvantage, onGrid
provides the path query function for two concepts and visualizes
the discovered paths. Thus, domain experts are able to manually
verify the validity of the transitive relationships between them.
We expect that, in the future, by integrating information from
external data sources, we will be able to perform efficient

conceptual relationship studies that exceed the limitation of
UMLS.

Conclusions
onGrid provides an efficient Web-based platform to perform
conceptual relationship studies using the UMLS. The current
version of onGrid uses graph indexing with semantic relations
as its server side index engine and can be easily upgraded in
the future. onGrid can efficiently output shortest paths between
two medical concepts as well as build relationship and distance
heatmaps. The relationship heatmap enables researchers to
quickly identify highly related medical concepts and directly
check the transitive relation between any two concepts on the
heatmap by clicking the corresponding unit. Our study on the
conceptual relationships between OMIM diseases demonstrates
the effectiveness of using onGrid in studying medical concept
relations. We expect onGrid will be used for many applications
to assist conceptual relationship studies in the biomedical field.
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