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Abstract

Background: Structured information within patient medical records represents a largely untapped treasure trove of research
data. In the United States, privacy issues notwithstanding, this has recently become more accessible thanks to the increasing
adoption of electronic health records (EHR) and health care data standards fueled by the Meaningful Use legislation. The other
side of the coin is that it is now becoming increasingly more difficult to navigate the profusion of many disparate clinical
terminology standards, which often span millions of concepts.

Objective: The objective of our study was to develop a methodology for integrating large amounts of structured clinical
information that is both terminology agnostic and able to capture heterogeneous clinical phenotypes including problems, procedures,
medications, and clinical results (such as laboratory tests and clinical observations). In this context, we define phenotyping as
the extraction of all clinically relevant features contained in the EHR.

Methods: The scope of the project was framed by the Common Meaningful Use (MU) Dataset terminology standards; the
Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT), RxNorm, the Logical Observation Identifiers Names
and Codes (LOINC), the Current Procedural Terminology (CPT), the Health care Common Procedure Coding System (HCPCS),
the International Classification of Diseases Ninth Revision Clinical Modification (ICD-9-CM), and the International Classification
of Diseases Tenth Revision Clinical Modification (ICD-10-CM). The Unified Medical Language System (UMLS) was used as
a mapping layer among the MU ontologies. An extract, load, and transform approach separated original annotations in the EHR
from the mapping process and allowed for continuous updates as the terminologies were updated. Additionally, we integrated all
terminologies into a single UMLS derived ontology and further optimized it to make the relatively large concept graph manageable.

Results: The initial evaluation was performed with simulated data from the Clinical Avatars project using 100,000 virtual
patients undergoing a 90 day, genotype guided, warfarin dosing protocol. This dataset was annotated with standard MU
terminologies, loaded, and transformed using the UMLS. We have deployed this methodology to scale in our in-house analytics
platform using structured EHR data for 7931 patients (12 million clinical observations) treated at the Froedtert Hospital. A
demonstration limited to Clinical Avatars data is available on the Internet using the credentials user “jmirdemo” and password
“jmirdemo”.

Conclusions: Despite its inherent complexity, the UMLS can serve as an effective interface terminology for many of the clinical
data standards currently used in the health care domain.

(JMIR Med Inform 2014;2(1):e5) doi: 10.2196/medinform.3172
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Introduction

The Definition of Meaningful Use
The Health Information Technology for Economic and Clinical
Health Act, enacted as part of the American Recovery and
Reinvestment Act of 2009, introduced the concept of Meaningful
Use (MU) of information technology in health care. The
definition of MU in this context is complex and consists of
several objectives and measures that health care providers have
to demonstrate in three stages and within strict timelines in order
to be eligible for early adopter incentives, and later on to avoid
penalties for noncompliance starting in 2015. The MU
legislation was designed to transform US health care through
the development of processes and standards to capitalize on
information in individual medical records and to create data
resources that would result in better health care for the greater
population.

As part of this process, the legislation mandated the use of
standard terminologies for the electronic exchange of health
information. In particular, the Office of the National Coordinator
for Health Information Technology defined a common set of
MU data elements for which certification would be required
across a number of electronic health records (EHR)
interoperability certification criteria. The EHR interoperability
can be further categorized into: (1) foundational, the ability to
send information from one system to another, but without the
need for interpretation on the receiving end; (2) structural, the
syntax, format of simply messaging standards to provide
transport of the information; and finally, the most challenging,
(3) semantic interoperability, which allows the receiving system
to interpret and integrate the received information [1]. The
Common MU Dataset has profound consequences for semantic
interoperability, as it defines a set of strict terminology standards
to be used within a certified EHR. A summary of these is
provided in Table 1 and introduced in more detail below.

Biomedical Terminologies
The Systematized Nomenclature of Medicine, Clinical Terms
(SNOMED CT) is one of the most widely used biomedical
terminologies in the world. It provides terms, synonyms, and
relations covering a number of clinical domains including
diseases, findings, and procedures [2]. The Logical Observation
Identifiers Names and Codes (LOINC) is a universal standard

for identifying laboratory observations. It is considered the
lingua franca of the clinical observation exchange with its more
than 20,000 users in 150 countries [3]. The National Drug Code
(NDC) is a well established drug standard that is required in
electronic pharmacy claims [4]. The RxNorm is a more recent
standardized drug nomenclature designed to facilitate medication
reconciliation. It incorporates a number of other drug
terminologies, as well as maps to the NDC [5]. The Health care
Common Procedure Coding System (HCPCS), maintained by
the Centers for Medicare & Medicaid Services (CMS), is a
standardized coding system for describing items and services
provided in the delivery of health care [6]. It incorporates the
Current Procedural Terminology (CPT), a coding system
maintained by the American Medical Association, to identify
medical services and procedures used by physicians and other
health care professionals [7]. The American Dental Association,
for accurate reporting of dental treatment [8], developed the
Code on Dental Procedures and Nomenclature (CDT). 3M
Health Information Systems have developed the International
Classification of Diseases Tenth Revision Procedure Coding
System (ICD-10-PCS) for the CMS as a replacement for the
International Classification of Diseases Ninth Revision Clinical
Modification (ICD-9-CM) [9]. The International Classification
of Diseases Tenth Revision Clinical Modification (ICD-10-CM)
does not contain a procedure classification in contrast to its
predecessor ICD-9-CM, and this is where ICD 10 PCS
complements ICD-10-CM. The HCPCS, CDT, and ICD-9-CM
are used in US electronic transaction claims with planned
replacement of the ICD-9-CM by the ICD-10 in October 2014.

US health care relies on a number of different clinical
terminology standards with varying levels of overlap and
maturity. This already intricate landscape is further complicated
by the disparity between billing and MU reporting. For example,
SNOMED CT is not allowed in claims reporting and RxNorm
combines multiple NDCs under one substance code, rendering
detailed package and labeler based billing difficult. The clinical
informatics community is now recognizing the need for new
tools capable of consuming these heterogeneous resources,
hence the term “next generation phenotyping” [10]. In this
context, phenotyping is defined as extracting all clinically
relevant information from raw EHR data. These clinically
relevant features include problems, procedures, medications,
and clinical results (such as laboratory tests and clinical
observations) annotated with standard clinical terminologies.
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Table 1. Common MU Dataset defined in Stage 2 MU Final Rule (Federal Register Vol. 77, No. 171, September 4, 2012) and corresponding vocabulary
standards.

Vocabulary standardCommon MU Dataset

N/A1. Patient name

N/A2. Sex

N/A3. Date of birth

The OMBa Standards for Maintaining, Collecting, and Presenting Federal Data on Race and
Ethnicity, Statistical Policy Directive No. 15, as revised, October 30, 19974. Race

OMB5. Ethnicity

As specified by the Library of Congress, ISOb639-2 alpha-3 codes limited to those that also
have a corresponding alpha-2 code in ISO 639-16. Preferred language

Any of the following SNOMED CTc codes-

(1) Current every day smoker, 449868002

(2) Current some day smoker, 428041000124106

(3) Former smoker, 8517006

(4) Never smoker, 266919005

(5) Smoker, current status unknown, 77176002

(6) Unknown if ever smoked, 266927001

(7) Heavy tobacco smoker, 428071000124103

(8) Light tobacco smoker, 4280610001241057. Smoking status

At a minimum, SNOMED CT International Release July 2012 and US Extension to SNOMED
CT March 2012 Release

8. Problems

RxNorm, August 6, 2012 Release9. Medications

RxNorm, August 6, 2012 Release10. Medication allergies

LOINCd version 2.4011. Laboratory tests

N/A12. Laboratory values/results

N/A13. Vital signs (height, weight, BPe, BMIf)

N/A14. Care plan fields including goals and instructions

At a minimum, SNOMED CT International Release, July 2012 with US Extension to SNOMED

CT March 2012 or the combination of HCPCSg and CPTh 4

Optional, CDTi, ICD-10-PCSj15. Procedures

N/A16. Care team members

aOMB=Office of Management and Budget
bISO=International Organization for Standardization
cSNOMED CT=Systematized Nomenclature of Medicine, Clinical Terms
dLOINC=Logical Observation Identifiers Names and Codes
eBP=blood pressure
fBMI=body mass index
gHCPCS=Health care Common Procedure Coding System
hCPT=Current Procedural Terminology
iCDT=Code on Dental Procedures and Nomenclature
jICD-10-PCS=International Classification of Diseases, Tenth Revision, Procedure Coding System

Local Coding Systems
Many organizations develop their own local coding systems to
address these challenges. In fact, to meet the 2014 Edition EHR
Certification Criteria, providers are not required to use
terminology standards internally as long as they are able to
consume them for data portability and clinical quality measures

reporting. Convergent Medical Terminology (CMT) is an
example of such a solution developed by Kaiser Permanente
(KP). CMT serves as the common terminology across all of the
KP enterprise, and, at its core is comprised of SNOMED CT,
LOINC, and First DataBank drug terminology [11]. However,
local coding systems require considerable resources to develop
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and maintain, and, ipso facto, add another layer of complexity
to an already convoluted process.

We therefore propose a different solution that relies on the
Unified Medical Language System (UMLS) developed and
maintained by the National Library of Medicine (NLM) [12].
All of the aforementioned terminology standards are already
integrated within the UMLS, which incorporates more than a
hundred vocabularies in the biomedical domain. Additionally,
the UMLS provides a consistent categorization of all concepts
represented in the UMLS Metathesaurus within the UMLS
Semantic Network. This makes it an ideal candidate for clinical
data integration. While the UMLS has not been designed with
a specific intent for bioinformatics, it also incorporates many
of the bioinformatics resources, such as the Gene Ontology, the
Medical Subject Headings, and the Online Mendelian
Inheritance in Man (OMIM), which can further facilitate
translational research by bridging clinical informatics and
bioinformatics [13].

Significance of This Study
There is now a significant need for integrating patient data from
multiple sources, as well as supporting ontology driven querying
and reporting on a large scale basis as the transformation of
health care from paper to electronic progresses. The UMLS has
been widely used as a terminology repository [13,14], in
ontology related research [15,16], text mining (via MetaMap)
[17], and text processing applications [18]. To our knowledge,
with the exception of one proof-of-concept study [19], it has
never been actually integrated directly into a clinical workflow
as a terminology standard itself. The reasons for this are twofold:
(1) the UMLS is technically challenging to work with due to
its sheer size and complexity. It encompasses almost three
million clinical concepts and eight million synonyms connected
by almost 35 million relations (2013AB version). The hardware
capabilities to work with such massive terminologies have only
recently become available. And (2) before MU, there has been
little terminology standardization in the EHR that would warrant
an effort to integrate multiple vocabularies. To this day, with
the exception of the rather limited coding of insurance claims,

many hospital systems still use local coding schemes, which
require cumbersome manual translation.

Methods

Data Model
Lightweight object models can rely on ontologies instead of
modeling semantics explicitly. We have previously demonstrated
this approach in the Observ-OM and VarioML models that were
specifically validated for phenotype and genotype information
by the GEN2PHEN [20] Consortium [21,22]. At its core,
Observ-OM uses only four basic concepts to represent any kind
of observation: (1) target, (2) feature, (3) protocol, and (4) value.
To this effect, patients become simply collections of
observations annotated with clinical terminologies. Each
observation has at least one ontology term attached. Overcoding,
for example, attaching multiple semantically similar concepts
from different vocabularies to a single clinical observation,
facilitates information retrieval when code similarity or
equivalence have not yet been established in the UMLS.
“Hemoglobin; glycosylated (A1C)” (CPT:83036) and
“Glucohemoglobin measurement” (SNOMEDCT:40402000)
are examples of two such concepts. Multiple terms can also
provide additional context, for example, the method used to
observe a phenotype (typically with LOINC), while keeping
the data model flexible.

Additional semantic information can be derived from the
semantic type of the UMLS concept used in the annotation. For
example, the concept of Warfarin is typed in the UMLS
Semantic Network as a Pharmacologic Substance. Thus, any
observation about Warfarin can be inferred to be a medication
for the purpose of querying or reporting. Where this is
insufficient, we used explicit value sets. For example, the
Common MU Dataset defines a set of SNOMED CT terms that
together comprise smoking status (see Table 1). In this respect,
we also created a custom value set based on the Office of
Management and Budget (OMB) standard to represent ethnicity
(see Table 2).
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Table 2. Clinical Avatars data mapped to the UMLS via MU ontologies.

Term labelUMLS mapping

(automatic)

MU source mapping

(direct)

Clinical Avatars

NoneGender

FemaleC0015780F

Male genderC0024554M

OMB standardRace

African AmericanC0085756African American

American Indian or Alaska NativeC1515945Native American

AsiansC0078988Asian

CaucasiansC0043157White

Hispanic or LatinoC0086409(no data)

Native Hawaiian or other Pacific IslanderC1513907Pacific Islander

Unknown racial groupC1532697Other/unknown

Body height measuredC0365282LOINC:3137-7Height

Body weight measuredC0365286LOINC:3141-9Weight

Body surface area measuredC0365285LOINC:3139-3BSAa

INR in blood by coagulation assay valueC1369580LOINC:34714-6INRb

Smoker

SmokerC0337664SNOMED
CT:77176002

Y

NonsmokerC0337672SNOMED
CT:8392000

N

DVT c

Deep venous thrombosisC0149871SNOMED
CT:128053003

Y

No past history of venous thrombosisC1446197SNOMED
CT:413076004

N

AMI d

Acute myocardial infarctionC0155626SNOMED
CT:57054005

Y

Myocardial perfusion normalC0577811SNOMED
CT:301121007

N

cyp2c9 gene mutations found [identifier] in blood or tissue by molecular
genetics method nominal

C1830800LNC:46724-1CYP2C9

cyp2c9 gene allele 2 [identifier] in blood by molecular genetics method
nominal

C2734139LNC:56164-7CYP2C92

cyp2c9 gene allele 3 [identifier] in blood by molecular genetics method
nominal

C2734141LNC:56165-4CYP2C93

vkorc1 gene mutations found [identifier] in blood or tissue by molecular
genetics method nominal

C1978717LNC:50722-8VKORC1

vkorc1 gene mutations found [identifier] in blood or tissue by molecular
genetics method nominal

C1978717LNC:50722-8VKORC1A

vkorc1 gene mutations found [identifier] in blood or tissue by molecular
genetics method nominal

C1978717LNC:50722-8VKORC1G

WarfarinC0043031RxNorm:11289Warfarin

aBSA=body surface area
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bINR=international normalized ratio
cDVT=deep vein thrombosis
dAMI=acute myocardial infarction

Terminology Server
The terminology service is built on top of a local database,
which is populated with a standard set of vocabularies in the
UMLS Active Release (subset of the full release, which includes
only the actively updated terminologies). The UMLS is loaded
into an Oracle database 11g using the Structured Query
Language (SQL) scripts provided with the UMLS distribution
and updated in sync with its semiannual release cycle. The
currently loaded version is displayed dynamically in the
scorecard section of the project home page. As a reference, a
2013AB version set incorporating 89 UMLS terminologies
included 2,805,252 unique concepts and 8,622,812 synonyms.
RxNorm information is loaded as part of the UMLS distribution,
rather than through its own separate release.

For the sake of usability, only a preconfigured subset is
displayed as navigable tabs at the top of the browser window
(Figure 1 shows this at the top right of the figure). However,
all the sources included in the UMLS are potentially browsable
and are used in synonym expansion.

The UMLS comes preconfigured with a broad set of indexes
that optimize querying. We use one additional index on top of
the attribute value column in the attribute table (MRSAT.ATV)
to optimize a dedicated NDC search, which does not exist
otherwise as a term code in the concept table (MRCONSO). A
label and synonym search was implemented using Oracle Text,
a set of Oracle based tools for building text query and document
classification applications that provides indexing and text
classification capabilities. Individual text tokens are indexed
using the term frequency, inverse of the document frequency
algorithm, reflecting how often a particular string occurs in the
UMLS [23].

Rather than using a complex advanced search interface, we have
a single search box that relies on the query relaxation approach
(Figure 1). Depending on the context (eg, NDC search requires
a different algorithm), the original user query is expanded on

the database side into progressively more relaxed versions of
the original query. Every search sequence starts with an exact
phrase match; then progresses into matching all the tokens in a
close proximity (NEAR Procedural Language/Structured Query
Language operator); then all words matched (AND) in a phrase;
then most words matched (ACCUMulate); and finally falls back
to stemming, fuzzy matching and wildcard expansion.

Interpreting a query string using different operator combinations
simultaneously allows for a more concise query design. For
example, if a user enters a query “rash on examination”, the
application can interpret the query in parallel as a single phrase
“rash on examination” and “rash” OR “on” OR “examination”
to increase recall. Fuzzy and wildcard matching typically
provide the most hits at the expense of precision (a fraction of
retrieved instances that are relevant). However, as they are later
in the query progression sequence, they are also ranked lower
than exact matches, if such exist. For instance, two examples
of such fuzzy queries are: (1) “cron disease” (typo in Crohn),
which returns the following top three results- “Crohn Disease”,
“Crohn's disease”, and “Crohn's disease of large bowel”; and
(2) search for “myleoid leukemia” (typo in myeloid), which
returns “Myeloid Leukemia”, “Primary Myelofibrosis”, and
“Leukemia Myelocytic Acute”.

An example of one of the more powerful features of the Oracle
Text search is the ACCUMulate operator that allows parts of
the query that did not match to be ignored. That means that it
is not necessary to artificially restrain the number of keywords
in a query. For example, searching for “cystic fibrosis gene
carrier” returns “Cystic fibrosis gene carrier” (all tokens
matched), “Carrier of cystic fibrosis gene mutation” (all tokens
matched, “of” and “mutation” were ignored), “Encounter due
to being a cystic fibrosis carrier” (only “cystic”, “fibrosis”, and
“carrier” tokens matched, all others were ignored). In this case,
only the first result matched the exact phrase, while the second
result had all the keywords, but in a different order, and finally,
the last result did not include the keyword “gene”.
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Figure 1. Screenshot of ClinMiner’s integrated terminology browser. The tabs allow switching between different terminologies and the integrated MU
360 view, default choice (A). Searching. Typing a query into the input field (B) brings up autosuggestions. Selecting a particular string populates the
middle panel (D) with search results. Selecting a search result brings back the hierarchical view with the selected term (Warfarin) highlighted in yellow
(G). Browsing. Parents of the active term are displayed in the left pane and child terms are displayed in the right pane (F). Meta data for the active term
including semantic types, definitions, and non-isa relations to other concepts are displayed in a vignette directly below (H). A plus sign (+) after the
term label denotes concepts with children, and the number in brackets reflects the number of participants annotated to a particular term (or its children)
in the database. Selecting a study from the drop-down list (C) enables the data driven perspective that displays a compact terminology tree limited to
only relevant concepts.

Custom Terminology Browser
The exploration of the UMLS is challenging because of its
complexity and lack of obvious starting points, typical of more
formal classifications. The UMLS is often displayed as a tree
of high level root concepts for the underlying terminologies (cf.
the NLM browser provided by the UMLS Terminology
Services), but it is in fact more of a tightly interwoven mesh,
as it integrates multiple ontology sources with often overlapping
coverage and different layers of granularity. Previously, it has
been demonstrated that the UMLS is a scale free network that
contains both noisy concept hubs (that do not generate
meaningful transitive connections, eg, Sudden onset, attribute)
and informational concept hubs (that are indispensable for
generating useful cross terminology connections, eg, Fever)
[24].

Additionally, a graph of UMLS size cannot be effectively
analyzed using available state of the art network analysis
software, for example, Cytoscape [25]. For this reason, we
hypothesized that the more often a particular concept occurs in
different sources, the more relevant it is in UMLS navigation.
We ranked all the UMLS concepts according to their branching
factor (number of children) and number of unique source
mappings. The one hundred top ranked concepts were then
selected from SNOMED CT, LOINC, and RxNorm separately
to achieve equal representation in the final result set of 167

nodes and 230 edges (some concepts overlapped). LOINC codes
and parts were considered independently due to their different
nature [15]. This smaller network was then plotted in Cytoscape
using its hierarchical layout, and 19 identified root concepts
formed the entry points for the default MU 360 tab in the
ClinMiner terminology browser (Figure 1).

This MU 360 view is a custom UMLS perspective integrating
all its sources with a specific focus on MU terminologies. For
the purpose of hierarchical display and browsing, we adopted
a conservative approach and limited the UMLS traversal to
either the UMLS itself, or any of the following terminologies
specific to MU- RxNorm, NDF-RT, LOINC, SNOMED CT,
HCPCS, and ICD-9-CM. We explicitly ignore hierarchical
relations from other terminologies, as in our experience they
may add nonsensical paths to query expansion, for example,
between “myocardial infarct” and “dermatologic disorders” via
“disorder of soft tissue”. Additionally, to augment relatively
flat LOINC and RxNorm hierarchies, some other relations are
treated here as hierarchical, for example “class_of” and
“measured_by” in the case of LOINC. This can be seen in Figure
1, where LOINC tests measuring warfarin concentration appear
as children of the Warfarin concept.

An example of one of the unique features of mature
terminologies such as SNOMED CT in contrast to more simple
classification systems such as ICD-9, is that a single concept
can exist in multiple places of the hierarchy, for example,
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“bronchitis” has two parent terms, “infection” and “bronchial
disease”. This is difficult to display using a tree like hierarchy,
as it requires multiple tree fragments. Instead, the ClinMiner
terminology browser displays the active term, all of its parents,
siblings, and children terms in three horizontally aligned panes
at the same time. The Rat Genome Database originally
introduced this approach [26]. When a term is clicked in any of
the columns, it becomes the active term and moves to the center
column together with its siblings, while adjacent columns update
to show parent terms to the left and children terms to the right
(Figure 1). This allows for easy exploration of the ontology in
both directions, with three levels of terms being visible at all
times, and supports multiple inheritance (multiple parents) in
a single view.

Extract, Load, and Transform
An automatic process translates original codes in patients’EHR
data to their corresponding UMLS concept unique identifiers
(CUIs). Figure 2 illustrates an overview of this, and Figure 3
shows the details of the transformation. This is a bidirectional
process, as the UMLS codes are also projected back into source
terminologies, which can reactivate concepts (when the UMLS
CUI is mapped to both active and retired versions of the same
concept in the source vocabulary), as well as provide views
based on terminologies that were not originally used to annotate
the data. For example, in the demonstration it is possible to
explore the Clinical Avatars data in the NCI Thesaurus and
OMIM tabs (Figure 1), although no direct mappings to the NCI
Thesaurus or OMIM were made initially. This is also illustrated
in Figure 3, where the original SNOMED CT concept “Deep
venous thrombosis” (SNOMED CT:128053003) is translated
via the mapped UMLS concept “Deep Vein Thrombosis”
(C0149871) into the ICD-10-CM concept “Acute embolism
and thrombosis of unspecified deep veins of lower extremity”
(ICD10:I82.40). To see the contents of each individual node in
this transformation, please see Multimedia Appendix 1.

To facilitate queries across thousands of patients, the
transformation process also includes query expansion and
complement creation. For example, a patient with “deep vein

thrombosis” and “acute myocardial infarction” would, at this
step, also be automatically annotated with “cardiovascular
diseases”, the parent term for these two concepts, as well as
negated “No past history of venous thrombosis” and
“Myocardial perfusion normal”, when no annotations were made
to these concepts for this patient. In addition to the intentional
restrains on the UMLS traversal described earlier, query
expansion is limited to concepts that are within the same UMLS
Semantic Network (ie, sharing the same semantic type), as
shown in Figure 3.

In terminologies that use multiple inheritance as a design pattern
(eg, SNOMED CT vs ICD-9), a single term can exist in multiple
paths. Additionally, different granularities and overlap across
source terminologies lead to hierarchical cycles (loops). Patient
level query expansion adds to this complexity as patients can
have multiple annotations of the same type or varying levels of
overlapping granularity (see the earlier example of “bronchitis”
and “infection”). The simple addition of branch counts would
in this case lead to inflated numbers. For this reason, sets of
unique patient identifiers have to be propagated across the
ontology graph to precalculate accurate patient level counts at
every level of the ontological hierarchy, which would eliminate
the aforementioned issues and produces a directed acyclic graph.
From this, it is straightforward to calculate the propagated
negated information as a relative complement of a set of
propagated patient terms with respect to all propagated terms
across all patients.

In order to minimize the user effort involved in browsing large
hierarchies, the ontology graph is additionally approximated as
a minimum Steiner tree problem [27]. This produces a more
compact reconnected terminology tree, which includes only the
concepts that appear in the selected dataset and their best
connected parent concepts, rather than all of the potentially
available concepts within the UMLS graph. Selecting from the
“Data-driven perspective” drop-down in Figure 1 enables this
view. This process also identifies orphaned nodes that were
otherwise disconnected from hierarchy, placing them at the root
of the tree.
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Figure 2. An overview of the extract, load, and transform (ELT) process. Data is extracted from multiple sources including disease registries, hospital’s
EHR system, and clinical notes.

Figure 3. An example of the transformation stage in the extract, load, and transform (ELT) process (for a higher resolution image, see Multimedia
Appendix 1). The SNOMED CT annotation "Deep venous thrombosis" made originally in the EHR, is mapped in the UMLS to the "Deep Vein
Thrombosis" concept, and can be further remapped into the UMLS source concepts such as the ICD-10-CM "Acute embolism and thrombosis of
unspecified deep veins of lower extremity" concept shown in the lower right portion of the figure. The UMLS concept "Deep Vein Thrombosis" is then
expanded across a set of parent concepts that are within the same UMLS Semantic Network (solid lines). The concepts characterized by a different
semantic type are not included in the expansion (dotted lines). In this example, two parent concepts of "Deep Vein Thrombosis", "Thrombophlebitis
and Venous Thrombosis" have semantic types "Disease" or "Syndrome and Pathologic Function" respectively. Thus, the expansion does not include
the term "Venous Thrombosis", as the semantic type is different from the originating concept’s semantic type ("Disease or Syndrome"), but does include
"Thrombophlebitis", which share the same semantic type. There were four high level concepts that were additionally highlighted at the top of the figure,
out of which "Disease" is the only one included in the expansion.
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Web Front-End
The application was developed in Java using enterprise Java
technologies- Spring Framework, Spring Roo, Java Persistence
Application Programming Interface (Java Persistence
Application Programming Interface, EclipseLink provider),
Apache Maven, and AspectJ Vaadin, a Java Web application
framework that extends Google Web Toolkit, was used to
provide the rich Internet application experience. Apache Tomcat
provided the Web container. The Apache Hypertext Transfer
Protocol Server isolates the Web container and forces encryption
on all browser connections with 256-bit Transport Layer
Security.

Data Sharing
Requests for a virtual machine image containing a preconfigured
version of ClinMiner can be made to the corresponding author.
We also welcome data submissions to our local instance, which
can then be securely accessed over the Internet, so there is no
need for additional deployment.

Results

Simulated Data
To drive the initial implementation, we used simulated patient
data kindly provided by the Clinical Avatars project [28]. The
Laboratory for Personalized Medicine created the Clinical
Avatars and developed a methodology for creating virtual
representations of people for the purpose of conducting
personalized medicine simulations. This simulation uses a
realistic statistical distribution of patient characteristics such as
age, gender, ethnicity, and genotype based warfarin response,
and represents a typical set of elements that a researcher would
expect in a clinical trial. All avatars data included genotype
information on two genes important in warfarin
pharmacogenetics: (1) CYP2C9, warfarin metabolizing enzyme;
and (2) VKORC1, Vitamin K epOxide Reductase Complex 1.
The polymorphisms in these genes are clinically important, as
they affect therapeutic warfarin ranges across different racial
groups [29]. In this particular case, the dataset used represented
a simulation of 100,000 patients (10,836,196 observations)
undergoing genotype guided warfarin dosing in the process of
initiating oral anticoagulation over 90 days using the Couma Gen
protocol [30].

The Clinical Avatars data elements were manually mapped
using MU ontologies. The mappings were than validated, and
the final set is shown in Table 2. A similar approach is used
when annotating real clinical notes, and for this purpose we
developed and maintain an internal standard operating
procedure. The EHR data has an additional extraction step,
where a custom parser strips irrelevant information and
encounter based data is transformed into time stamped
observations. All preexisting codes in the EHR are loaded as
is.

Electronic Health Records Data
A “Limited Dataset”, as defined under the Health Insurance
Portability and Accountability Act, encompassing 7931 patients
was obtained from the Medical College of Wisconsin Clinical

Research Data Warehouse for this study. The data extract was
in the form of standard Epic Clarity tables for a subset of
patients that had an encounter or a problem list in the “Malignant
neoplasm of pancreas” (ICD9:157) or “Epilepsy and recurrent
seizures” (ICD9:345) code subset. Epic Clarity is an SQL
relational database extracted for reporting purposes from Epic
Chronicles, the data engine at the heart of Epic’s EHR.

The drug information in the EHR was encoded using Medi-Span
terminology, one of the RxNorm sources, which facilitated its
automatic translation into the UMLS. The clinical results were
encoded as orders using CPT-4 codes or using a fixed category
from the “CLARITY_COMPONENT” lookup table. We have
manually mapped the top 130 most frequently performed
laboratory tests (out of a total of 7766 records in the EPIC
“CLARITY_COMPONENT” table) to LOINC, which provided
coverage for 94.07% (4,765,012/5,065,315) of all the laboratory
tests. The remaining 5.93% (300,303/5,065,315) laboratory
tests were left unmapped.

A practical difference between simulated and real EHR data is
the much larger concept space, which in this case covered
13,614 unique ICD-9, CPT-4, LOINC, and RxNorm codes. This
code set was remapped into the UMLS, which resulted in 13,383
distinct UMLS CUIs, and then expanded as described previously
across a limited set of “is_a” and selected other relationships
(eg, “has_ingredient”) to facilitate querying, which produced
the final set of 30,153 concepts. We have successfully applied
this approach in a separate study focused on association rule
mining in pancreatic cancer [31].

A demonstration limited to Clinical Avatars data is available
on the Internet using the credentials user “jmirdemo” and
password “jmirdemo” [32].

Discussion

Extract, Load, and Transform
The crosswalk via the UMLS between different terminologies,
as demonstrated in Figure 3, is important for several reasons.
Where records are coming from legacy sources, they may use
an older coding scheme, for example, ICD-9 or NDC, and this
process makes the data browsable via a more expressive
terminology, such as SNOMED CT. Additionally, the UMLS
transformation alleviates the issue of variability in coding across
data sources that use different terminologies, for example, drug
information annotated with the Veterans Health Administration
National Drug File - Reference Terminology and Medi-Span
Master Drug Data Base terminologies can both be reconciled
using RxNorm.

The extract, load, and transform approach is substantially
different from a more common extract, transform, and load
approach, when data is transformed before it is loaded into the
data warehouse. Conversely, with extract, load, and transform,
we essentially maintain two versions of data: (1) the original
annotation set made in the EHR, and (2) a dynamically generated
set of UMLS mappings. The original data is never lost, and can
be retransformed as new knowledge becomes available.
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We are now working on expanding the transformed information
to include date and values to support more advanced temporal
and value restricted queries. This is a critical step that has a
significant impact on the time required to query patient
information, however, the actual transformation is relatively
resource consuming, for example, it creates 238 annotations per
avatar using simulated data and several thousand annotations
per patient with real EHR data.

Search and Complexity
A relatively large number of concepts remain unused when
annotating clinical data to large terminologies. The UMLS, the
largest repository of biomedical terminologies, in its current
version spans over 10 million unique concept names from over
160 source vocabularies. Only a subset of the UMLS might be
suitable for concept matching [33], and SNOMED CT alone
may be enough to represent most of the terms commonly used
in medical problem lists [34]. In this study, a cohort of eight
thousand patients required between ten and thirty thousand (with
query expansion) concepts to capture all clinically relevant
features.

While physicians rarely have to deal with ontology hierarchies
directly, these are indispensable in clinical research to facilitate
query expansion, building transitive closures, and data validation
and reconciliation. Any sufficiently large terminology is likely
to suffer from some inconsistencies and these, however minor,
present unique challenges for ontology end users when they
have no direct control over the terminologies they are using.
With hundreds of thousands of concepts, traditional navigation
through terminology hierarchies becomes impractical. This is
why we put a special focus on enhancing search capabilities as
well as providing data-driven perspectives that dynamically
hide some of this complexity. The search becomes even more
important when concepts do not appear where expected or are
not in hierarchical relations at all. In our experience, this is the

case in approximately one third (data not shown) of LOINC
and RxNorm concepts.

Beyond Meaningful Use
Current requirements for terminology standards are not
necessarily intuitive and are likely to cause confusion among
implementers and subsequent interoperability issues. Optionality
for some of the vocabulary standards only adds to the confusion.
Existing studies suggest that there is a wide variation in accuracy
of MU electronic reporting [35]. Even within a single
terminology providers can significantly differ in which code
they assign to the same observation [36]. While there are
numerous challenges to data capture, the community can best
address them through standardization and convergence on key
data elements [37].

Interestingly, several resources in the genotype to phenotype
space now actively map to the UMLS directly: (1) Orphanet, a
portal for rare diseases [38]; (2) the Human Phenotype Ontology
project, which provides a structured description of human
phenotypic abnormalities [39]; and (3) ClinVar, a novel National
Center for Biotechnology Information database for clinical
genomics [40], are all good examples of resources that rely on
the UMLS to integrate clinical features, conditions, genes, and
proteins.

The UMLS incorporates decades of experience and consistency
represented by the US National Library of Medicine, which in
fact already maintains RxNorm, one of the MU terminologies.
It is therefore not unfeasible that the UMLS could provide a
clearer path to semantic interoperability.

Conclusions
Despite its inherent complexity, the UMLS can serve as an
effective interface terminology for many of the clinical data
standards currently used in the health care domain.
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Multimedia Appendix 1
An example of the transformation stage in the extract, load, and transform (ELT) process (a version of Figure 3 with higher
resolution). The contents from each individual node can be viewed here.
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