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Abstract

Background: The Food and Drug Administration’s (FDA) Adverse Event Reporting System (FAERS) is a repository of
spontaneously-reported adverse drug events (ADEs) for FDA-approved prescription drugs. FAERS reports include both structured
reports and unstructured narratives. The narratives often include essential information for evaluation of the severity, causality,
and description of ADEs that are not present in the structured data. The timely identification of unknown toxicities of prescription
drugs is an important, unsolved problem.

Objective: The objective of this study was to develop an annotated corpus of FAERS narratives and biomedical named entity
tagger to automatically identify ADE related information in the FAERS narratives.

Methods: We developed an annotation guideline and annotate medication information and adverse event related entities on 122
FAERS narratives comprising approximately 23,000 word tokens. A named entity tagger using supervised machine learning
approaches was built for detecting medication information and adverse event entities using various categories of features.

Results: The annotated corpus had an agreement of over .9 Cohen’s kappa for medication and adverse event entities. The best
performing tagger achieves an overall performance of 0.73 F1 score for detection of medication, adverse event and other named
entities.

Conclusions: In this study, we developed an annotated corpus of FAERS narratives and machine learning based models for
automatically extracting medication and adverse event information from the FAERS narratives. Our study is an important step
towards enriching the FAERS data for postmarketing pharmacovigilance.

(JMIR Med Inform 2014;2(1):e10) doi: 10.2196/medinform.3022
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Introduction

Background
An adverse event (AE) is an injury or untoward medical
occurrence to a patient or clinical investigation subject who has
been administered a pharmaceutical product and the AE does
not necessarily have a causal relationship with the administered
treatment [1,2]. An adverse drug event (ADE) is an injury
resulting from a medical intervention related to a drug, including
harm caused by the drug (adverse drug reactions and overdoses),
and harm from the use of the drug (including dose reductions
and discontinuations of drug therapy) [3,4]. Studies have
reported that ADEs account for nearly 20% of all adverse events
that occur in hospitalized patients [5-7]. In the United States
alone, ADEs account for more than 770,000 injuries and deaths
annually [8-10], and an increased average length of stay in
hospitals at a cost of between $1.56 and $5.60 billion annually
[3,11]. Improved methods for ADE detection and analysis may
identify novel drug safety signals and lead to improved methods
for avoiding ADEs, with their attendant burden of morbidity,
mortality, and cost. As part of a major effort to support
postmarketing drug safety surveillance, the US Food and Drug
Administration (FDA) receives mandatory reports on ADEs
from manufacturers through the FDA Adverse Event Reporting
System (FAERS). The FAERS is a database that captures
information concerning adverse events and medication errors
associated with FDA-approved prescription drugs. Currently,
FAERS contains over four million reports of adverse events
dating from 1969 to present [12]. It serves as a rich resource
for pharmacovigilance-the study of drug-related injuries for the
purpose of making warning or withdrawal recommendations
for pharmaceutical products [4]. A typical FAERS report
incorporates both structured data and unstructured free text, as

shown in Figure 1. The structured data entries incorporate each
patient’s personal and demographic information, a list of
prescribed drugs, and the class of drug reaction (in this example,
“anaphylactic reaction”) (Figure 1). The Event/Problem narrative
contains additional information relevant to describing the event,
assessing causality, and grading severity (Figure 1). In this
example, the narrative text contains the phrase that indicates
causality between paclitaxel and the anaphylactic reaction while
“experienced a life threatening anaphylactic reaction” shows
the severity of the event, which is not coded in the structured
data.

Although FAERS is an excellent resource to study drug effects,
as stated in Tatonetti et al [13], the structured data does not
incorporate confounding factors including concomitant
medications and patient medical histories, which limits FAERS’
effectiveness for pharmacovigilance. In contrast, such
confounding factors are frequently described in the FAERS
narratives. Making this data computationally available is critical
for pharmacovigilance.

Currently, manual abstraction is required for identification of
relevant data in FAERS narratives. Manual abstraction is
expensive and often not practical, given the current size of the
FAERS dataset, which contains millions of records. Therefore,
it is important to develop computational approaches to
automatically extract information from FAERS narratives. In
this study, we report the development of both a corpus of
FAERS narratives annotated with medication and adverse event
information and a Natural Language Processing (NLP) system
called AETagger that automatically extracts this information
from the narratives and is adapted from existing tools. This is
an important step towards enriching the existing FAERS’
capacity for pharmacovigilance.
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Figure 1. A sample AERS Report with structured data and narrative text.

Related Work
There is extensive research related to AE and ADE detection
and analysis from a variety of data sources. Earlier work
examined patients’ paper medical records determining whether
AEs and ADEs can be reliably abstracted based on the
information conveyed in those records. For example, Hiatt et
al (1989) [14] was among one of the early studies that defined
an AE as an injury caused at least in part by medical
mismanagement (negligence). They then manually abstracted
ADEs from patients’ paper-based clinical medical records.
Similarly, other early studies (eg, [3,7,15]) defined AEs and
ADEs and manually abstracted them from clinical records.
These studies indicate the feasibility and value of clinical records
for ADE surveillance and prevention.

When electronic medical records (EMRs) became available,
computational approaches were developed to automatically
identify AE and ADE information from EMRs. Studies used
rule-based approaches for detecting ADEs from EMR data
[16-18]. Tinoco et al [19] compared a rule-based computer
surveillance system called Health Evaluation through Logical

Processing (HELP) [20] with manual chart reviews on 2137
patient admissions. They reported that HELP detected as many
ADEs as were found by manual chart review, suggesting that
NLP systems could improve ADE detection from EMR narrative
data.

Many studies applied NLP to detect AEs and then inferred a
causality relationship between a drug and an AE (called an
ADE) using logical rules, statistical analyses, and supervised
machine learning (ML) approaches. Hazlehurst et al [21]
developed MediClass, a knowledge-based system that deploys
a set of domain-specific logical rules to medical concepts that
are automatically identified from EMR narratives (eg, progress
notes) or precoded data elements (eg, medication orders). The
system achieved a precision of 64% for detecting vaccine-related
AEs [22]. A number of studies applied the NLP system [23-25],
MedLEE [26], to detect AEs from discharge summaries and
hospitalization records. For example, Wang et al [23] applied
MedLEE to detect terms and mapped them to the Unified
Medical Language System (UMLS) semantic types.
Subsequently, they detected medication and AEs when the terms
were mapped to the UMLS concepts with the semantic types
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of Clinical Drug (T200) and Disease or Symptom (T047),
respectively. The causality relationship between a medication
and an AE was extracted from 25K discharge summaries based

on a χ2-statistical analysis of medication and AE. Evaluation
of seven drugs for known ADEs led to a recall and precision of
75% and 31% respectively. Aramaki et al [27] manually
annotated 435 discharge summaries for drugs and ADEs and
then applied supervised machine learning techniques to detect
these named entities. They identified the causality between
drugs and AEs using pattern matching and SVM techniques.
They reported a recall and precision score of 0.81 and 0.87 for
drug, and 0.80 and 0.86 for AE detection respectively. For
inferring causality they achieved recall and precision of 0.92
and 0.41 using pattern matching, and 0.62 and 0.58 using SVM
technique respectively.

In addition to EMRs, studies have explored other data sources
for ADE information, including biomedical literature [28,29],
social media and the Internet [30-32]. Shetty and Dalal [33]
mined ADEs from PubMed citations. They first built a document
classifier to identify relevant documents that incorporate ADE
relationships using Medical Subject Headings (MeSH) terms.
For example, if an article is assigned “chemically induced” or
“adverse effects,” then the article is likely to incorporate an
ADE. They then identified ADE signals using disproportionality
analysis in which the rate at which a particular AE of interest
co-occurs with a given drug is compared to the rate an AE
occurs without the drug in the collection. Their evaluation on
a predefined set of 38 drugs and 55 AEs showed that their
literature-based approach could uncover 54% of ADEs prior to
FDA warnings.

There is a rich store of literature for ADE detection on
Spontaneous Reporting Systems (SRS) such as the FAERS
reports and WHO VigiBase [34]. Studies have explored several
statistical data mining and machine learning techniques on SRS
for the detection of ADE signals [13,35-60]. However, all
aforementioned approaches for ADE detection from FAERS
are based on its structured data. In this study, we report the
development and evaluation of supervised machine learning
approaches for automatically detecting medication information
and adverse events from the FAERS narratives. We speculate
that such information can be a useful addition to the FAERS
structured data for ADE detection.

Methods

Annotation Data and Procedure
Through our collaboration at Northwestern University [61], we
obtained a collection of 150 de-identified FAERS narratives; a
sample is shown in Figure 1. The data collection originally came
as a scanned PDF image file. With Institutional Review Board
(IRB) approval from Northwestern University and University
of Wisconsin Milwaukee, we manually transcribed the PDF file
into a computer-readable text file.

We randomly selected a set of 28 narratives for developing the
annotation guideline (Multimedia Appendix 1). Our annotation
guideline was based on the i2b2 challenges in NLP for Clinical
Data Medication Extraction [62,63]. A balanced interdisciplinary

team consisting of a linguist (NF), a physician (SB), two
informaticians (BPR and HY) and a physician informatician
(ZFL) developed the annotation guideline through an iterative
process. At the end of reviewing 28 narratives, we obtained a
guideline that all the members of the team agreed upon.

Following the final annotation guideline, two annotators (ZFL,
designated as AnnPhy, and NF, designated as AnnLing), both
of whom were the primary annotators for the i2b2 medication
event detection challenge [63] in which we participated,
independently annotated the remaining 122 AERS narratives.
The different backgrounds of the annotators aids in building a
corpus that is both linguistically driven and clinically correct.
A physician (SB) served as a tiebreaker and resolved annotation
disagreements. This collection of 122 narratives is comprised
of approximately 23,000 word tokens and the average number
of words per narrative is 190.2 (SD 130.3).

The annotation was carried out using Knowtator [64], a plugin
for Protégé [65]. The Knowtator interface allows users to define
entities that need to be annotated and configure the relationships
between them. The 122 annotated narratives were used as both
training and testing data for machine learning approaches
described below. The annotated data was grouped into four
collections each containing 122 narratives: AnnPhy and AnnLing
–data annotated by annotators AnnPhy (ZFL) and AnnLing
(NF), respectively; Comb –a joint set of annotations agreed
upon by both AnnPhy and AnnLing, and Tie –a joint set of
AnnPhy and AnnLing annotations where disagreements were
resolved by the tiebreaker SB. We also report Cohen’s kappa,
a well-known statistic used to assess the degree of
Inter-Annotator Agreement (IAA) between annotators [66]. We
use these four sets of data to capture all named entities and build
robust supervised machine learning classifiers to identify them.

Supervised Machine Learning

Machine Learning Techniques
Three supervised machine learning approaches were explored
for automatically identifying medication information and
adverse events: Naïve Bayes (NB), Support Vector Machines
(SVMs) and Conditional Random Fields (CRFs) [67]. We built
NB and SVM classifiers using Weka [68] and the CRF model
was built using the A Biomedical Named Entity Recognizer
(ABNER) toolkit [69]. NB is a simple model that assumes all
attributes of the examples which are independent of each other
given the context of the class. SVMs are a well-known statistical
machine learning algorithm and have shown very good
performance in many classification tasks [70,71]. CRFs have
shown success in named entity recognition in the biomedical
domain [69,72].

Learning Features
We explored a variety of features such as syntactic features,
semantic features based on the external knowledge resource
(UMLS), morphological and contextual features, presence of
negation, hedging and discourse connectives as a feature in
addition to ABNER default features which include bag of words
and orthogonal features. We describe each of these in detail
below.
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The syntactic features include the part-of-speech (POS), the
phrasal class of each token, and the POS of the token
immediately to the left of the token under consideration. The
syntactic features were extracted from the constituency parse
tree generated by the Charniak-Johnson parser [73] trained in
the biomedical domain. This parser was determined to have the
best performance when tested on the GENIA corpus [74]. Figure
2 shows a sample constituency parse tree. In this example, the
POS features determiner (DT), adjective (JJ), noun (NN) are
the POS of tokens “A”, “female”, and “patient” respectively.
Further, the phrasal class for all the three tokens is noun phrase
(NP). The left sibling POS value of “A” is NONE assuming it
is the start of the sentence. The left sibling POS of “female”
and “patient” tokens are DT and JJ respectively.

We applied the UMLS Metamap [75,76] to extract semantic
features, which are concepts and semantic types represented in

the UMLS Metathesaurus. The morphological features were
obtained by considering various characteristics of the word. We
took attributes of the word, such as whether it was a digit, was
capitalized, its alphanumeric order (ie, if the token started with
letters and was followed by numerals or vice versa), and the
presence of punctuation such as commas and hyphens. These
features were extracted using a simple pattern-matching
technique. The first (prefix) and last (suffix) three and four
characters of the token were added as affix features.

We added as features, negation and hedging cues with their
scope that were detected automatically by the systems described
in the literature [77,78]. We also added presence of discourse
connectives that were automatically detected by the discourse
parser [79].

Figure 2. The sample constituency parse tree. S: simple declarative clause, NP: noun phrase, VP: verb phrase, DT: determiner, JJ: adjective, NN: noun,
VBD: verb, past tense, SBAR: subordinate clause, IN: preposition or subordinating conjunction, VBG: verb, gerund or present participle.

Systems

Overview
We developed several taggers to evaluate the complexity of the
task for identifying medication information and adverse events
and the impact of features.

Systems to Evaluate Task Complexity
In this experiment, we built two baseline systems to compare
the performance of ML algorithms. The first system BaseDict
is a simple dictionary-matching system. A lexicon of
medications and AEs is compiled from the UMLS
Metathesaurus using the semantic types as defined by Wang et
al [23], where terms having the semantic types Clinical Drug
(T200) and Disease or Symptom (T047) were considered as
drug and adverse event respectively. The baseline system
BaseDict, tags all instances of the lexicon that match within the
text. The second system, MetaMapTagger, is a UMLS Metamap
[75] based system that tags phrases as AEs or medications using
UMLS semantic types similar to BaseDict.

The baseline systems were compared with taggers built using
bag of words as the default feature –NBTagger, a NB-based
tagger, SVMTagger, a SVM-based tagger, and SimpleTagger,
a CRF-based tagger built using ABNER default features. We
then evaluate the taggers by adding all the features defined in

the Learning Features section, which we call NBTagger+,

SVMTagger+ and CombinedTagger for NB, SVM- and
CRF-based taggers respectively.

Systems to Evaluate Impact of Features
We evaluate the impact of various features on the performance
of tagger. We used the ML technique found to have the best
performance in our previous experiment. In addition to the
default features trained as SimpleTagger, we individually added
syntactic features (SyntacticTagger), semantic features
(SemanticTagger), morphological features
(MorphologicalTagger), affix features (AffixTagger), negation
and hedging features (NegHedgeTagger), discourse connective
features (ConnectiveTagger), and a tagger incorporating all the
features (CombinedTagger) which were trained to identify the
named entities.
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Machine Learning Evaluation Metrics
All the AE taggers trained were evaluated using ten-fold
cross-validation. We reported recall, precision, and F1 score.
Recall is the ratio of the number of entities of a certain class
correctly identified by the system and the number of entities of
that class in the gold standard. Precision is the ratio of the
number of entities of a certain class correctly identified by the
system and the number of entities of that class predicted by the
system. F1 score is the harmonic mean of precision and recall.

Results

Corpus Characteristics and Annotation Agreement
Table 1 shows the definitions of adverse event and
medication-related named entities, the number of annotated
instances, and Cohen’s kappa value. The annotation agreement

is calculated based on two criteria: strict in which the two
annotations have an exact match, and unstrict in which there
exists an overlap of at least one word between the two
annotations. We measured the agreement using unstrict criteria
to estimate the agreement between annotators when entity
boundary is ignored. The table also shows the number of
instances annotated in all four data sets.

As shown in Table 1, adverse event (AE) was the most
frequently annotated entity followed by medication entity.
Duration had the least number of annotated instances and lowest
kappa value (.34) for strict criteria. Indication had the second
highest kappa value for unstrict criteria (.93) after medication
(.95), since most of the indication entities were followed by
explicit and unambiguous patterns such as “for the treatment
of”, “diagnosed with”, “due to”, “enrolled in breast cancer
study”, and so on.

Table 1. Named entity definition, number of annotated instances, and inter-annotator agreement measured by Cohen’s kappa for both strict and unstrict
criterion.

kappa (unstrict)kappa (strict)Number of instances annotatedDefinitionNamed entity

TieCombAnnLingAnnPhy

.95.921286115212781231Name of the drug they administered to patient
including drug class name or medications re-
ferred to with

Medication

.82.59205137315143Amount of a single medication used in each ad-
ministration

Dosage

.64.59132107244115Method for administering the medicationRoute

.74.5842215625How often each dose of the medication should
be taken

Frequency

.87.34512415334How long the medication is to be administeredDuration

.93.76175126148175Medical conditions for which the medication is
given

Indication

.93.831842164620831689Harm directly caused including the pronouns
referring to it by the drug at normal doses and
during normal use

Adverse event (AE)

.71.5014790140234Other symptoms associated with the diseaseOther signs, symp-
toms and diseases
(OSSD)

.77.391536221677Treatment the patient received for the diseaseTreatment

4033336546333723Total

Results of Supervised Learning
Table 2 reports recall, precision, and F1 score of the AETaggers
for identifying the AE and other medication-related named
entities on each of the four data sets as described in Annotation
and data procedure section.

The baseline system BaseDict that matches only AE and
medication achieved an F1 score of 0.45, 0.41, 0.46, and 0.42
on the AnnPhy, AnnLing, Comb, and Tie datasets respectively.
The MetamapTagger also had similar performance. Among the
taggers using bag of words as features, the CRF-based
SimpleTagger had the best performance. The addition of features
improved the performance of the ML classifiers. The
CombinedTagger achieved best performance with F1 scores of
0.69, 0.74, and 0.73 on the AnnPhy, AnnLing, and Comb datasets

respectively. The SVMTagger+ had the best performance with
a 0.66 F1 score on the Tie dataset. The difference in performance

between CombinedTagger and SVMTagger+ taggers was
statistically significant only on AnnLing dataset (t test, P=.003).
The ML-based taggers clearly outperform the baseline method.
The CRF-based tagger had the best overall performance and
was therefore chosen as the system to be adopted for subsequent
experiments measuring impact of features.

We trained the CRF-based AETaggers using different features
as described in the Learning Features section. The results show
that the CombinedTagger achieved the highest performance on
all datasets. Our results also show that the AnnLing dataset has
the highest performance while Tie performs the lowest. Comb
outperforms both Tie and AnnPhy.
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Since the Comb dataset’s performance (0.73 F1 score) is close
to the highest (0.74 F1 score) and contains annotations agreed
upon by both annotators, we further report feature analyses
using the Comb dataset. Table 3 shows how different learning
features affect AETagger’s performance. The results show that
adding a single feature added little to the overall performance,
although the performance of different entities varied. Affix
features improved route and duration but decreased AE,

medication, and dosage. Connective features increased the
performance of dosage, route, and indication; however, the
performance of medication decreased. Other features
(morphological, negation, hedge, semantic, and syntactic)
showed similar patterns. On the other hand, when all features
were added, the overall performance increased to 0.73 F1 score
(default 0.71), although the increase was not statistically
significant (t test, P=.08).

Table 2. The precision, recall, and F1 score of Taggers on each of the four annotated data sets (t test, P<.01).

Tie

Mean (SD)

Combined

Mean (SD)

AnnLing

Mean (SD)

AnnPhy

Mean (SD)

Machine learning

RecallPreci-
sion

F1RecallPreci-
sion

F1RecallPreci-
sion

F1RecallPreci-
sion

F1

Task complexity

0.28
(0.08)

0.86
(0.13)

0.42
(0.10)

0.32
(0.11)

0.82
(0.06)

0.46
(0.12)

0.27
(0.08)

0.91
(0.07)

0.41
(0.09)

0.31
(0.09)

0.86
(0.08)

0.45
(0.10)

BaseDict

0.36
(0.14)

0.46
(0.19)

0.40
(0.16)

0.43
(0.19)

0.41
(0.17)

0.42
(0.18)

0.37
(0.15)

0.47
(0.20)

0.41
(0.10)

0.42
(0.18)

0.41
(0.16)

0.41
(0.17)

MetaMapTagger

0.13
(0.04)

0.47
(0.19)

0.20
(0.06)

0.17
(0.05)

0.40
(0.17)

0.24
(0.08)

0.16
(0.06)

0.45
(0.14)

0.23
(0.08)

0.15
(0.05)

0.39
(0.17)

0.22
(0.08)

NBTagger

0.46
(0.05)

0.80
(0.05)

0.59
(0.04)

0.46
(0.04)

0.78
(0.10)

0.58
(0.04)

0.43
(0.05)

0.78
(0.07)

0.55
(0.05)

0.44
(0.04)

0.77
(0.10)

0.55
(0.05)

SVMTagger

0.55
(0.10)

0.69
(0.08)

0.63
(0.09)

0.63
(0.08)

0.81
(0.09)

0.71
(0.08)

0.66
(0.10)

0.81
(0.06)

0.72
(0.08)

0.60
(0.09)

0.77
(0.09)

0.67
(0.09)

SimpleTagger

0.51
(0.07)

0.38
(0.08)

0.43
(0.07)

0.60
(0.04)

0.37
(0.11)

0.46
(0.09)

0.50
(0.06)

0.39
(0.07)

0.44
(0.06)

0.56
(0.06)

0.38
(0.10)

0.45
(0.09)NBTagger+

0.57
(0.08)

0.78
(0.06)

0.66
(0.07)

0.63
(0.05)

0.80
(0.11)

0.70
(0.06)

0.59
(0.07)

0.78
(0.07)

0.67
(0.07)

0.58
(0.06)

0.78
(0.10)

0.66
(0.07)SVMTagger+

0.60
(0.09)

0.71
(0.08)

0.65
(0.08)

0.66
(0.07)

0.81
(0.10)

0.73
(0.08)

0.68
(0.09)

0.81
(0.07)

0.74
(0.08)*

0.62
(0.09)

0.77
(0.10)

0.69
(0.09)

CombinedTagger

Impact of features

0.55
(0.10)

0.69
(0.08)

0.63
(0.09)

0.63
(0.08)

0.81
(0.09)

0.71
(0.08)

0.66
(0.10)

0.81
(0.06)

0.72
(0.08)

0.60
(0.09)

0.77
(0.09)

0.67
(0.09)

SimpleTagger

0.52
(0.10)

0.70
(0.08)

0.61
(0.09)

0.63
(0.08)

0.81
(0.09)

0.70
(0.08)

0.66
(0.10)

0.81
(0.06)

0.73
(0.09)

0.60
(0.09)

0.78
(0.09)

0.67
(0.09)

AffixTagger

0.57
(0.10)

0.70
(0.07)

0.63
(0.09)

0.63
(0.08)

0.81
(0.09)

0.71
(0.08)

0.66
(0.10)

0.81
(0.06)

0.73
(0.08)

0.60
(0.09)

0.77
(0.09)

0.67
(0.09)

ConnectiveTag-
ger

0.59
(0.09)

0.71
(0.07)

0.64
(0.08)

0.63
(0.08)

0.80
(0.09)

0.71
(0.08)

0.66
(0.09)

0.81
(0.06)

0.73
(0.08)

0.60
(0.10)

0.77
(0.08)

0.68
(0.09)

MorphologicalT-
agger

0.54
(0.10)

0.69
(0.08)

0.61
(0.09)

0.63
(0.08)

0.81
(0.09)

0.71
(0.08)

0.65
(0.10)

0.81
(0.06)

0.72
(0.08)

0.59
(0.10)

0.77
(0.09)

0.66
(0.09)

NegHedgeTagger

0.58
(0.09)

0.69
(0.10)

0.63
(0.09)

0.65
(0.08)

0.80
(0.11)

0.72
(0.09)

0.64
(0.10)

0.78
(0.07)

0.70
(0.09)

0.61
(0.09)

0.77
(0.10)

0.68
(0.09)

SemanticTagger

0.58
(0.09)

0.70
(0.08)

0.63
(0.08)

0.64
(0.08)

0.80
(0.09)

0.71
(0.08)

0.65
(0.09)

0.80
(0.06)

0.72
(0.08)

0.61
(0.10)

0.78
(0.09)

0.68
(0.09)

SyntacticTagger

0.60
(0.09)

0.71
(0.08)

0.65
(0.08)

0.66
(0.07)

0.81
(0.10)

0.73
(0.08)

0.68
(0.09)

0.81
(0.07)

0.74
(0.08)

0.62
(0.09)

0.77
(0.10)

0.69
(0.09)

CombinedTagger
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Table 3. The F1 score of different named entities with different features on Comb dataset.

Overall

mean (SD)

Treatment

mean (SD)

OSSD

mean (SD)

Indication

mean (SD)

Duration

mean (SD)

Route

mean (SD)

Frequency

mean (SD)

Dosage

mean (SD)

Medication

mean (SD)

AE

mean (SD)

Feature group

0.71 (0.08)0.60 (0.52)0.44 (0.45)0.57 (0.12)0.20 (0.42)0.36 (0.33)0.57 (0.46)0.59 (0.35)0.82 (0.10)0.70 (0.10)Default

0.70 (0.08)0.60 (0.52)0.51 (0.44)0.57 (0.09)0.40 (0.52)0.55 (0.37)0.59 (0.45)0.58 (0.37)0.81 (0.12)0.69 (0.11)Affix

0.71 (0.08)0.60 (0.52)0.44 (0.45)0.60 (0.15)0.20 (0.42)0.44 (0.36)0.57 (0.46)0.69 (0.31)0.81 (0.10)0.70 (0.10)Connective

0.71 (0.08)0.60 (0.52)0.47 (0.43)0.62 (0.12)0.20 (0.42)0.32 (0.32)0.59 (0.45)0.57 (0.35)0.82 (0.10)0.70 (0.10)Morphological

0.71 (0.08)0.60 (0.52)0.50 (0.43)0.59 (0.11)0.20 (0.42)0.36 (0.33)0.59 (0.45)0.56 (0.36)0.82 (0.10)0.69 (0.10)NegHedge

0.72 (0.09)0.60 (0.52)0.43 (0.39)0.64 (0.13)0.30 (0.48)0.34 (0.33)0.65 (0.40)0.56 (0.35)0.82 (0.11)0.71 (0.11)Semantic

0.71 (0.08)0.60 (0.52)0.44 (0.45)0.58 (0.11)0.34 (0.47)0.32 (0.31)0.59 (0.45)0.61 (0.35)0.81 (0.11)0.70 (0.10)Syntactic

0.73 (0.08)0.60 (0.52)0.55 (0.39)0.65 (0.11)0.34 (0.47)0.32 (0.31)0.59 (0.44)0.61 (0.37)0.83 (0.11)0.72 (0.10)All

Annotation Disagreements

Overview
We manually analyzed the annotation disagreements and found
they can be organized into three main categories: (1) boundary
inconsistencies –disagreement due to assignment of inconsistent
boundaries to entities; (2) missed named entity annotations
–disagreement where one of the annotators annotated an entity
and the other annotator missed it; (3) inconsistent named entity
annotations –disagreement due to inconsistent categorization
of entities.

There were a total of 2955 disagreed token instances, of which
1591 (53.84%) were related to AE and medication named
entities.

Boundary Inconsistencies
We found that inconsistencies related to boundary accounted
for nearly 13.94% (412/2955) of disagreement. In all the
examples in the article, the named entity instance is shown in
italics and the named entity type is shown within the “[]”.

In Textbox 1 Example 1, AnnLing annotated “three hour” as
duration and “infusion” as route, AnnPhy annotated “three hour
infusion” as duration only. This inconsistency exemplifies
differences between the linguist and the physician. While the
linguist can separate the linguistic differences between different
named entities, we found that physicians (both ZFL and SB)
frequently overlook the differences, which leads to inconsistent
annotations.

Textbox 1. Examples.

Example 1: She received approximately less than two minutes of therapy with intravenous Taxol (paclitaxel), 280 mg in a three hour [duration]
infusion [route] for phase IIID ovarian cancer, when the symptoms occurred.

Example 2: The patient then became lightheaded [AE], collapsed [AE], and was unconscious [AE].

Example 3: Investigator considers that haematologic toxicity [AE] of methotrexate could be increased by interaction with apranax (naproxene) and
sintrom (acenocoumarol).

Example 4: On [words marked], the patient died, presumed to be a result of cardiogenic shock [AE]. Prior to death, the patient was noted for having
an increase in troponin T level, and found to be more unresponsive.

Example 5: Moderate anaphylactoid symptom appeared after administration of docetaxel and recovered later. After the end of administration, convulsion
appeared. Anti-convulsion agent could not be administered due to allergy [AE].

Example 6: …days after the last Vinorelbine intake patient was hospitalized due to NCI/CTC grade 4 neutropenia [AE] without fever [OSSD]…

Missed Named Entity Annotations
Missed named entity annotation was the major cause for
disagreement. Among 2955 disagreed token instances, 2355 or
approximately 79.69% belong to this category. Table 4 shows
instances of medication that were annotated by one annotator
and missed by other. Examples 1-5 (Table 4) were annotated
by AnnPhy but missed by AnnLing; examples 6-10 (Table 4)
were annotated by AnnLing but missed by AnnPhy.

AnnLing explained that “blood transfusion”, “fluids”, and “red
packed cells” shown in examples 1, 2, and 5 were not
medication, but referred to a kind of treatment or medical
procedure. In example 3, AnnLing missed annotating “normal
saline” as medication. In example 4, “oxygen” was not annotated
because AnnLing felt it did not represent medication. Annotators

did not reach any consensus on annotating “oxygen” as
medication or not. The differences here exemplify the strength
of the physician as a domain-expert who may interpret the
semantics of EMR notes more accurately than the linguist.

In examples 7, 8, and 10, in Table 4, AnnPhy did not annotate
“treatment”, “Re-exposure”, and “chemotherapy” as these
entities were anaphoric references; AnnLing, being a linguist,
annotated these anaphoric references as medication. In example
6 (Table 4), AnnLing annotated “drug” as medication but
AnnPhy did not annotate the entity because the text did not refer
to any medication. Later, AnnLing agreed that where there is
mention of entities but they do not refer to specific entities, such
as “drug” in example 6, they should not be annotated. Example
9 in Table 4 was a special case where “concomitant drug” refers
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to the role or function of the drug, “Solupred”, rather than
referring to a drug. AnnPhy did not annotate such instances.
These examples demonstrated that annotating medical texts is

a complex and cumbersome task. Further refinement of
guidelines in such instances may improve the consistency of
annotations.

Table 4. Disagreement in medication annotation (medication text is italicized).

Medication annotationAnnotation

1. Given multiple blood transfusions (hemoglobin: 4.8).

2. Pressors continued with fluids.

3. He was admitted to the hospital and hydrated with normal saline.

4. The event was treated with steroids and oxygen.

5. Pancytopenia, treated with G-CSF, erythropoetin, and red packed cells.

Annotated by
AnnPhy but not
annotated by
AnnLing

6. Causality assessment drug relationship is unable to determine for Taxol.

7. The 4th previous courses of treatment were well tolerated. 8. During the first infusion of paclitaxel, the patient experienced a
decrease in blood pressure and was unconscious for a short while.Re-exposure elicited the same symptoms.

9. The concomitant drug prescribed was oral Solupred instead of Solumedrol.

10. A female patient possibly received non-therapeutic dosages of intravenous Taxol (paclitaxel), Paraplatin (carboplatin), and/or
Platinol (cisplatin) for the treatment of ovarian cancer and subsequently expired. It was reported that the pharmacist possibly di-
luted the chemotherapy improperly.

Annotated by
AnnLing but not
annotated by An-
nPhy

Inconsistent Named Entity Category Annotations
We have annotated a total of nine categories of named entities,
as shown in Table 1. The third type of inconsistency was caused
by inconsistent named entity assignments. Among 2955
disagreed token instances, 188 (6.36%) belong to inconsistent
named entity categorization. We manually examined few
instances and Examples 2-6 in Textbox 1 show the annotated
sentences where inconsistency occurred. Example 2 in Textbox
1 is an example where both annotators agreed on the AE
annotation.

Example 3 in Textbox 1, however, shows an instance where
AnnPhy and the tiebreaker agreed on “haematologic toxicity”
as an AE whereas AnnLing did not initially annotate the entity.
This inconsistency suggests that domain knowledge is required
for annotation. After discussion with two other annotators,
AnnLing agreed that “haematologic toxicity” should be
annotated an AE.

Example 4 in Textbox 1 shows an instance where AnnLing and
the tiebreaker agreed on “cardiogenic shock” as an AE but
AnnPhy annotated it as OSSD. AnnPhy argued that “cardiogenic
shock” caused “death” and therefore “death” should be an AE
and “cardiogenic shock” is the reason for death and therefore
was annotated as OSSD. This example shows the complexity
of clinical cause.

In Textbox 1 Example 5, the tiebreaker annotated “allergy” as
an AE, whereas AnnPhy annotated it as OSSD and AnnLing
did not annotate it as an AE because it refers to the patient’s
history of “allergy” and does not represent a current instance
of AE. We will need to refine our annotation guideline to add
current or past status in addition to the named entity annotation.

Example 6 in Textbox 1 shows an instance of boundary
inconsistency. AnnPhy and AnnLing both annotated “NCI/CTC
grade 4 neutropenia without fever” as an AE whereas the
tiebreaker annotated “NCI/CTC grade 4 neutropenia” as an AE
and “fever” as OSSD. This is a case in which annotators
interpret clinical texts differently. Such an inconsistency is

difficult to address due to the nature of ambiguity in clinical
texts.

Error Analyses
For error analyses, we focused on CombinedTagger because it
yielded the highest performance (as shown in Table 2) and the
Comb dataset because it contained annotations agreed on by
both annotators. We randomly selected 100 named entities
predicted wrongly by CombinedTagger and manually analyzed
them. As shown in Figure 3, we group the named entities into
a total of five types of errors and give an illustrative example
for each. In all examples, annotated named entities are shown
in bold, the tagger output in {italicized} and the named entity
type is shown within “[]”. The leading type of error was data
sparseness (35%). Data sparseness is a common problem and
the major cause of poor performance. For instance, the gold
standard consisted of a number of singleton instances (instances
that appear only once) like “cytolysis”, “sodium chloride
solution 0.9% 100ml”, and “neoplasm of unspecified nature of
respiratory system” that created sparseness in the data.

The second cause of error was inconsistent inclusion of
punctuation (21%). The gold standard had inconsistency in
inclusion of punctuation (eg, a period [.] in “neutropenia.”) as
a part of a named entity. This boundary inconsistency reduced
the overall performance. Figure 3 shows an instance where the
gold standard included a period as part of named entity
“neutropenia.” but the tagger failed to include it (“neutropenia”).
This was followed by an error caused by ambiguous named
entities (15%). The instances in the gold standard that were
assigned to multiple named entity categories resulted in
ambiguous entities. For example, “death” was annotated as
either AE or OSSD. This could have confused the ML algorithm
and yielded a lower performance. In Figure 3, the instance
“death” was not annotated as AE in the Comb dataset due to
disagreements between annotators, but the tagger identified it
as an AE. The missed pronoun annotations such as “the event”
contributed to 8% of the errors. The final category was other
type of errors (21%), for which the exact cause of error could
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not be determined. In Figure 3, “seizure” was annotated as an
AE but the tagger failed to identify it. The exact cause for

miscategorization could not be determined.

Figure 3. Error categories, their frequency, and an illustrative example of error category on 100 randomly sampled instances. The annotated entities
are shown in bold, the annotated named entity type is shown within “[]” and tagger output is {italicized}. AE: adverse events.

Annotation Inconsistencies
As predicted, annotation inconsistency played an important role
on AETaggers’ performance as our Pearson correlation results
(coefficient of 0.73) show that the IAA value (Cohens’ kappa)
is positively correlated with the machine learning performance
of named entity recognition. This is not surprising because
inconsistent annotations confuse the machine learning systems.

Our manual analysis of inconsistency revealed that nearly 20%
of errors were due to inconsistent inclusion of punctuation in
annotation. When we removed the inconsistency in punctuation,
the F1 score of CombinedTagger increased from 0.73 to 0.79,
which was statistically significant (t test, P=.001). Although
the missed pronoun annotations of AE and medication can be
fixed readily, they also contributed to the lower performance
of the tagger.

Data Sparseness
Data sparseness is a common problem and the major cause of
poor performance. The performance of AETagger was positively

correlated with the size of the annotated data for each named
entity (a Pearson correlation coefficient of 0.64). In the cases
of frequency, duration, OSSD, and treatment entities, data was
very sparse (Table 1) and taggers showed low performance on
these named entities. In addition to low performance, data
sparseness also contributed to a higher standard deviation (Table
3). When the training data incorporate instances of a named
entity but the testing data do not, the precision decreases. When
the training data misses instances of a named entity but the
testing data do not, then recall suffers.

Learning Features
To further understand the contribution of learning features on
the performance of AETagger, we first trained the tagger with
all the features and used it as a baseline system
(CombinedTagger). We then removed each feature category
one at a time. Table 5 shows the performance of taggers with
each feature category removed. Consistent with Table 3, the
results show that each feature contributed to the performance
differently.
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Table 5. The precision, recall, and F1 score of Taggers with feature categories removed one at a time on each of the four annotated data sets.

Tie

Mean (SD)

Combined

Mean (SD)

AnnLing

Mean (SD)

AnnPhy

Mean (SD)

Tagger

RecallPreci-
sion

F1RecallPreci-
sion

F1RecallPreci-
sion

F1RecallPreci-
sion

F1

0.60
(0.09)

0.71
(0.08)

0.65
(0.08)

0.66
(0.07)

0.81
(0.10)

0.73
(0.08)

0.68
(0.09)

0.81
(0.07)

0.74
(0.08)

0.62
(0.09)

0.77
(0.10)

0.67
(0.09)

All features

0.60
(0.08)

0.70
(0.08)

0.64
(0.08)

0.64
(0.09)

0.79
(0.11)

0.71
(0.09)

0.65
(0.11)

0.78
(0.07)

0.71
(0.10)

0.62
(0.09)

0.76
(0.10)

0.68
(0.09)

No affix features

0.60
(0.09)

0.71
(0.08)

0.65
(0.08)

0.66
(0.07)

0.81
(0.10)

0.73
(0.08)

0.69
(0.09)

0.81
(0.06)

0.74
(0.08)

0.62
(0.09)

0.77
(0.10)

0.69
(0.09)

No connective features

0.60
(0.08)

0.72
(0.08)

0.65
(0.08)

0.66
(0.07)

0.82
(0.10)

0.73
(0.08)

0.66
(0.09)

0.81
(0.06)

0.73
(0.08)

0.62
(0.09)

0.78
(0.10)

0.69
(0.09)

No morphological

features

0.59
(0.09)

0.71
(0.09)

0.64
(0.09)

0.65
(0.07)

0.81
(0.10)

0.72
(0.08)

0.68
(0.09)

0.81
(0.07)

0.74
(0.08)

0.62
(0.09)

0.77
(0.10)

0.68
(0.09)

No negation and hedge features

0.59
(0.08)

0.71
(0.07)

0.64
(0.08)

0.64
(0.08)

0.80
(0.09)

0.71
(0.08)

0.68
(0.10)

0.82
(0.05)

0.74
(0.08)

0.60
(0.09)

0.77
(0.08)

0.67
(0.08)

No semantic features

0.58
(0.09)

0.70
(0.09)

0.64
(0.08)

0.64
(0.08)

0.80
(0.11)

0.71
(0.09)

0.68
(0.09)

0.80
(0.07)

0.73
(0.08)

0.61
(0.09)

0.77
(0.10)

0.68
(0.09)

No syntactical features

Discussion

Principal Findings
Our results show that medication and adverse events can be
reliably annotated (Cohen’s kappa value of .64-.95 IAA as
shown in Table 1) in the FAERS narratives. Many named
entities (eg, indication) that had shown low annotation
agreements in the i2b2 challenge [63] had good annotation
agreements in our dataset. The improvements were attributed
to improved annotation guidelines and the quality and domain
specificities of the FAERS narratives.

With a good IAA, we still found room to further improve the
annotation guideline. For example, our error analyses (Figure
3) show that inconsistencies were introduced by annotation
boundary; therefore it can be further refined. Although
medication had the highest IAA (.95), our analysis (Table 4)
found that the inconsistency in medication was introduced by
whether instances like “fluids” could be considered as
medication or not. In the future, we may separate medication
into two classes: strict medication and unstrict medication. The
names and mentions of all drugs appearing in the United States
Pharmacopeia will belong to strict medication; any substances
or chemicals—including oxygen, fluids, drinks, and
others–given to patients during the treatment will be classified
as unstrict medication. Refining the guideline to annotate
previous and potential AEs like “allergy” (Example 5) may
further reduce the inconsistency.

We explored various ML methods and compared them with a
baseline string matching and Metamap-based systems to assess
the complexity of the task. The CRF-based tagger had the best
performance. Further analyses of the CRF tagger found that
data sparseness affected the taggers’ performance (Figure 3).
For example, the standard deviation of treatment is high because
we found that the testing data did not incorporate treatment

instances. Similar behavior was also observed for other sparse
entities (Table 3).

Using the best performing ML technique, we explored a variety
of features (Table 2 and Table 3). The features had a mixed
effect on the performance of the taggers and the combination
of all the features improved overall performance slightly. This
suggests the robustness of the default features for CRFs. Since
most of the features were extracted automatically (eg, negation,
hedge cues, and discourse connectives were extracted using the
taggers [77,78] and parser [79] we developed), the accuracy of
the extracted features played an important role in overall
performance of the tagger. To avoid the noise introduced by
automatic feature extraction, one may explore the features
manually annotated such as POS in the PennTree Bank [80].
This is, however, expensive. An alternative is to further improve
the performance of the BioNLP systems for feature extraction.

Throughout the study, we found that additional features may
be further included. For example, we observed that OSSD most
often appeared in the patient’s medical history. We therefore
added a feature representing patient history and found that the
performance of the CombinedTagger on OSSD increased 1.2%
(results not reported in the Result section), although the increase
was not statistically significant (t test, P=.25).

Limitations
Our study has limitations. The AETaggers were trained on the
FAERS corpus we constructed. Like any other NLP system,
the performance of the tagger on other types of EMRs can vary
based on the structure and content of the narrative text. On the
other hand, since our selection of the FAERS corpus was
through a random process, we speculate that the data is
representative. Although the taggers performed well, the training
and evaluation was based on a relatively small training dataset.
In the future, we would increase the size of the training data
and explore other semi-supervised machine learning approaches
to further improve the performance.
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Conclusions
In this study, we developed an annotation guideline for
medication and adverse event information from the FAERS
narratives, our annotation of 122 FAERS narratives (a total of
approximately 23,000 tokens) showed a reliable inter-rater
annotation agreement (an overall kappa of .82). We then
developed machine learning models for automatically extracting
medication and adverse event information from the FAERS
narratives. We explored utilizing different learning features in

the machine learning models. The results showed that features
such as syntactic, semantic, morphological, and affix improved
the performance and the best performing system had an overall
F1 score of 0.73. In the future, we would like to refine further
the annotation guideline, explore additional features and increase
the annotation size to improve system performance. We will
also explore approaches for normalizing the entities by mapping
them to standard terminologies like MedDRA and identify the
causal relation between a medication and an adverse event.
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