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Abstract

Background: Vendors in the health care industry produce diagnostic systems that, through a secured connection, allow them
to monitor performance almost in real time. However, challenges exist in analyzing and interpreting large volumes of noisy
quality control (QC) data. As a result, some QC shifts may not be detected early enough by the vendor, but lead a customer to
complain.

Objective: The aim of this study was to hypothesize that a more proactive response could be designed by utilizing the collected
QC data more efficiently. Our aim is therefore to help prevent customer complaints by predicting them based on the QC data
collected by in vitro diagnostic systems.

Methods: QC data from five select in vitro diagnostic assays were combined with the corresponding database of customer
complaints over a period of 90 days. A subset of these data over the last 45 days was also analyzed to assess how the length of
the training period affects predictions. We defined a set of features used to train two classifiers, one based on decision trees and
the other based on adaptive boosting, and assessed model performance by cross-validation.

Results: The cross-validations showed classification error rates close to zero for some assays with adaptive boosting when
predicting the potential cause of customer complaints. Performance was improved by shortening the training period when the
volume of complaints increased. Denoising filters that reduced the number of categories to predict further improved performance,
as their application simplified the prediction problem.

Conclusions: This novel approach to predicting customer complaints based on QC data may allow the diagnostic industry, the
expected end user of our approach, to proactively identify potential product quality issues and fix these before receiving customer
complaints. This represents a new step in the direction of using big data toward product quality improvement.

(JMIR Med Inform 2018;6(2):e34) doi: 10.2196/medinform.9960
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Introduction

Connected and so-called smart meters and other tools have
transformed virtually every industry by enabling new functions
and capabilities such as continuous monitoring, control,

optimization, and autonomy [1]. This is particularly true in the
health care industry, which deployed analytical systems ranging
from electronic health records (EHRs) to clinical decision
support systems [2]. Connected systems also include in vitro
diagnostic (IVD) analyzers, which work with different assays
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that measure a number of markers in patients’ blood samples
such as sodium or potassium, as well as other biomarkers such
as troponin—which altogether are called “assays.” Being
connected, their manufacturers can monitor the analyzers’output
in real time through encrypted, two-way interactive connections.
As such, manufacturers can potentially quickly detect issues
and act promptly to resolve the problem.

However, the sheer amount of data generated by these connected
systems is such that big data analytics are required [3]. For this,
a number of platforms have been developed, going from
statistical tools such as R [4], to dedicated business intelligence
and data mining tools. These platforms can then generate
queries, reports, and perform online analytics processing, as
well as data mining [2]. These aggregated data can then be used
to perform one of three kinds of analytics: (1) descriptive
analytics that permit the visualization of the data; (2) predictive
analytics that try and predict the future of a system from its past
behavior; and (3) prescriptive analytics that make
recommendations about the best way to resolve a particular
issue [5]. However, different health analytics contexts may
require different approaches, as in the case of quality control
(QC) data logged by analyzers.

As QC data are routinely used to monitor the performance of
IVD and identify signals that may indicate a performance
change, a number of approaches have been developed. These
range from panels of experts that submit monthly reports [6],
to automated systems that resort to summary statistics computed
over temporal windows [7-11]. Although simple linear models
can be used to monitor these complex systems [12],
machine-learning algorithms have already proved capable of
generating highly accurate predictions [13,14]. However, past
approaches mostly have explored simple tools such as decision
trees and other standard classifiers [15] and have not (1)
Explored more sophisticated algorithms such as adaptive
boosting [16] and (2) In the context of noisy and moderately
large dataset—that are, hence, not always amenable to deep
learning as recently deployed in the context of EHRs [17]. One
aspect that has rarely been integrated into the analysis of QC
data is its relation with customer data: when a shift in
performance of a test assay is identified, what is its impact on
the user (customer)? Will this trigger a complaint about QC? If
the complaint is specific, such as “QC high” or “accuracy low,”
can we learn something about the quality of the data from the
combination of those specific complaints?

The objective here is therefore to integrate these two kinds of
data, QC data and customer complaints, to be able to predict
specific QC issues, while accounting for intrinsic issues
pertaining to customer data. Indeed, customer complaint
databases have at least three inherent limitations that need to
be considered when designing a prediction tool. First, complaint
databases may contain inaccurate, incomplete, untimely, or
unverified information [18]. Second, incidence may be under
[19,20] or overreported [21]. For instance, certain advertising
or regulatory actions may result in increased reporting [22],
which could ultimately result in an overwhelming important
signal with noise. Third, despite the best efforts of complaint
handling professionals, errors while curating complaints (eg,
misclassification of complaints) occur [23]. However, it is

possible that by focusing solely on errors directly related to QC,
or even by binning particular errors into larger categories (eg,
“QC high” and “QC shift high” in the same category), it might
alleviate some of these reporting issues.

Here, based on a particular connected IVD analyzer, we show
that integrating QC data with a database of customer complaints
can be used to predict which type of issues customers complain
about. We hypothesized that connected systems can be utilized
more efficiently by utilizing the collected QC data more
efficiently and more specifically by resorting to
machine-learning algorithms. We show that it is possible to
identify product issues more proactively, which makes it
possible to act on these before they trigger a customer complaint.
We further show that some filtering of the complaint data
(denoising) improves the accuracy of issues prediction. This
work represents a first step toward meeting the recent plan from
the US Food and Drug Administration (FDA) to leverage on
big data to improve device performance and health care [24].

Methods

Data Collection

e-Connectivity Data
Data were collected using the e-Connectivity application’s
chemistry results, manufactured by Ortho Clinical Diagnostics
(Raritan, New Jersey). This feature allows the manufacturer to
pull information remotely from equipment installed at customer
sites, which are themselves distributed throughout the world.
The data retrieved in this study were generated by Ortho Clinical
Diagnostics’ VITROS analyzers of the 5,1 FS series, the 5600,
4600, 3600, or ECi/ECiQ Systems, that all log the same kind
of information through e-Connectivity. Only QC data were
extracted to avoid complications linked to patients’ data
(identifiability, variability, etc).

The e-Connectivity data contain information relative to the
assay, serial numbers reflecting its origin, the measured
concentrations, as well as some information relative to the
analyzer itself (see Table 1 and Multimedia Appendix 1 for a
full description of the e-Connectivity variables). We focused
on five assays, here recoded as “assay A” to “assay E.” The
data pulled ranged from March 16, 2016 00:00:20 EST to June
14, 2016 23:38:51 EST, a total of 90.98 days, and contained
824,885 QC logs across the five assays. To assess the effect of
the training period, we constructed a second set of data limited
to the last 45 days of this 90-day set.

Customer Data
The corresponding customer complaint data were obtained by
querying the product complaint database of the same
manufacturer for the same time window as the QC data.
Customer data contained information with respect to the assay
for which an issue is reported, the call area (error code), and
other information related to the assay (see Table 1 and
Multimedia Appendix 2 for a full description of the customer
variables; Multimedia Appendix 3 list the call areas reported
over the five assays employed here). These data contained a
total of 7999 logs. Across the five assays tested here, a total of
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99 call areas were found. The goal here is to predict these call
areas from the QC data.

Records Matching
The only fields that are shared between QC and customer data
are assay name, J numbers, and lot numbers (Table 1). As each
analyzer has a unique J number, we used this shared information
to match QC samples with customer data. Although this
approach works in most cases, there are instances when the
same customer processes multiple samples, potentially from
multiple analyzers, but logs only one call. Thus, the data that

will be used to train the predictive algorithms are, in essence,
noisy.

Predictive Classifiers

Feature Definitions
To find predictors of customer complaints based on QC data,
we need to define operational variables, which are called
features. These features were defined by inspecting a typical
log of the system (Figure 1). From this, two types of features
were defined, based on (1) concentration readings and (2)
maintenance events (eg, change of calibration).
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Table 1. List of the fields logged by e-Connectivity (that includes quality control, QC data) and by the customer complaint system. Corresponding
abbreviations are shown.

Short descriptionData and Abbreviation

e-Connectivity

Abbreviation of assay name (recoded here)Assay

Unique identifier assigned to each analyzer placedJ Number

Concentration of solute (assay); QCa resultF Concentration

Unit of measured concentration (mmol/L)Units

Concentration of solute (assay); QC resultF Concentration (SI)

Unit of measured concentration (SI)Units SI

Reagent lot numberReagent Lot Number

Manufacturing generation numberS Gen

Manufacturing lot numberS Lot

Electrolyte reference fluid lotERF Lot

Immuno-wash fluid lot numberIWF Lot

Performance verifier lot numberControl Lot Number

Calibration curve IDCal Curve ID

Unique identifier (encrypted) of QC resultResult ID

Unique identifier (encrypted) of sample nameSample Name

Time stamp of concentration log through e-ConnectivityTime Metering

Dilution factorTotal Dilution

Operator requested dilutionOperator Dilution

Fluid type (serum, plasma, or urine)Body Fluid

Customer

Time stamp of when complaint was placedCreate Audit Date

Same as assay in e-ConnectivityCall Subject

Classification of concern or problem of the product or the analyzer-generated conditionCall Area

Term describing how the complaint was resolvedResolution

Unique identifier of each complaintComplaint Number

Unique identifier of each customerCustomer Number

Analyzer serial numberJ Number

Reagent lot numberLot number

Geographic region where complaint was placedRegion

Current call status of complaint (closed or open)Call Status

Free-text field describing the complaintProblem description

aQC: quality control.
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Figure 1. Feature definitions based on a typical sample logged in e-Connectivity. Assay concentrations (here for assay A) are plotted as a function of
time. Horizontal blue lines show the modes of the density of sample means (our estimated verifiers). Vertical gray lines show timing of maintenance
activities (change of calibration curves, etc). The orange vertical line shows when the customer placed a call—for “accuracy high” (ACCH; indicates
the measured concentration is suspected of being higher than the actual value) in this example. The concentration reading just before this call (“#1”)
and 10 e-Connectivity logs before it (“#10”) are indicated in red. Our machine-learning (ML) algorithms (in red) aim at learning the signatures (in
purple) of call areas (orange) from a training set, to be able to identify those call areas, before a customer complains.

Concentration readings departing from expected values can be
thought of as the prime trigger of customer complaints.
Obviously, their absolute value with no other context has no
predictive value (as long as it is not outside of the biological
range) for QC data, and therefore, we should focus on departure
from verifiers, which are known concentration readings
produced during manufacturing. However, these verifiers are
not logged by e-Connectivity and are only available as PDF
files, which cannot be easily parsed. Customers may also choose
to use QC material that is manufactured by a third-party, which
further complicates the retrieval of verifier information. As a
workaround, we calculated mean concentrations by samples,
estimated the density kernel of these sample means, and
determined the location of all the modes (Multimedia Appendix
4). We assumed that each mode corresponds to a verifier: the
closest mode to each QC reading logged in e-Connectivity was
assumed to be the verifier concentration. We then used the
relative differences between concentration readings and
estimated verifier. On the basis of this, we defined four features
according to concentration readings just before customer call
(log “#1” in Figure 1) and of the average logs two, five, and ten
time points before the call (orange vertical bar in Figure 1).
Because variability of QC logs may also signal issues, we
defined three more features by SDs of the two, five, and ten
concentration logs before customer call.

Customers may notice suboptimal performance of a machine
and decide to try and resolve the issue on their own and place
a call for assistance only if they cannot resolve the issue. We
therefore defined features based on different maintenance events
logged by the system (six in total): change of S Gen, S Lot, ERF
Lot, IWF Lot, Control Lot Number, and Cal Curve ID. We
considered both the timing of the last event before the call and
the number of such events before the call. This led us to define
12 additional features based on maintenance events, for a grand
total of 19 features (Table 2). A twentieth feature was defined
as the time it takes for a customer to call since the last
e-Connectivity reading (at “#1” in Figure 1).

Because the use of only “positive samples” (samples that led
to a customer call) to train our algorithms would bias any
prediction toward overpredicting calls, we also defined features
for “negative samples.” These are QC samples that did not
generate any customer complaints. If n calls were logged for a
given assay (among the 7999 logs in total), we drew n such
negative samples. We calculated the features as above by
drawing a cutoff time at random (from a uniform distribution
limited by start and end time of QC logs for a given sample)
that plays the role of a customer call in the positive samples. In
this case, the call area (error code) is “OK”—giving then a total
of 100 call areas that we want to predict.
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Machine-Learning Algorithms
These 20 features were used as predictors during the training
of machine-learning algorithms, whose goal was to classify
(predict) the qualitative nature of problem represented by each
call area. Two such algorithms were used here: a simple one,
based on decision trees [25], and a more sophisticated one that
recently proved very successful in one of our applications [26].

Decision trees represent one of the simplest type of classifier,
with Classification and Regression Trees (CART) being one of
the most basic algorithms. We employed the algorithm
implemented in the tree library [27] version 1.0-37 in R version
3.2.3 [4]. Unlike CART, adaptive boosting relies on an iterated
process that proposes boundaries in the space of predictors, each
giving rise to a weak classifier; the final classifier then combines
these different weak classifiers, emphasizing misclassifications,
to create a final strong classifier [16]. The adabag library version
4.1 [28] was used. To avoid overfitting with both algorithms,
each dataset (the 90- and the 45-day sets) was split into two
subsets, where two-thirds of the data were used as a training set
and the remaining one-third used to test performances (compute
misclassification or error rate from the confusion table). Because
of the many ways to split the data in a 2:1 ratio, we repeated
this cross-validation exercise for 2500 random such 2:1 splits
of the data, for both classifiers. Such a cross-validation

experiment can also be seen as a means to prevent overfitting
the data with a complex model.

Data Denoising
Over the 99 call areas employed so far, some are not directly
related to QC, and those related to QC might share some
characteristics. Both issues can create some noise, which can
easily be filtered out of the data. We therefore created two filters,
one that removes all non-QC related call areas (essentially, all
error codes starting with a “Z” in Multimedia Appendix 3, as
they are related to a misconfiguration of the analyzer) and one
that bins some call areas. The first filter reduced the complaint
data from 7999 to 572 logs and from 99 to 21 call areas by
eliminating error codes unrelated to QC. The second filter,
binning all QC high (QC high, QC Drift High, QC Shift High)
together and all QC low (QC low, QC Drift Low, QC Shift
Low) together, further reduced the number of call areas from
21 to 17. Applied both to the 90- and the 45-day data, these
filtering steps led to four additional datasets. Our expectation
was that these denoising steps would improve the performance
of our classifiers, as reducing the number of categories from 99
to 17 simplifies the classification problem. The R code
developed in this study is available from GitHub (sarisbro
account); the QC data we used are proprietary, contain no
patients records, but the variables used are listed in Table 1.

Table 2. List of the features used in the predictive modeling. Note that a “cutoff” represents the time when a customer calls in the case of “positive
samples” (when there is an actual complaint), or the time drawn at random in the case of “negative samples” (see Methods).

DefinitionFeature name

Assay concentration reading just before cutoffMostRecentConcentration

Mean concentration for the two readings before cutoffTwoMostRecentConcentrationMean

Mean concentration for the five readings before cutoffFiveMostRecentConcentrationMean

Mean concentration for the ten readings before cutoffTenMostRecentConcentrationMean

SD of concentration for the two readings before cutoffTwoMostRecentConcentrationSD

SD of concentration for the five readings before cutoffFiveMostRecentConcentrationSD

SD of concentration for the ten readings before cutoffTenMostRecentConcentrationSD

Number of S Gen changes before cutoff (since start of QC sample)NbPriorSGenChange

Number of S Lot changes before cutoffNbPriorSLotChange

Number of ERF Lot changes before cutoffNbPriorERFLotChange

Number of IWF Lot changes before cutoffNbPriorIWFLotChange

Number of Control Lot Number changes before cutoffNbPriorContLotNumChange

Number of Calibration Curve changes before cutoffNbPriorCalCurveChange

Time elapsed since last S Gen change before cutoffTimeSinceLastSGenChange

Time elapsed since last S Lot change before cutoffTimeSinceLastSLotChange

Time elapsed since last ERF Lot change before cutoffTimeSinceLastERFLotChange

Time elapsed since last IWF Lot change before cutoffTimeSinceLastIWFLotChange

Time elapsed since last Control Lot Number change before cutoffTimeSinceLastContLotNumChange

Time elapsed since last Calibration Curve change before cutoffTimeSinceLastCalCurveChange

Time elapsed since last e-Connectivity log before cutoffTimeToComplain
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Results

Very Low Error Rates Even With Noisy Data
To predict which call areas are used when a customer complains
only using QC data (Figure 1), we implemented two
machine-learning algorithms that we ran on five different assays.
As expected, CART showed error rates that were higher than
those obtained with adaptive boosting, but both algorithms did
much better than chance, with median error rates as small as
8% (Multimedia Appendix 5). Over the 90-day sample, each
assay had triggered different numbers of complaints (assay A:
200, assay B: 835, assay C: 227, assay D: 182, assay E: 410,
Multimedia Appendix 6), so that we expected that assays with
larger number of complaints would have larger predictive power,
but that was not the case (t3=1.027, P=.38). Instead, the temporal
dynamics of customer complaints, which increased in the second
half of the 90-day period (Figure 2), affected error rates
(Multimedia Appendix 5): in particular, the first quartile of the
empirical cumulative distribution of customer complaints was
a strong predictor of the error rate (adaptive boosting: t3=4.103,
P=.03). This suggests that it is easier to predict a call area (the
type of a problem) for assays that quickly generate complaints.

Importance of Timing and Variability in Predicting
Call Type
Adaptive boosting computes a measure of importance for each
feature. Multimedia Appendix 6 shows that time to complain

was the most important feature across all five assays tested. The
second most important features were mostly those involving
the timing of maintenance events, followed by the variability
of concentrations (SDs) of the QC material. Unexpectedly, the
actual concentration means (last two, five, or ten) were
systematically the least important features for predicting call
areas.

Misclassification Increases When Time to Complain
Is Ignored
The previous results included time to complain as a feature;
again, this is the time lag between the last QC reading by the
system and the time when a customer placed a complaint (Figure
1). This is unrealistic, as in a real application, we would not
know when a customer is going to complain. As a result, we
assessed the impact of removing the time to complain feature
from our classifiers. Both CART and adaptive boosting were
affected by this removal, even if all five assays still had median
error rates < 50% and as low as 20% with adaptive boosting
(Multimedia Appendix 5). This increase in error rate after
removal of this feature shows that time to complain is an
important determinant of a complaint, which in turn suggests
that customers are quick to complain after detecting a QC shift.

Note, however, that this removal of the most important feature
did not affect the relative importance of the other features: those
involved in the timing of maintenance events and those
describing the variability of concentrations (SDs) were still the
most important predictors (Multimedia Appendix 7).

Figure 2. Empirical cumulative distribution function (ECDF) of customer complaints. The ECDF was plotted for the five assays considered. The
horizontal gray bars represent the first, second, and third quartiles. Each assay is color-coded as shown (inset).
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Shorter Datasets Increase Accuracy
The results above suggest that the rate of complaint may affect
performance. But it is unclear if longer training periods can
benefit the performance of our algorithms. To test this, we subset
the 90-day data to its last 45 days. When all the features were
used to train the algorithms, all classification error rates
decreased (Multimedia Appendix 5). A consistent pattern was
observed when time to complain was also removed from the
feature list (Multimedia Appendix 5). This suggests that the
statistical process underlying call areas is nonstationary in time
(ie, is time-heterogeneous). This hypothesis was supported by
the change in error rate of assay E, which was the worst
performer with the 90-day data but became one of the best one
with the 45-day data, where a sharp increase in customer
complaints can be observed at the beginning of this period
(Figure 2, and Multimedia Appendix 6). It is therefore possible
that training periods might have to be adjusted as calls are
coming in: small number of complaints may require longer
training periods, whereas an increase in complaint volume may
necessitate reducing the training period in real time. On the
other hand, it is also clear from Multimedia Appendix 6 that by
shortening the training period, the number of call types was also
reduced, so that the algorithms needed to predict fewer
categories, which also contributed to lowering error rates.
Therefore, shorter datasets may increase accuracy, but at the
cost of being less general in the type of calls that can be
predicted.

Data Denoising Increases Accuracy
In an attempt to denoise the customer data, we first removed
non-QC related complaints and trained our classifiers on both
the 90- and the 45-day datasets. This led to decreased error rates
over all five assays (Multimedia Appendix 8), with some assays
benefiting better than others (see assay D vs B) and to similar
most important features (Multimedia Appendix 9). Note that
for assay C, the small volume of complaints as observed in
Figure 3 led to difficulties in training both classifiers on the
45-day data, and results for this assay at this shorter time frame
are therefore absent. A closer examination of the confusions
tables in this case suggests that no pattern exists in how errors
are generated: some assays such as B can fail to predict almost
16% of accuracy high (indicating that the measured
concentration is suspected of being higher than the actual value)
call areas, whereas others such as E may have a bias in
overpredicting QC high (Multimedia Appendix 10). Similarly,
binning the QC-high or QC-low data on the QC-only complaints
led to further improvements, leading in some cases to classifiers
with a zero error rate (eg, see assay A in Figure 3).

In this case, where data are denoised by binning and by only
considering QC-only data, the most important features for the
classifier based on adaptive boosting remain TimeToComplain
for both the 90- and the 45-day datasets (Figure 4). When this
feature is removed, timing of events and variability of QC logs
remain the most critical factors in determining call areas of
customer complaints.

Figure 3. Distribution of prediction error rates for the binned quality check (QC)–only data. Error rates are shown as derived from the cross-validation
analyses, where the data were split 2500 times (see Methods). Results are shown for both classifiers, Classification and Regression Trees (CART; broken
lines) and adaptive boosting (solid lines), over the five assays considered for the 90-day data with all features (a) or with TimeToComplain removed
(b) and likewise for the 45-day data with (c) or not (d) all features. Each assay is color-coded as shown.
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Figure 4. Feature importance under adaptive boosting for the binned quality control (QC)–only data. Importance of the features are shown as radar
charts, over the five assays considered. Each assay is color-coded as shown. Top panels are for the whole 90-day datasets, whereas the bottom panels
are for the 45-day datasets. Left panels include all feature; right panels exclude TimeToComplain from the models.

Discussion

Principal Findings
Traditionally, failure prediction in industrial applications aims
at predicting when a particular system is likely to fail [29,30].
Here, we addressed a different question, one not directly related
to the timing of failure, but one that focused on which type of
failure can be predicted based on customer complaints (Figure
1). This is critical in the health care industry as it can point as
to where along the process (from assay production to delivery,
to storage, to use, to service on the analyzers) a product issue
occurred, and hence, to take remedial steps to avoid further
costs—and customer complaints. For this prediction of call
areas, we compared two machine-learning algorithms, one based
on decision trees (CART) and a more sophisticated one, adaptive
boosting, that combines weak classifiers to produce a strong

one. We showed that median errors rates can be as low as
8%—while still being as low as 20% in more realistic settings,
where it is unknown when a customer is going to complain—and
very close to 0% after denoising of the customer data (Figure
2). Note that not knowing when a customer complains does not
seem to affect performance order on the five assays tested here.

One of our challenges here is that a complaint is a symptom of
an actual product issue. When an issue occurs, the customer
may complain, or not. The customer may wait to have several
incidences of same issue before complaining, or may choose
not to complain because he or she is busy or stopped
complaining when it is a recurrent problem. It is also possible
that a customer complains when there is no product-related
issue. As a result, the complaint database that we used is
intrinsically noisy, but (1) This database represents the best data
available and (2) The manufacturer’s goal is to improve

JMIR Med Inform 2018 | vol. 6 | iss. 2 | e34 | p. 9http://medinform.jmir.org/2018/2/e34/
(page number not for citation purposes)

Aris-Brosou et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


customer satisfaction by being able to identify issues before (or
even without) a complaint call is placed.

To achieve this goal, we resorted to machine learning. As in
any machine-learning application—except maybe with some
deep-learning applications as those trained directly on images
at the pixel level [31]—a key element is the identification and
definition of the features used to train a classifier [32,33]. Rather
than selecting features in an ad-hoc manner, as is often the case
with EHRs [34], we took inspiration from standard recordings
logged by a connected system to identify features that can easily
be extracted from the data and that are also likely to reflect QC
shifts (Figure 1). This led us to identify two kinds of features:
those based on concentration readings and those based on the
timing of maintenance events. In the context of this particular
manufacturer in the health care industry (Ortho Clinical
Diagnostics), we showed that timing of events represent the
most important features in predicting a call type in a realistic
setting (were the time when a customer complains is unknown),
followed by variability in concentration readings (Figure 4). A
future improvement of our approach could attempt to perform
unsupervised feature learning, as done in deep learning [17].
This might circumvent the following difficulties: different data
types (eg, patient health instead of QC data), equipment (eg,
Bio-Rad [Hercules, California] rather than Ortho Clinical
Diagnostics), or logging system (eg, Bio-Rad’s UnityConnect
vs e-Connectivity), which might require the definition of
alternative features. However, it is likely that (1) All
connectivity solutions log similar chemistry end points
(concentrations, timing of service, etc) and that (2) Sophisticated
machine-learning algorithms such as adaptive boosting will still
produce quite impressive results. Here, we did not evaluate
other algorithms such as support vector machines [14], neural
networks [13] or deep learning [17], or others, as most of these
approaches have the same goals and can behave equally well
[35].

Limitations
Some additional questions and limitations remain, however.
First, we extracted data for a period of 90 days and showed that
the length of this period could affect performances. Indeed,
shorter training periods seem to improve prediction
performances when complaint rate is high. If complaint volume
does affect performance, the length of the period used for
analytics should be optimized in real time. This point was not
addressed here and will require further investigation, in
particular, to better understand the link between the volume of
customer complaints for specific call areas, the features that
become the most important, and how prediction performances
are affected (Figure 4). Second, we only focused on five assays
and showed that our general approach seems to deliver similar
performances across those particular assays. However, this need
not be the case, and a systematic survey should be undertaken.
Third, we employed only one particular system here, the
VITROS System, manufactured by Ortho Clinical Diagnostics.
However, it is not immediately clear whether our approach can
be ported to other systems, be they distributed by the same or
by other manufacturers. Yet, it may be expected that most
systems from most manufacturers will log QC data in a similar
way, which can be interpreted in the same way as here (see

feature definitions). Fourth, we were limited in our analysis of
QC data by not having access to actual verifiers from the
manufacturer. This forced us to resort to changes in the
measured concentrations, rather than simply checking departures
between measurements and verifiers. However, obtaining these
data was in our case challenging, as these data were only
available as individual PDF files for each performance verifier
lot (there were hundreds of lots). Obtaining information about
these verifiers would help train our predictive tools. Fifth, we
exclusively focused on QC data used for monitoring health care
systems, not on patients’ health. This was done to avoid
complications linked to obtaining consent forms from patients
in hospitals that are themselves scattered around the world.
Eventually, health care analytics should also monitor individual
patients and hence, help physicians in their diagnosis. Sixth,
call areas, which we aimed at predicting, are used by a
manufacturer to identify an issue with the product or with the
analyzer in the complaint handling process: they are not the
root cause of the issue, which can only be determined through
what is known as a root cause investigation (RCI). RCIs are,
however, very time consuming to conduct, especially on
analyzers that are distributed globally, so that most of the time,
the actual cause of a reported issue may not be known. However,
knowing which issue may arise (ie, our prediction of call areas)
instead of the actual cause can help manufacturers to initiate
targeted RCIs more proactively. Finally, we have only presented
one side of the health care analytics in predicting call areas, not
when failures occur. An integrated solution should put together
both questions, possibly by merging our approach with
traditional time series methods [29,30].

In the future, a more agnostic approach with respect to feature
definition may be required: indeed, the features that are based
on concentration readings all depend, to some extent, on the
exact time when a customer complained. This time is unknown
when performing real-time analytics. To circumvent this
limitation, it might be better to implement a sliding window,
defined over a time period T=[t0, t1], and use time t=t1 as the
cutoff point to define features that are based on the timing of
events.

Conclusions
Although the approach we described will require further
validation and testing, the ultimate goal is to implement this
kind of predictive tool into the global monitoring system of IVD
analyzers to help manufacturers be more proactive in detecting
quality issues of the various assays they marketed around the
world. This may help them pinpoint where in the manufacturing
process issues are likely to originate—eg, if only a particular
lot number is globally generating the same call area, a
manufacturing problem specific to this lot can be identified. As
such, we might one day be able to develop automated analytics
or systems that can not only identify when and how failures
will occur but also automatically take remediation steps to
resolve these issues, in real time, without the intervention of
any human being [5].

In the meantime, the US FDA is planning to use big data to
guide regulatory decisions [24]. Consequently, medical
companies will soon have to harness all the data logged by their
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instruments and use these data to their full potential to further
improve the health care system. Our contribution here is a first
step in this direction, laying ground to predicting call areas, and
hence, enabling manufacturers, the expected end user of our
approach, to be more proactive in postmarket surveillance. We
predict that by combining our machine-learning approach with

traditional time series analysis, we will eventually be able to
predict when a customer will complain, in addition to what he
or she will complain about. This work paves the way to
developing an automated tool to anticipating customer
complaints and identifying product quality issues through
connected systems.
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Multimedia Appendix 4
Distribution of mean concentration reading per sample for the same assay. For each sample in the e-Connectivity data, the mean
of all concentration readings was taken, and their distribution over the entire e-Connectivity 90-day data set was plotted. This
distribution is multimodal; modes were estimated and are shown as vertical red dotted lines.
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Multimedia Appendix 5
Distribution of prediction error rates for the unfiltered customer data. Error rates are shown as derived from the cross-validation
analyses, where the data were split 2500 times (see Methods). Results are shown for both classifiers, CART (broken lines) and
adaptive boosting (solid lines), over the five assays considered, for the 90-day data with all features (a) or with TimeToComplain
removed (b), and likewise for the 45-day data with (c) or not (d) all features. Each assay is color-coded as shown.
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Multimedia Appendix 6
Distribution of call areas for each assay. Distributions are shown for the whole 90-day data sets (a) and the 45-day data set (b).
Each assay is color-coded as shown. Non-QC related call areas were filtered out.
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Multimedia Appendix 7
Feature importance under adaptive boosting for the unfiltered customer data. Importance of the features are shown as radar charts,
over the five assays considered. Each assay is color-coded as shown. Top panels are for the whole 90-day data sets, while the
bottom panels are for the 45-day data sets. Left panels include all feature, right panels exclude TimeToComplain from the models.

[PDF File (Adobe PDF File), 254KB-Multimedia Appendix 7]

Multimedia Appendix 8
Distribution of prediction error rates for the QC-only customer data. Error rates are shown as derived from the cross-validation
analyses, where the data were split 2500 times (see Methods). Results are shown for both classifiers, CART (broken lines) and
adaptive boosting (solid lines), over the five assays considered, for the 90-day data with all features (a) or with TimeToComplain
removed (b), and likewise for the 45-day data with (c) or not (d) all features. Each assay is color-coded as shown.

[PDF File (Adobe PDF File), 233KB-Multimedia Appendix 8]

Multimedia Appendix 9
Feature importance under adaptive boosting for the QC-only customer data. Importance of the features are shown as radar charts,
over the five assays considered. Each assay is color-coded as shown. Top panels are for the whole 90-day data sets, while the
bottom panels are for the 45-day data sets. Left panels include all feature, right panels exclude TimeToComplain from the models.

[PDF File (Adobe PDF File), 248KB-Multimedia Appendix 9]

Multimedia Appendix 10
Examples of confusion tables obtained during cross-validation on the 90-day data, filtered for quality control (QC)–only call
areas (data not binned by QC level). Numbers on the diagonal show accurate predictions; false predictions are below the diagonal,
whereas missed predictions are above.
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QC: quality control
RCI: root cause investigation
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