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Abstract

Background: In outcome studies of oncology patients undergoing radiation, researchers extract valuable information from
medical records generated before, during, and after radiotherapy visits, such as survival data, toxicities, and complications. Clinical
studies rely heavily on these data to correlate the treatment regimen with the prognosis to develop evidence-based radiation
therapy paradigms. These data are available mainly in forms of narrative texts or table formats with heterogeneous vocabularies.
Manual extraction of the related information from these data can be time consuming and labor intensive, which is not ideal for
large studies.

Objective: The objective of this study was to adapt the interactive information extraction platform Information and Data
Extraction using Adaptive Learning (IDEAL-X) to extract treatment and prognosis data for patients with locally advanced or
inoperable non–small cell lung cancer (NSCLC).

Methods: We transformed patient treatment and prognosis documents into normalized structured forms using the IDEAL-X
system for easy data navigation. The adaptive learning and user-customized controlled toxicity vocabularies were applied to
extract categorized treatment and prognosis data, so as to generate structured output.

Results: In total, we extracted data from 261 treatment and prognosis documents relating to 50 patients, with overall precision
and recall more than 93% and 83%, respectively. For toxicity information extractions, which are important to study patient
posttreatment side effects and quality of life, the precision and recall achieved 95.7% and 94.5% respectively.

Conclusions: The IDEAL-X system is capable of extracting study data regarding NSCLC chemoradiation patients with significant
accuracy and effectiveness, and therefore can be used in large-scale radiotherapy clinical data studies.

(JMIR Med Inform 2018;6(1):e8) doi: 10.2196/medinform.8662
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Introduction

Locally advanced or inoperable non–small cell lung cancer
(NSCLC) occurs in approximately 20% to 30% of all cases of
NSCLC [1] and may be treated with a combination of definitive
concurrent chemotherapy and radiation. Modern radiotherapy
has made great advances in the care of NSCLC patients, by
reducing potential toxicities using involved field irradiation,
while improving survival rates [2-4]. Assessing the effects of
new developments in treatment techniques and regimens requires
studies on the correlation between the treatment and prognosis
[5-7]. Such studies involve extracting extensive patient
information on chemoradiation treatments and follow-up
assessments, including survival, tumor control, and toxicities.

Information about treatment and prognosis is embedded in
treatment summaries and clinical encounter notes, which have
various formats and diverse vocabularies. Manual extraction
from large volumes of patient treatment summaries and records
describing prognosis is time consuming and labor intensive.
There is a need for an automated information system, as a
natural language processing tool, to extract the needed patient
treatment and prognosis data. During recent years, automated
information systems have become widely used in medical and
biomedical domains. The clinical Text Analysis and Knowledge
Extraction System specializes in clinical information extraction
[8]. The Cancer Tissue Information Extraction System focuses
on annotating cancer text [9]. MedLEE supports connecting
value to controlled vocabularies [10]. MedEx aims to extract
medication-related information such as dosage and duration
[11]. The Clinical Language Annotation, Modeling, and
Processing toolkit integrates award-winning algorithms and,

moreover, enables users to customize natural language
processing components so as to encode clinical text
automatically [12,13]. Medical text extraction processes
pathology reports and uses rule-based methods to classify lung
cancer stages [14]. A recent study also demonstrated that the
metastatic site and status of lung cancer could be extracted from
pathology reports using a pipeline [15]. Another study showed
that cancer stage information could also be extracted with natural
language processing [16]. Most traditional information
extraction systems rely on batch training or predefined rules
and were designed for only limited medical domains or tasks.

To support a retrospective study of NSCLC chemoradiotherapy
patients, we adapted our in-house–developed information
extraction platform, Information and Data Extraction using
Adaptive Learning (IDEAL-X; X represents controlled
vocabulary) system [17-19]. This information extraction system
aims to transform free-text clinical documents into structured
data and has been used by projects in cardiology and pathology.
IDEAL-X possesses unique features different from the systems
mentioned above: (1) users may freely customize attributes to
be extracted; (2) the system extracts information from narrative
medical documents and generates normalized values to populate
output tables and assist manual annotation; (3) it requires no
mandatory configurations or training before performing
annotation and adaptive learning processes; and (4) the system
learns from users’ normal interactions transparently, and
establishes and refines decision models incrementally, which
further alleviates manual annotation efforts. Figure 1 shows
how the IDEAL-X system processes the input from free-text
reports generated during physician and patient encounters and
delivers structured output.

Figure 1. Screenshot of the Information and Data Extraction using Adaptive Learning (IDEAL-X) platform, and example input and output.

Methods

Patient Information
We collected NSCLC patient data to investigate the relationship
between shrinkage of the treated tumor and each category of
prognosis data: survival, tumor control, and toxicities. The
patient treatment data we needed to identify included the
chemoradiotherapy drugs used, dose, and treatment time frame.

From the follow-up clinical notes, we needed to extract tumor
control information diagnosed from the patient’s follow-up
computed tomography and positron emission tomography
images, patient toxicities, and complication data, including skin,
internal organ, blood, and overall body reactions to treatment.
We further categorized toxicities into different toxicity grades
[20]. After we extracted the information in a structured format,
we intended to use it to statistically correlate treatment tumor
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shrinkage with survival time, disease control rate, and the
toxicities.

From studies approved by the institutional review boards of
both Rutgers University and Emory University, we
retrospectively identified 50 patients who had primary
unresectable, locally advanced, biopsy-proven stage II-III
NSCLC, and who had received chemoradiotherapy with a
median follow-up of 22 months. In total, we exported 261
treatment and patient follow-up documents from the patient
electronic health record system ARIA (Varian Medical Systems,
Inc, Palo Alto, CA, USA) and anonymized the data for this
study.

IDEAL-X System Development
We adapted the IDEAL-X system to support automated
information extraction from the NSCLC chemoradiation
patients’ documents. After a requirement analysis, we added
new features, such as extracting timex and parsing tabular
information, to enhance the original system. We also
implemented corresponding feature extraction and machine
learning processes for timex and tabular formats, and constructed
the dictionary to assist toxicity data extraction. We extracted
patient information, such as treatment time frame and
chemoradiotherapy, from treatment records with an adaptive
learning process (Table 1). In extracting this information, the
system began without any prior training and created its machine
learning model incrementally. During the information extraction
of the toxicities, the adaptive learning process was disabled.
We used the dictionary shown in Textbox 1 to aid in toxicities
information extraction. Along with extracted values, the
sentences where the values were embedded were also output in
a spreadsheet, which could be used for further manual toxicity
grade differentiation based on patient Common Terminology
Criteria for Adverse Events guidelines v 4.0, which were
designated previously in the patient charts [20].

In addition, to verify the extracted data, we asked 2 physicians
to manually annotate these reports. We used the manually
annotated ground truth to validate the automatically generated
output from the IDEAL-X system. We used precision and recall
results to estimate the effectiveness of extraction.

IDEAL-X Adaptive Learning Process
Through adaptive learning, IDEAL-X established its decision
model through ordinary operations in manual annotation. First,
the user designated the value to fill every attribute in the
structured output form. After a few initial documents, the system
quickly learned important and related information that the user
sought and began to generate standardized values automatically
in subsequent documents. The system continued to learn and
update its knowledge, without special user intervention. This
incremental learning process made the system domain agnostic
and not limited to a specific medical report. When available, a
user-defined controlled dictionary and other configurations

could also be provided by the user to facilitate this learning
process, but they were not mandatory.

System Data Flow
Figure 2 demonstrates the system’s data flow. Each time that
the system loaded a document, the system moved through the
preprocessing phase and parsed the text to analyze and identify
important linguistic features and natural language elements.
These features and elements included (1) part of speech: the
part-of-speech tag of each word, for example, noun and verb;
(2): timex: the system relied on predefined regular expressions
to identify timex, such as 2010-01-09 and Sep 13, 2013, and
then indexed them based on their position in the text; (3) tabular
information: the system identified and parsed tables in input
text to comprehend underlying relations between values and
the metadata in a table; (4) negation terms: the system detected
negation terms and regions being affected, for example, in the
case of “patient denies fever and fatigue,” “fever” and “fatigue”
were not extracted as part of the toxicities; and (5) uncertain
terms: the system identified uncertain phrases and regions being
governed, for example, “We explained to her that the risks of
the treatment included dysphagia and pneumonitis” meant that
dysphagia and pneumonitis had not appeared yet as symptoms.
We used these features to mark the input text and provide
detailed linguistic indications during extraction.

After preprocessing, the parsed text was investigated by the
automated annotation component of the system to populate the
output form automatically. First, sentences where possible values
may be located were extracted based on text hierarchy,
frequently co-occurring terms, previously extracted values, or
user-customized vocabularies. The system then identified
candidate phrases from located sentences using either a hidden
Markov model [21] chunker or a dictionary chunker.
Subsequently, candidate values were examined by various filters
based on linguistic features such as part of speech, certainty, or
negation collected during preprocessing. After filtering, the
sentence score and the chunk score were combined, on the basis
of which a classifier determined the overall confidence score
of each candidate value and categorized it as “accept” or
“reject.”

We then reviewed the automatically extracted values manually
for the purpose of adaptive learning. We considered positive
and negative scenarios: if the user navigated to the next
document without changing any values, we regarded the values
generated by the system as positive training cases; if the user
modified any values, we regarded the system-generated values
as negative training cases and the manually updated values as
positive ones. We used the results of the review to support
further improvements in the automated annotation component.
Difference feature extract procedures, which model the traits
of numerical, nominal, timex, and tabular data elements, were
applied to corresponding positive and negative instances. By
repeating these steps, the system became intelligent
incrementally and delivered more accurate results.
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Table 1. Information extracted from treatment records of patients with non–small cell lung cancer.

Adaptive learningDictionaryNumbers of valuesText data typeAttributes

YesN/Aa68NominalTreatment site

YesN/A56NominalChemotherapy information

YesN/A92DateTreatment time frame

YesN/A97NumericalRadiation therapy dose

N/AYes331NominalToxicities

aN/A: not applicable.

Textbox 1. Dictionary of toxicities.

Anemia

Lymphopenia

Anorexia

Dehydration

Dyspnea

Fatigue

Mucosal inflammation

Radiation esophagitis

Weight decrease

Cough

Febrile neutropenia

Neutropenia

Bronchitis

Diarrhea

Esophagitis

Hyponatremia

Nausea

Radiation pneumonitis

Dermatitis

Leukopenia

Thrombocytopenia

Decreased appetite

Dysphagia

Failure to thrive

Localized infection

Pneumonia

Vomiting

Insomnia
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Figure 2. Data flow in the Information and Data Extraction using Adaptive Learning (IDEAL-X) platform. EMR: electronic medical record.

Results

Figure 3 shows the validation results against the manually
annotated ground truth. In the validation for patient
characteristics and tumor control, the system achieved an overall
precision of over 93%. The recall values of all information were
more than 83%. The recalls were lower than the precisions, as
the recalls reflected the performance during the overall adaptive
learning process—the system processed a few documents to
construct and refine its decision model at its early stage in the
adaptive learning process.

Especially in the extraction of the toxicities, the negation
detection and certainty detection filters contributed directly to
the accuracy of extraction. With the help of a controlled
dictionary, the system achieved an overall precision of 95.7%
and recall of 94.5%.

Within 1 second, a well-trained system can process patient
documents of multiple pages and output the results in a
predefined format. Compared with manual review, which
requires reading through the entire document and manually
annotating the notes on each patient, this system significantly
improved the efficiency of information extraction.

Figure 3. Effectiveness of data extraction as estimated by precision and recall of automatically generated output compared with manually annotated
ground truth.

Discussion

IDEAL-X employed adaptive learning and a controlled
vocabulary to support information extraction, which alleviated
both the training and the deployment processes that could be

expensive in applying a traditional information extraction
system. The various data types IDEAL-X supports cover the
most important and common information in oncology reports,
which delivers great usability to our use case. We have
demonstrated the great advantage of this system in greatly
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improving information extraction effectiveness while
maintaining high accuracy when applied to extracting NSCLC
patient treatment and prognoses data from heterogeneous
document formats. In addition, because the system improves
its performance incrementally, its accuracy could be further
improved with additional training documents. Once trained, the
developed system was able to process further fed-in reports in
batch mode without revision. Without an intervening regular
manual reporting process that handles input documents in
sequence, the system accumulates knowledge transparently to
empower the task and, therefore, could be conveniently
integrated into a regular clinical workflow. The technology it
used was domain agnostic and, therefore, could be transformed
to other disease sites and studies in radiation oncology.

Limitations
In the validation analysis, the system also revealed some
unavoidable limitations. The system identified and
comprehended information based on explicitly expressed
keywords. For example, the phrases “neoadjuvant chemo” and
“upfront chemotherapy” may be used as keywords to identify
chemotherapy induction. However, in situations where relevant
information is distributed across different regions in the text,
more insightful comprehension becomes necessary. For

example, in the case of “After 4 cycles of chemotherapy and
abdomen...we began radiation...,” the system was not intelligent
enough to interpret the meaning of “4 cycles” as “neoadjuvant
chemotherapy” behind the narrations. In general, this
sophisticated scenario reveals the limitation of this information
extraction-based approach. The system requires explicit
keywords or hints to determine an event; however, it cannot
reason and analyze factors collected from different sources.
Such cases resulted in lower recalls for chemotherapy than for
other attributes and demanded a manual review. Therefore, to
facilitate the manual review, we output the associated sentence
with the extracted information together in tabular format for
user manual review and validation at a later time.

Conclusion
We adapted the IDEAL-X system to automatically extract
treatment and prognostic information for stage II and III NSCLC
patients who had received chemoradiation. With this system,
patient information was extracted efficiently from their medical
documents in various formats. The system, together with
minimized manual review efforts, generated outputs with high
precision and recall. It significantly improved the effectiveness
and can be easily applied to other radiation oncology patient
studies at larger scales.
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