Published on in Vol 6, No 1 (2018): Jan-Mar

Preprints (earlier versions) of this paper are available at, first published .
Automating Quality Measures for Heart Failure Using Natural Language Processing: A Descriptive Study in the Department of Veterans Affairs

Automating Quality Measures for Heart Failure Using Natural Language Processing: A Descriptive Study in the Department of Veterans Affairs

Automating Quality Measures for Heart Failure Using Natural Language Processing: A Descriptive Study in the Department of Veterans Affairs


  1. Patel S, George B, Rai V. Artificial Intelligence to Decode Cancer Mechanism: Beyond Patient Stratification for Precision Oncology. Frontiers in Pharmacology 2020;11 View
  2. Bergström A, Ehrenberg A, Eldh A, Graham I, Gustafsson K, Harvey G, Hunter S, Kitson A, Rycroft-Malone J, Wallin L. The use of the PARIHS framework in implementation research and practice—a citation analysis of the literature. Implementation Science 2020;15(1) View
  3. Xu J, Yang P, Xue S, Sharma B, Sanchez-Martin M, Wang F, Beaty K, Dehan E, Parikh B. Translating cancer genomics into precision medicine with artificial intelligence: applications, challenges and future perspectives. Human Genetics 2019;138(2):109 View
  4. Uijl A, Lund L, Vaartjes I, Brugts J, Linssen G, Asselbergs F, Hoes A, Dahlström U, Koudstaal S, Savarese G. A registry‐based algorithm to predict ejection fraction in patients with heart failure. ESC Heart Failure 2020;7(5):2388 View
  5. Khan A, Gurvitz M. Epidemiology of ACHD: What Has Changed and What is Changing?. Progress in Cardiovascular Diseases 2018;61(3-4):275 View
  6. Sheikhalishahi S, Miotto R, Dudley J, Lavelli A, Rinaldi F, Osmani V. Natural Language Processing of Clinical Notes on Chronic Diseases: Systematic Review. JMIR Medical Informatics 2019;7(2):e12239 View
  7. Polanczyk C, Ruschel K, Castilho F, Ribeiro A. Quality Measures in Heart Failure: the Past, the Present, and the Future. Current Heart Failure Reports 2019;16(1):1 View
  8. Kadosh B, Katz S, Blecker S. Identification of Patients with Heart Failure in Large Datasets. Heart Failure Clinics 2020;16(4):379 View
  9. Khazanie P, Allen L. Systematizing Heart Failure Population Health. Heart Failure Clinics 2020;16(4):457 View
  10. Wagle A, Isakadze N, Nasir K, Martin S. Strengthening the Learning Health System in Cardiovascular Disease Prevention: Time to Leverage Big Data and Digital Solutions. Current Atherosclerosis Reports 2021;23(5) View
  11. Madrigal C, Kim J, Jiang L, Lafo J, Bozzay M, Primack J, Correia S, Erqou S, Wu W, Rudolph J. Delirium and Functional Recovery in Patients Discharged to Skilled Nursing Facilities After Hospitalization for Heart Failure. JAMA Network Open 2021;4(3):e2037968 View
  12. Rahman M, Nowakowski S, Agrawal R, Naik A, Sharafkhaneh A, Razjouyan J. Validation of a Natural Language Processing Algorithm for the Extraction of the Sleep Parameters from the Polysomnography Reports. Healthcare 2022;10(10):1837 View
  13. Quazi S. Artificial intelligence and machine learning in precision and genomic medicine. Medical Oncology 2022;39(8) View
  14. Van den Eynde J, Lachmann M, Laugwitz K, Manlhiot C, Kutty S. Successfully implemented artificial intelligence and machine learning applications in cardiology: State-of-the-art review. Trends in Cardiovascular Medicine 2023;33(5):265 View
  15. Luther S, Finch D, Bouayad L, McCart J, Han L, Dobscha S, Skanderson M, Fodeh S, Hahm B, Lee A, Goulet J, Brandt C, Kerns R. Measuring pain care quality in the Veterans Health Administration primary care setting. Pain 2022;163(6):e715 View
  16. Reading Turchioe M, Volodarskiy A, Pathak J, Wright D, Tcheng J, Slotwiner D. Systematic review of current natural language processing methods and applications in cardiology. Heart 2022;108(12):909 View
  17. Houssein E, Mohamed R, Ali A. Machine Learning Techniques for Biomedical Natural Language Processing: A Comprehensive Review. IEEE Access 2021;9:140628 View
  18. Manlhiot C, van den Eynde J, Kutty S, Ross H. A Primer on the Present State and Future Prospects for Machine Learning and Artificial Intelligence Applications in Cardiology. Canadian Journal of Cardiology 2022;38(2):169 View
  19. Anetta K, Horak A, Wojakowski W, Wita K, Jadczyk T. Deep Learning Analysis of Polish Electronic Health Records for Diagnosis Prediction in Patients with Cardiovascular Diseases. Journal of Personalized Medicine 2022;12(6):869 View
  20. Zanotto B, Beck da Silva Etges A, dal Bosco A, Cortes E, Ruschel R, De Souza A, Andrade C, Viegas F, Canuto S, Luiz W, Ouriques Martins S, Vieira R, Polanczyk C, André Gonçalves M. Stroke Outcome Measurements From Electronic Medical Records: Cross-sectional Study on the Effectiveness of Neural and Nonneural Classifiers. JMIR Medical Informatics 2021;9(11):e29120 View
  21. Ledziński Ł, Grześk G. Artificial Intelligence Technologies in Cardiology. Journal of Cardiovascular Development and Disease 2023;10(5):202 View
  22. van Assen M, Tariq A, Razavi A, Yang C, Banerjee I, De Cecco C. Fusion Modeling: Combining Clinical and Imaging Data to Advance Cardiac Care. Circulation: Cardiovascular Imaging 2023;16(12) View
  23. Shao Y, Zhang S, Raman V, Patel S, Cheng Y, Parulkar A, Lam P, Moore H, Sheriff H, Fonarow G, Heidenreich P, Wu W, Ahmed A, Zeng‐Treitler Q. Artificial intelligence approaches for phenotyping heart failure in U.S. Veterans Health Administration electronic health record. ESC Heart Failure 2024 View

Books/Policy Documents

  1. Rüping S, Sander J. Gesundheit digital. View
  2. Tariq A, Santos T, Banerjee I. Artificial Intelligence in Cardiothoracic Imaging. View
  3. Afşin Y, Taşkaya Temizel T. Persuasive Technology. View