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Abstract

Background: We developed an accurate, stakeholder-informed, automated, natural language processing (NLP) system to
measure the quality of heart failure (HF) inpatient care, and explored the potential for adoption of this system within an integrated
health care system.

Objective: To accurately automate a United States Department of Veterans Affairs (VA) quality measure for inpatients with
HF.

Methods: We automated the HF quality measure Congestive Heart Failure Inpatient Measure 19 (CHI19) that identifies whether
a given patient has left ventricular ejection fraction (LVEF) <40%, and if so, whether an angiotensin-converting enzyme inhibitor
or angiotensin-receptor blocker was prescribed at discharge if there were no contraindications. We used documents from 1083
unique inpatients from eight VA medical centers to develop a reference standard (RS) to train (n=314) and test (n=769) the
Congestive Heart Failure Information Extraction Framework (CHIEF). We also conducted semi-structured interviews (n=15) for
stakeholder feedback on implementation of the CHIEF.
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Results: The CHIEF classified each hospitalization in the test set with a sensitivity (SN) of 98.9% and positive predictive value
of 98.7%, compared with an RS and SN of 98.5% for available External Peer Review Program assessments. Of the 1083 patients
available for the NLP system, the CHIEF evaluated and classified 100% of cases. Stakeholders identified potential implementation
facilitators and clinical uses of the CHIEF.

Conclusions: The CHIEF provided complete data for all patients in the cohort and could potentially improve the efficiency,
timeliness, and utility of HF quality measurements.

(JMIR Med Inform 2018;6(1):e5) doi: 10.2196/medinform.9150
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Introduction

Heart failure (HF) is associated with substantial morbidity,
mortality, and consumption of medical resources. HF affects
approximately five million Americans and is the number one
reason for discharge for Veterans treated within the United
States Department of Veterans Affairs (VA) health care system
[1,2]. The cost of HF care is high, and will remain a significant
concern for the US health care system with high mortality; 50%
of Medicare beneficiaries do not survive three years after an
HF hospitalization [3,4].

The cost of treating HF in the United States is estimated to
increase from US $31 billion in 2012 to US $70 billion by 2030
[5-7]. Despite decreased HF hospitalizations between 2001 and
2009, the presence of HF as a secondary condition in
hospitalizations increased over the same period [7], with
research suggesting that 55% of acute exacerbations were
preventable [8]. HF was the fourth most common diagnosis for
hospitalization in 2014 [9] and prevalence figures indicate that
6.6 million American adults 18 years of age or older (2.8%)
have HF [10]. It is estimated that an additional 3 million adults
(25% increase) will be diagnosed with HF by 2030 [3,5], and
it is important to implement evidence-based,
guideline-concordant care that can improve HF symptoms,
prolong life, and reduce readmissions [3,6,11-15].

The VA HF quality measure known as Congestive Heart Failure
Inpatient Measure 19 (CHI19) describes how often
guideline-concordant medical therapy, in the form of
angiotensin-converting enzyme inhibitor (ACEI) or
angiotensin-receptor blocker (ARB) use, is provided for patients
with left ventricular ejection fraction (LVEF) of <40% at the
time of discharge, unless there are contraindications. The same
information is currently collected for outpatients using the
Congestive Heart Failure Outpatient Measure 7 (CHF7):
HF-Outpatient Left Ventricular Failure (LVF) documented and
Congestive Heart Failure Outpatient Measure 14 (CHF14):
HF-Outpatient LVEF Less Than 40 on ACEI or ARB measures.
The measurement of this information is used for accountability
within the VA. The use of these measures provides key feedback
to patients (through public reporting), providers, and local or
regional areas, including the VA’s Veterans Integrated Service
Networks [16,17]. The measures used by the VA are in
alignment with Medicare and are reported publicly [18].

Our primary goal was to develop an efficient and accurate
method of obtaining quality data by automating the CHI19

measure, as it is an accountability measure that has been widely
used in the VA for many years, and currently requires
time-consuming chart abstraction to determine through the
External Peer Review Program (EPRP). EPRP provides peer
review for the VA through an external medical professional
association that abstracts the charts manually to populate a
dashboard [19]. Additional HF measures abstracted by EPRP
include Congestive Heart Failure Inpatient Measure 10 (CHI10)
and Congestive Heart Failure Inpatient Measure 20 (CHI20).
CHI10 refers to HF patients who were assessed for LVF at
discharge or patients for whom such an assessment was planned,
whereas CHI20 refers to patients who had LVEF <40% and
were taking an ACEI or ARB before being admitted as
inpatients.

Using automated methods to share data and measure quality for
provider feedback and public reporting is a key goal of the
incentives provided by the Centers for Medicare and Medicaid
Services, so that certified electronic health records (EHRs) of
“meaningful use” criteria can be attained [20]. Some quality
measures that use only structured data from the EHR are
relatively easy to automate. A challenge for automating the
computation of CHI10, CHI19, and CHI20 is that, unlike quality
measures that use only structured data [21], these measures
require data regarding LVEF and contraindications to
medications, which in the VA are primarily in free-text health
record documents and are therefore more difficult to extract.

Prior research in informatics in VA showed that health
information technology and the use of explicit conceptual
models can not only contribute to increasing well-formed and
well-grounded health informatics research [22], but can also
facilitate evidence-based practice [23] through usability testing,
good research design, and implementation methodology [24].
Importantly, prior research indicates that end-user
considerations, including where and when the technology is
required as well as stakeholder needs and goals, must be
identified for successful implementation [25-30]. To this end,
we initiated development of an automated natural language
processing (NLP) system capable of efficient data capture that
could meet end-user needs and generate data for other
informatics applications, such that the system would be
positioned for adoption and implementation by the VA or other
health care organizations.
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Methods

Setting and Context
For the system’s clinical basis, we used the American Heart
Association/American College of Cardiology level 1A clinical
evidence, which recommends assessing the left ventricular
systolic function and use of ACEI or ARB if the ejection fraction
(EF) is <40%, if there are no contraindications [6,31]. We used
the VA Informatics and Computing Infrastructure [32] for NLP
development and analysis of EHR patient data from the VA’s
Corporate Data Warehouse (CDW) [33].

Patient Cohort Identification and Document and
Structured Data Acquisition
We obtained a listing of EPRP abstracted cases involving HF
patients discharged from eight VA medical centers. To
approximate the general VA patient population, we selected
facilities which in total were representative of the VA population
in terms of race, ethnicity, and rurality in the fiscal year 2008
to serve as our study cohort. The patient cohort was randomized
and split into training and test sets based on the sampling
strategy described below. We obtained the associated text
integration utilities (TIUs) notes for each patient. The TIUs
software processes free-text clinical notes so they can be saved
in the Veterans Health Information Systems and Technology
Architecture files. We also obtained structured data from the
Pharmacy Benefit Management (PBM) software to determine
each patient’s medications, and International Classification of

Diseases, 9thRevision, Clinical Modification (ICD-9-CM) codes,
and laboratory data to identify reasons the patient was not
prescribed medications (reasons no medications; RNM) for each
patient in the cohort. Acquiring these data allowed for
comparison of the concepts found in free text through NLP with
VA structured data for determination of each patient’s
medications or RNM.

Sampling Strategy for Natural Language Processing
Development
We used a power analysis that accounted for differences in the
prevalence of clinical concepts within notes across the medical
centers. We selected the sample size that involved the largest
number of patients to determine the test set, in order to
accommodate the rarest event (contraindications to ACEIs and
ARBs) which was estimated to be 14.9% based on the HF
literature [34]. We determined a sample size of 769 patients for
the test set for system performance evaluation, and the remaining
patients in the EPRP abstraction set (n=314) served as a separate
set for training the NLP system.

Reference Standard Development for Natural Language
Processing Development
We used Knowtator Protégé plug-in software [35] to annotate
the training and evaluation (test) sets, to create a Reference
Standard (RS) to undertake an accurate performance evaluation
[36] of the NLP system at both the concept (eg, EF, medications,

RNM) and patient (eg, overall determination or classification
of a patient meeting the equivalent of CHI19) levels. We
developed annotation guidelines that provided explicit examples
of concepts (data) to be identified, which documents were
preferred for each concept (eg, most recent echocardiogram for
EF, and discharge medication reconciliation form for ACEIs
and ARBs), annotation at the document level, and how to use
the document-level annotations to determine the patient
classification with resulting patient-level annotation [37]. We
annotated 100% of the unique patients in our cohort for NLP
training and testing. Two annotators independently reviewed
the text documents. We measured percent agreement between
the annotators across all concepts. The patient- and
document-level annotations, as well as differences between
concept-level annotations, were resolved via consensus
determination by the two annotators with assistance from a
subject matter expert (SME) cardiologist who was part of the
study team. The annotators were required to achieve 90%
interannotator agreement (IAA) at the concept level, and were
assessed for accuracy before annotating the RS. A cardiologist
(SME) reviewed and adjudicated differences when needed. We
created the final RS after all differences were resolved. All cases
were successfully classified by the annotators with cardiology
oversight.

We used two software tools to assist annotators by preannotating
concepts for subsequent verification. The first software tool,
based on the Apache Unstructured Information Management
Architecture (UIMA) framework [38,39], was designated
Capture with UIMA of Needed Data using Regular Expressions
for Ejection Fraction [40] and used to preannotate EF
information. The second tool, the Extensible Human Oracle
Suite of Tools [41], was used to preannotate ACEI/ARB
medications. Preannotated concepts were read into the
Knowtator software for annotators to review and finalize.
Annotators reviewed preannotations as well as all other
information in the document, based on the annotation guidelines.

Natural Language Processing System Development
for Information Extraction
We based target concepts for NLP development on clinical
guidelines, VA policy, and what was currently collected
manually through the EPRP process [6,31]. These target
concepts also served as elements in an algorithm for calculating
VA CHI19 at the time of discharge. We developed an
application called the Congestive Heart Failure Information
Extraction Framework (CHIEF) [42-44], based on the Apache
UIMA framework, to provide robustness and scalability [38].
As depicted in Figure 1, the CHIEF includes modules for (1)
clinical text preprocessing (eg, detecting sentences and tokens
as well as conducting syntactic analyses), (2) extracting
mentions of EF as well as quantitative values, and (3) extracting
mentions of medications (eg, ACEIs and ARBs). RNM were
extracted with another NLP application called RapTAT [45],
and the resulting data were integrated into the CHIEF.
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Figure 1. Congestive heart failure information extraction framework (CHIEF).

Figure 2. Algorithm to classify the patient as meeting the measure.

Finally, all extracted information at the concept and patient
levels was compared and combined using a set of rules to
classify HF treatment performance measures automatically for
each patient (see Figure 2). For example, the NLP system
assessed whether the patient had an EF recorded (and if the
answer was yes, was it <40%?). If the EF was <40%, then the
system determined if the patient was on an ACEI or ARB. If
the patient was not, then the system determined if there were
RNM. The patient met the measure: if the EF was present but
not <40%; if the EF was <40% and there was an active
prescription for an ACEI or ARB; or if the patient had an EF
<40%, was not on an ACEI or ARB, and had RNM (see Figure
2).

Key Informant and Subject Matter Expert Interviews
To inform the design of our automated system and to facilitate
adoption, we interviewed both key informants and SMEs. We
conducted 15 interviews consisting of four key informants and
a convenience sample of 11 additional SMEs. The four key
informants that were interviewed were VA quality measurement
experts with national roles and VA-wide knowledge about

inpatient HF quality measurements and the use of quality
measurements for HF in the VA. Based on a snowball sampling
design, the key informants recommended the inclusion of 11
additional VA-based SMEs. We recruited and interviewed these
SMEs, who were responsible for receiving and interpreting
quality monitoring data, and included VA cardiologists and HF
quality experts with extensive experience in making decisions
regarding the quality measures to be used and presentation of
the results of quality assessments. The key informants’ and
SMEs’ experience in the VA ranged from 2 to 35 years, and
from 2 to 33 years in quality management.

To develop our interview questions, we drew upon the
Promoting Action on Research Implementation in Health
Sciences (PARiHS) framework [46,47], which postulates that
evidence, context, and facilitation are central to implementation.
We complemented the PARiHS framework with the
Socio-Technical Model of Health Information Technology to
focus on the information technology context of potential
implementation [48]. We studied the potential of integrating an
automated quality measurement system in the VA through these
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interviews, and will detail our applied thematic analysis in a
future manuscript.

Measurements
We compared the CHIEF system output to the human
annotator-created RS to compute performance at the concept
level and for the patient-level binary classification of meeting
or not meeting the CHI19 measure. We calculated sensitivity
(SN), specificity (SP), and positive predictive value (PPV) in
addition to the F-measure, which is the harmonic mean of the
SN and PPV [49]. We also computed the SN of the NLP test
set based on the results of the EPRP review at the patient level
for target concepts, and the overall binary classification of
meeting the CHI19 measure. We computed Cohen’s kappa [50]
parameter to determine concordance between the structured
prescription data from the PBM package to determine patient
medications, and both the human-annotated RS and the NLP
output. Similarly, we compared ICD-9-CM codes and laboratory
results to both the human-annotated RS and the NLP output to
find RNM. We then summarized the interview findings to
complement the system development.

Institutional Review Board Approval
This study was approved by the University of Utah and the
Tennessee Valley Healthcare System Institutional Review

Boards (IRBs). Informed patient consent was waived for text
document use. The IRB approved informed consent with a
waiver of documentation of consent for the key informant and
SME interviews.

Results

Documents Obtained for the Research
We retrieved 45,703 free-text (TIU) documents from 1083
patients (314 in the training set and 769 in the test set). Using
a systematic sample (every tenth document), we mapped the
document title names to the following documents types in our
corpus: history and physical, progress notes, cardiology consult,
echocardiogram, pharmacy (medication reconciliation),
pharmacy (other), consult (other), discharge summary, nursing
note, and other (general). After mapping and during annotation,
we found that EF was most commonly found in the assessment
and current history sections of any note in which these sections
were used (eg, history and physicals, progress notes, cardiology
consults). Medications (ACEI/ARB) were most commonly
found in the assessment and medication sections, LVEF was
most commonly found in the echocardiogram results and
assessment sections, and RNM were most commonly found in
the assessment section [51]. Please see Figure 3 for the data
capture strategy used in the research.

Figure 3. Data capture strategy.
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Reference Standard Development
The IAA was found to be 91% in a pairwise comparison of all
concepts within the documents in the project corpus for the RS
[52]. In consultation with the cardiologist as needed, the
annotation team was able to agree on this consensus RS for all
patient-level classifications.

Performance of the Natural Language Processing
System
We developed the CHIEF NLP system (see Figure 1). When
evaluated at the information extraction level, CHIEF extracted
relevant mentions and values of LVEF, medications, and RNM
with a range of high to fair recall. HF medications were
extracted with recall of 97.8-99.7% and precision of 96-97.8%;
mentions of LVEF were extracted with recall of 97.8-98.6%
and precision of 98.6-99.4%, and RNM were less common and
more difficult to extract, only reaching fair accuracy with
31.1-40.4% recall and 24.7-32.1% precision [53]. As explained
earlier, this extracted information was then combined at the
patient level using a set of rules. At the patient level, as shown
in Table 1 and compared with the RS, CHIEF achieved almost
99% F-measure, SN, and PPV for classifying a patient admission
as meeting the CHI19 measure. The SP was 85.5%. The CHIEF
could also classify whether the performance measure was met,
assess LVEF, and determine whether the EF was below 40%,
with F-measures of 98.80%, 99.52%, and 95.52%, respectively.
However, the system identified more false positives in
medication prescriptions (PPV, <90%; F-measure, 93.53%).
For concept extraction, we used machine learning-based
approaches (fully automated) rather than rule-based or just
keyword searching, and for classification we used several rules
(as depicted in Figure 2). Note that for classification we

programmed three sets of rules based on decisions depicted in
Figure 2. The full set of rules can be found in Multimedia
Appendix 1.

The lowest performance of the NLP system was measured for
RNM (ie, ACEIs or ARBs), with an SN of 26.9%, SP of 99.4%,
and PPV of 90.7%. This performance level was affected by
RNM being the least structured, most varied, and least common
of all of the concepts evaluated, with only 145 patients in our
testing corpus having RNM. When we restricted our analysis
to patients with an EF <40% (according to the RS) who were
discharged without prescriptions for ACEIs or ARBs (n=70),
performance increased slightly (SN, 33%; SP, 92.3%; PPV,
95%; and F-measure, 49%). However, when evaluating
hospitalizations for which it was critical for the system
determination for patient classification (n=37; EF <40% and
discharged without prescriptions according to system output),
the RS found more RNM than the NLP system found, but the
SN of the system increased to 78%. The PPV was relatively
unchanged at 81.8%, for an F-measure of 80%.

Concordance of Reference Standard and External Peer
Review Program Results
Table 2 provides a comparison of the human-annotated RS and
the NLP system output to the EPRP review findings. Of the
1083 patients, only 474 patient abstractions had the equivalent
data elements to those we captured with CHIEF and were
classified as meeting or not meeting the measure. Only 10
patients were present in the EPRP data who did not meet the
CHI19 measure. Based on this finding, the SN is the only
relevant metric, and with only 10 patients we could not get a
precise estimate of any other metrics.

Table 1. Performance of the Congestive Heart Failure Information Extraction Framework (CHIEF) system for each patient compared to the reference
standard established by human review (patient-level classification CHI19).

F-measurePositive Predictive Value Estimate

% (95% CI)

Sensitivity Estimate

% (95% CI)

Patient-Level Classification

98.898.7 (97.6, 99.4)98.9 (97.8, 99.5)Measure CHI19a met

99.599.0 (98.0, 99.6)100.0 (99.5, 100.0)Left Ventricular Systolic Function assessed

96.095.1 (92.6, 97.0)96.8 (94.6, 98.3)EFb <40%

93.588.5 (85.8, 90.8)99.2 (98.1, 99.7)ACEIc or ARBd

41.590.7 (77.9, 97.4)26.9 (20.0, 34.9)Reason not on medications

aCHI19: Congestive Heart Failure Inpatient Measure 19; LVEF >40 on ACEI/ARB at discharge.
bEF: ejection fraction.
cACEI: angiotensin-converting enzyme inhibitor.
dARB: angiotensin-receptor blocker.

Table 2. Sensitivity of patient-level classification of the reference standard and Congestive Heart Failure Information Extraction Framework (CHIEF)
based on External Peer Review Program (EPRP) review.

Sensitivity Estimate

% (95% CI)

Number of Patients with Corresponding

EPRP Review

Number of Patients in Agreement with

EPRP Review

Patient-Level Classification/Sensitivity

98.95 (97.56, 99.66)474469Classification in Reference Standard

98.48 (96.50, 99.51)330325Classification from CHIEF
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Table 3. The External Peer Review Program (EPRP) quality measurement designation of patients in the training and test sets.

Number in Training

n (%)

Number in Test

n (%)

Total

n (%)

Measure MetData PresentMeasure

13 (4.14)61 (7.93)74 (6.83)N/ANoCHI10a

0 (0.00)4 (0.13)4 (0.36)NoYes

301 (95.85)704 (91.54)1005 (92.79)Yes

167 (53.18)433 (56.30)600 (55.40)N/ANoCHI19b

3 (0.31)6 (0.78)9 (0.83)NoYes

144 (45.85)330 (42.91)474 (43.76)Yes

222 (28.90)546 (71.09)768 (70.91)N/ANoCHI20c

3 (0.96)6 (0.78)9 (0.83)NoYes

89 (28.34)217 (28.22)306 (28.25)Yes

12 (3.82)42 (5.46)54 (4.99)No data on any measure

314 (100.00)769 (100.00)1083 (100.00)Total sample size

aCHI10: Congestive Heart Failure Inpatient Measure 10; inpatient left ventricle function assessed at discharge.
bCHI19: Congestive Heart Failure Inpatient Measure 19; LVEF >40 on ACEI/ARB at discharge.
cCHI20: Congestive Heart Failure Inpatient Measure 20; LVEF >40 on ACEI/ARB prior to inpatient admission.

We compared the EPRP data with both our RS developed with
SMEs, and with the results of CHIEF. When we compared the
RS to the EPRP patient classifications using the EPRP findings
as truth for patients meeting CHI19 in applicable cases in both
the training and test sets (n=474), we found the SN of the RS
to be 99.0%. We also compared the NLP results for
hospitalizations in the NLP test set (n=330) to the
hospitalizations for whom the EPRP provided results for CHI19
using the EPRP findings as truth for patients meeting CHI19 in
applicable cases, and found an SN of 98.5% for the CHIEF.
Human annotators classified 100% of cases as meeting or not
meeting the measure. However, we found that there were no
EPRP results for CHI19 for 55.4% of the patients assessed, even
though other measures (such as CHI10 or CHI20) might have
been completed, making these EPRP results noncomparable to
our results. The CHIEF processed and classified 100% of
patients in the test set, with 92.1% meeting CHI19. Meeting the
measure required that the case was eligible for the performance
measure and that the patient data showed that the case satisfied
the performance required by CHI19 (see Table 3).

Concordance Between the Reference Standard, Natural
Language Processing Output, and Structured Data

We found that the agreement (based on Cohen’s kappa) between
the PBM data and the RS for RNM was 0.326, and the
agreement between the PBM and the NLP system output was
0.221. Both results were interpreted as fair agreement [54]. We
determined that the low kappa result was due to the PBM data
not capturing the reasons why ACEI and ARB were not
prescribed, as well as the text documents. When we performed
the same calculations for laboratory and ICD-9-CM data for
RNM, the laboratory data compared with the RS and NLP output
provided kappa values of 0.2083 and 0.1373, respectively. The
ICD-9-CM codes indicated only five patients with RNM and
showed no agreement with the RS or NLP system output.
Similar to the PBM data, clinical text documents are a better

data source to capture reasons not to prescribe than laboratory
results and ICD-9-CM data. A kappa statistic was calculated as
an aggregate measure using the laboratory results and the
ICD-9-CM codes as well, but did not differ from the kappa
statistic for the laboratory results alone.

Summary Findings from Interviews
Key informants and SMEs provided valuable insights about the
design of the CHIEF system and the related development and
validation methods. The development team held regular
meetings with key informants one to two times per year to
review design decisions, such as the capture of concepts to
approximate the data elements of the measure. For example,
the quality measure assesses whether the patient had left
ventricular systolic function assessed. The design team used
the presence of an EF in the record of the patient to mean that
left ventricular systolic function was assessed. Similarly, there
are multiple mentions of the EF in a given echocardiogram
report. The design team worked with SMEs to determine the
most clinically relevant mention to use in the classification
algorithm, and targeted the mention in the section of the report
that is a narrative summary by the reviewing cardiologist to
extract. Last, the key informants agreed that the research team
could use a limited document set, rather that the entire medical
record for a given patient discharge, to extract and classify the
patient’s documentation as to whether or not the measure was
met.

Interview respondents also discussed several areas related to
how the automated NLP processes are potentially aligned with
organizational goals and clinical needs. Respondents noted three
potential benefits: (1) use of an automated quality measurement
system could improve the efficiency of data capture and thus
provide it more quickly; (2) an automated system that facilitates
redeployment of resources to emerging areas is aligned with
VA organizational goals and strategies; and (3) an NLP system
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and the resulting data could be used for clinical purposes, in
addition to use in quality measurement.

An automated system has the potential to provide consistent
data sources for measurement and new data regarding EF to the
VA primary care almanac; it could also serve as a data source
for primary care teams, VA dashboards, and clinical decision
support (CDS). The system could also provide data organized
in a summarized, longitudinal manner, and assist cohort and
registry development.

The use of an automated quality measurement process for
measuring HF quality appears to be aligned with VA
organizational goals, could support the current VA culture of
measurement and feedback, and provide needed data for
accountability. An automated system could also facilitate
meaningful use certification, further electronic quality
measurement, and assist real-time (rather than retrospective)
measurement.

Key informants and SMEs also suggested specific clinical uses
for the NLP system and the resulting data, as follows: HF
guideline and quality measurement training for providers,
automated review and documentation of LVF, identification of
patients needing transitional management and palliative care,
summarization of clinical findings and treatment to assist
clinician decision-making, and identification and contacting of
patients with gaps in evidence-based care to aid quality
improvement efforts (care coordination).

The interviews provided important information about the
automated NLP system and its potential clinical uses. Further
research is needed to identify potential technical and
organizational barriers to the use of such an NLP system in the
VA, as this would help determine the next steps in potential
implementation.

Discussion

Principal Results
In this paper we report the formative evaluation of the use of
the CHIEF system that integrates core algorithms reported
previously [53], in addition to rules derived from existing HF
guidelines, to generate a final CHI19 classification. The CHIEF
processed 100% of the patients in the test set, with 92.1% of
patients classified as meeting the CHI19 measure. Use of the
CHIEF could potentially reduce or eliminate the need for routine
human review of HF charts for the similar measures of CHF7
(HF-Outpatient LVF documented) and CHF14 (HF-Outpatient
LVEF Less Than 40 on ACEI or ARB). CHF is a prevalent
condition and CHIEF is an application that could provide an
automated first review for HF patients to assess
guideline-concordant care, and this data could potentially
populate the existing EPRP dashboard automatically rather than
through human review. During this process those patients who
do not meet the measure could be identified; this would
potentially allow a redeployment of human resources to evaluate
why the care was not guideline-concordant and evaluate other
quality of care issues. For example, more human resources could
be used to assess patients who are at high risk for readmission,
or who are frail and need additional care coordination.

The CHIEF also provides essential data that could be used in a
dashboard to facilitate the identification of patients in a given
provider’s panel who may need additional medications such as
an ACEI or ARB therapy or other medications, as guidelines
are updated. Although the EPRP abstractors have access to the
entire medical record for each patient they review, they focus
only on finding the required data elements within the measure,
rather than on a broad quality review in which other quality of
care issues may be found. We obtained good results with the
CHIEF using a limited document set. These findings suggest
that the CHIEF is highly reliable and that its use could reduce
or eliminate the expense associated with human review of HF
patient records.

Limitations
There are several limitations to this work. First, it is likely that
some clinical information was not documented in the patient
charts and therefore could not be captured by the NLP system.
However, we believe the impact of this missing information is
minimal, given the importance and longstanding use of the HF
quality measurement. Second, although the CHIEF performed
well using VA text notes, it might not perform as well in
non-VA settings. After training on new documents, we expect
that it will perform similarly. Third, documents from only eight
medical centers were used in this research; therefore, the CHIEF
might under-perform initially when used with documents from
other VA medical centers.

Comparison with Prior Work
This work builds on prior research in which we developed a
system for concept extraction using a rule-based method. In the
current CHIEF system, we used machine learning-based
methods (sequential tagging) [40]. Our informatics work is also
complementary to other uses of the NLP system in cases of
patients identified as having HF or classified as having a
preserved or reduced EF [55,56], for the purposes of identifying
patients for potential inclusion in research and those appropriate
for treatment in primary care notes [57]. The relevance and
importance of NLP tools in clinical practice are increasing. As
such, testing and evaluating the implementation and deployment
of NLP tools in clinical practice settings is an important next
step.

Use of the CHIEF is also aligned with the current VA strategic
plan for 2013-2018 that sets forth the principal that all initiatives
be data-driven and evidence-based to help VA improve service
delivery. The CHIEF has delivered promising results that could
help achieve the goals of improving performance, advancing
innovation, and increasing operational effectiveness and
accountability in the VA, as well as in other health care
organizations [58]. While CHIEF is not currently being
implemented in the VA, we will seek potential implementation
in VA and other settings.

Our work is important because some clinical information related
to quality measures can only be found in text. Text data is not
structured, so transformation of clinical text documents in a
systematic, standardized process could result in its incorporation
in a data warehouse across an enterprise, which would allow
the use of the National Quality Forum information model
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designed for EHR-based quality measures, and facilitate the use
of algorithms across institutions [59].

Due to the increasing availability of EHRs and the development
of NLP techniques, many systems and techniques have been,
and continue to be, developed to encode narrative data for a
variety of uses such as: assessing the incidence rates of adverse
events, evaluating the success of preventive interventions,
benchmark performance across hospitals, determining
cardiovascular risk factors, providing smoking cessation,
providing real-time quality metrics for colonoscopies (in terms
of identification of adenomas and sessile serrated adenomas),
developing retrospective clinical data for use in cardiovascular
research using NLP, and identifying ventilator-associated events
(VAEs) and quality reporting and research in VAEs [60-62].

The Institute of Medicine envisioned a health care delivery
system that would improve the quality of care and reduce costs.
To accomplish this goal, it is important to create effective CDS
delivered to clinicians through EHRs at the point of care [63].
The data captured from text, once transformed to structured
data in the enterprise CDW, could be used in CDS.

Our methods complement other systems that identify
hospitalized patients with HF in which machine learning
approaches are used. Importantly, the complexity of
implementation of these systems is well known and supports
the assessment of barriers and facilitators for potential
implementation [62,64]. The use of EHRs to automate publicly
reported quality measures is receiving increasing attention, and
is one of the promises of EHR implementation. Kaiser
Permanente has fully or partly automated 6 of 13 the joint
commission measure sets, resulting in an automated surgical
site infection reporting process which reduced Kaiser
Permanente’s manual effort by 80%, resulting is savings of US

$2 million [65]. The VA could potentially realize reduced
expenses associated with increased automation and decreased
manual review of medical records for HF quality measurement.

The use of NLP for quality measures also adds to the capture
of large amounts of clinical data from EHRs. The next step is
to transform health care big data into actionable knowledge for
quality improvement and research that helps to improve patient
care, and potentially limit health care costs, with the aim of
developing infrastructure with real-time data to support decision
making [62-64,66,67]. The products of this NLP pipeline could
potentially impact a number of clinical areas, including
personalized CDS (eg, the suggestion to administer
ACEIs/ARBs when inappropriately not administered), and could
both facilitate appropriate care by promoting CDS use and
prevent provider fatigue by reducing the incidence of
false-positive notifications [53]. Our work is also in alignment
with the recent description of the use of big data analytics in
the VA, because the extracted data from our system has been
scientifically evaluated for accuracy and reliability, and builds
on the significant data resources in the CDW [33].

Conclusions
The CHIEF system accurately classified patients for the CHI19
performance measure, with high SN and PPV. HF is an
increasingly prevalent condition among patients within the VA.
Our results demonstrate that automated methods using NLP can
improve the efficiency and accuracy of data collection and
facilitate more complete and timely data capture at the time of
discharge, at a potentially reduced cost. These tools also have
applications in clinical care delivery and are aligned with US
national strategic initiatives to use EHR data for quality
improvement.
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