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Abstract

Background: Missing data is a challenge for all studies; however, this is especially true for electronic health record (EHR)-based
analyses. Failure to appropriately consider missing data can lead to biased results. While there has been extensive theoretical
work on imputation, and many sophisticated methods are now available, it remains quite challenging for researchers to implement
these methods appropriately. Here, we provide detailed procedures for when and how to conduct imputation of EHR laboratory
results.

Objective: The objective of this study was to demonstrate how the mechanism of missingness can be assessed, evaluate the
performance of a variety of imputation methods, and describe some of the most frequent problems that can be encountered.

Methods: We analyzed clinical laboratory measures from 602,366 patients in the EHR of Geisinger Health System in Pennsylvania,
USA. Using these data, we constructed a representative set of complete cases and assessed the performance of 12 different
imputation methods for missing data that was simulated based on 4 mechanisms of missingness (missing completely at random,
missing not at random, missing at random, and real data modelling).

Results: Our results showed that several methods, including variations of Multivariate Imputation by Chained Equations (MICE)
and softImpute, consistently imputed missing values with low error; however, only a subset of the MICE methods was suitable
for multiple imputation.

Conclusions: The analyses we describe provide an outline of considerations for dealing with missing EHR data, steps that
researchers can perform to characterize missingness within their own data, and an evaluation of methods that can be applied to
impute clinical data. While the performance of methods may vary between datasets, the process we describe can be generalized
to the majority of structured data types that exist in EHRs, and all of our methods and code are publicly available.

(JMIR Med Inform 2018;6(1):e11) doi: 10.2196/medinform.8960
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Introduction

Justification
Missing data present a challenge to researchers in many fields,
and this challenge is growing as datasets increase in size and

scope. This is especially problematic for electronic health
records (EHRs), where missing values frequently outnumber
observed values. EHRs were designed to record and improve
patient care and streamline billing, and not as resources for
research [1]; thus, there are significant challenges to using these
data to gain a better understanding of human health. As EHR

JMIR Med Inform 2018 | vol. 6 | iss. 1 | e11 | p. 1http://medinform.jmir.org/2018/1/e11/
(page number not for citation purposes)

Beaulieu-Jones et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

mailto:cbauer@geisinger.edu
http://dx.doi.org/10.2196/medinform.8960
http://www.w3.org/Style/XSL
http://www.renderx.com/


data become increasingly used as a source of phenotypic
information for biomedical research [2], it is crucial to develop
strategies for coping with missing data.

Clinical laboratory assay results are a particularly rich data
source within the EHR, but they also tend to have large amounts
of missing data. These data may be missing for many different
reasons. Some tests are used for routine screening, but screening
may be biased. Other tests are only conducted if they are
clinically relevant to very specific ailments. Patients may also
receive care at multiple health care systems, resulting in
information gaps at each institution. Age, sex, socioeconomic
status, access to care, and medical conditions can all affect how
comprehensive the data are for a given patient. Accounting for
the mechanisms that cause data to be missing is critical, since
failure to do so can lead to biased conclusions.

Background
Aside from the uncertainty associated with a variable that is not
observed, many analytical methods, such as regression or

principal components analysis, are designed to operate only on
a complete dataset. The easiest way to implement these
procedures is to remove variables with missing values or remove
individuals with missing values. Eliminating variables is
justifiable in many situations, especially if a given variable has
a large proportion of missing values, but doing so may restrict
the scope and power of a study. Removing individuals with
missing data is another option known as complete-case analysis.
This is generally not recommended unless the fraction of
individuals that will be removed is small enough to be
considered trivial, or there is good reason to believe that the
absence of a value is due to random chance. If there are
systematic differences between individuals with and without
observations, complete-case analysis will be biased.

An alternative approach is to fill in the fields that are missing
data with estimates. This process, called imputation, requires a
model that makes assumptions about why only some values
were observed. Missingness mechanisms fall somewhere in a
spectrum between 3 scenarios (Figure 1).

Figure 1. Two general paradigms are commonly used to describe missing data. Missing data are considered ignorable if the probability of observing
a variable has no relation to the value of the observed variable and are considered nonignorable otherwise. The second paradigm divides missingness
into 3 categories: missing completely at random (MCAR: the probability of observing a variable is not dependent on its value or other observed values),
missing at random (MAR: the probability of observing a variable is not dependent on its own value after conditioning on other observed variables), and
missing not at random (MNAR: the probability of observing a variable is dependent on its value, even after conditioning on other observed variables).
The x-axis indicates the extent to which a given value being observed depends on other values of other observed variables. The y-axis indicates the
extent to which a given value being observed depends on its own value.
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When data are missing in a manner completely unrelated to
both the observed and unobserved values, they are considered
to be missing completely at random (MCAR) [3,4]. When data
are MCAR, the observed data represent a random sample of the
population, but this is rarely encountered in practice. Conversely,
data missing not at random (MNAR) refers to a situation where
the probability of observing a data point depends on the value
of that data point [5]. In this case, the mechanism responsible
for the missing data is biased and should not be considered
ignorable [6]. For example, rheumatoid factor is an antibody
detectable in blood, and the concentration of this antibody is
correlated with the presence and severity of rheumatoid arthritis.
This test is typically performed only for patients with some
indication of rheumatoid arthritis. Thus, patients with high
rheumatoid factor levels are more likely to have rheumatoid
factor measures.

A more complicated scenario can arise when multiple variables
are available. If the probability of observing a data point does
not depend on the value of that data point, after conditioning
on 1 or more additional variables, then that data point is said to
be missing at random (MAR) [5]. For example, a variable, X,
may be MNAR if considered in isolation. However, if we
observe another variable, Y, that explains some of the variation
in X such that, after conditioning on Y, the probability of
observing X is no longer related to its own value, then X is said
to be MAR. In this way, Y can transform X from MNAR to
MAR (Figure 1). We cannot prove that X is randomly sampled
unless we measure some of the unobserved values, but strong
correlations, the ability to explain missingness, and domain
knowledge may provide evidence that the data are MAR.

Imputation methods assume specific mechanisms of
missingness, and assumption violations can lead to bias in the
results of downstream analyses that can be difficult to predict
[7,8]. Variances of imputed values are often underestimated,
causing artificially low P values [9]. Additionally, for data
MNAR, the observed values have a different distribution from
the missing values. To cope with this, a model can be specified
to represent the missing data mechanism, but such models can
be difficult to evaluate and may have a large impact on results.
Great caution should be taken when handling missing data,
particularly data that are MNAR. Most imputation methods
assume that data are MAR or MCAR, but it is worth reiterating
that these are all idealized states, and real data invariably fall
somewhere in between (Figure 1).

Objective
We aimed to provide a framework for characterizing and
understanding the types of missing data present in the EHR.
We also developed an open source framework that other
researchers can follow when dealing with missing data.

Methods

Source Code
We provide the source code to reproduce this work in our
repository on GitHub (GitHub, Inc) [10] under a permissive
open source license. In addition, we used continuous analysis
[11] to generate Docker Hub (Docker Inc) images matching the

environment of the original analysis and to create intermediate
results and logs. These artifacts are freely available [12].

Electronic Health Record Data Processing
All laboratory assays were mapped to Logical Observation
Identifiers Names and Codes (LOINC). We restricted our
analysis to outpatient laboratory results to minimize the effects
of extreme results from inpatient and emergency department
data. We used all laboratory results dated between August 8,
1996 and March 3, 2016, excluding codes for which less than
0.5% of patients had a result. The resulting dataset consisted of
669,212 individuals and 143 laboratory assays.

We removed any laboratory results that were obtained prior to
the patient’s 18th birthday or after their 90th. In cases where a
date of death was present, we also removed laboratory results
that were obtained within 1 year of death, as we found that the
frequency of observations often spiked during this period and
the values for certain laboratory tests were altered for patients
near death. For each patient, a median date of observation was
calculated based on their remaining laboratory results. We
defined a temporal window of observation by removing any
laboratory results recorded more than 5 years from the median
date. We then calculated the median result of the remaining
laboratory tests for each patient. As each variable had a different
scale and many deviated from normality, we applied Box-Cox
and Z-transformations to all variables. The final dataset used
for all downstream analyses contained 602,366 patients and 146
variables (age, sex, body mass index [BMI], and 143 laboratory
measures).

Variable Selection
We first ranked the laboratory measures by total amount of
missingness, lowest to highest. At each rank, we calculated the
percentage of complete cases for the set, including all
lower-ranked measures. We also built a random forest classifier
to predict the presence or absence of each variable. Based on
these results and domain knowledge, we selected 28 variables
that provided a reasonable trade-off between quantity and
completeness and that we deemed to be largely MAR.

Predicting the Presence of Data
For each clinical laboratory measure, we used the scikit-learn
[13] random forest classifier, to predict whether each value
would be present. Each laboratory measure was converted to a
binary label vector based on whether the measure was recorded.
The values of all other laboratory measures, excluding
comembers of a panel, were used as the training matrix input
to the random forest. This process was repeated for each
laboratory test using 10-fold cross-validation. We assessed
prediction accuracy by the area under the receiver operating
characteristic curve (AUROC) using the trapezoidal rule.

Sampling of Complete Cases
To generate a set of complete cases that resembled the whole
population, we randomly sampled 100,000 patients without
replacement. We then matched each of these individuals to the
most similar patient who had a value for each of the 28 most
common laboratory tests by matching sex and finding the
minimal euclidean distance of age and BMI.
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Simulation of Missing Data
Within the sampled complete cases, we selected the data for
removal by 4 mechanisms

Simulation 1: Missing Completely at Random
We replaced values with NaN (indicator of missing data) at
random. We repeated this procedure 10 times each for 10%,
20%, 30%, 40%, and 50% missingness, yielding 50 simulated
datasets.

Simulation 2: Missing at Random
We selected 2 columns (A and B) and a quartile. For the values
from column A within the quartile, we randomly replaced 50%
of the values from column B with NaN. We repeated the
procedure for each quartile and each laboratory test combination,
yielding 3024 simulated datasets.

Simulation 3: Missing Not at Random
We selected a column and a quartile. When the column’s value
was in the quartile, we replaced it with NaN 50% of the time.
We repeated this procedure for each of the 4 quartiles of each
of the 28 laboratory values, generating a total 112 total simulated
datasets.

Simulation 4: Missingness Based on Real Data
Observations
From our complete-cases dataset, we matched each patient to
the nearest neighbor, excluding self-matches, in the entire
population based on their sex, age, and BMI. We then replaced
any laboratory value in the complete cases with NaN if it was
absent in the matched patient.

Imputation of Missing Data
Using our simulated datasets (simulations 1-4), we compared
18 common imputation methods (12 representative methods
are shown in the figures below) from the fancyimpute [14] and
the Multivariate Imputation by Chained Equations (MICE v2.30)
[15] packages. Multimedia Appendix 1 (table) shows a full list
of imputation methods and the parameters used for each.

Results

Our first step was to select a subset of the 143 laboratory
measures for which imputation would be a reasonable approach.
We began by ranking the clinical laboratory measures in
descending order by the number of patients who had an observed
value for that test. For each ranked laboratory test, we plotted
the percentage of individuals missing a value, as well as the
percentage of complete cases when that given test was joined
with all the tests with lower ranks (ie, less missingness). These
plots showed that the best trade-off between quantity of data
and completeness was between 20 and 30 variables (Figure 2,
part A). Beyond the 30 most common laboratory tests, the
number of complete cases rapidly approached zero.

As age, sex, and BMI have a considerable impact on what
clinical laboratory measures are collected, we evaluated the
relationship between missingness and these covariates (Figure
2, parts B-D). We also used a random forest approach to predict
the presence or absence of each measure based on the values
of the other observed measures. MCAR data are not predictable,
resulting in AUROCs near 0.5. Only 38 of the 143 laboratory
tests had AUROCs less than 0.55 (Figure 2, part E). Very high
AUROCs are most consistent with data that are MAR. For the
top 30 candidate clinical laboratory measures based on the
number of complete cases, the mean AUROC was 0.82. This
suggested that the observed data could explain much of the
mechanism responsible for the missing data within this set. We
ultimately decided not to include the 29th-ranked laboratory
test, specific gravity of urine (2965-2), since it had an AUROC
of only 0.69 and is typically used for screening only within
urology or nephrology departments (RV Levy, MD, personal
conversation, June 2017). We included the lipid measures (ranks
25-28), since they had AUROC values near 0.82 and they are
recommended for screening of patients depending on age, sex,
and BMI [16]. Our data confirmed that age, sex, and BMI all
predicted the presence of lipid measures (Multimedia Appendix
1, fig 1A-B).

To assess the accuracy of imputation methods, we required
known values to compare with imputed values. Thus, we
restricted our analysis to a subset of patients who were complete
cases for the 28 selected variables (Table 1) [17]. Since the
characteristics of this subset differed from those of the broader
population (Figure 2, parts B-D), we used sampling and
k-nearest neighbors (KNN) matching to generate a subset of
the complete cases that better resembled the overall population.
We then simulated missing data within this set by 4 mechanisms:
MCAR, MAR, MNAR, and realistic patterns based on the
original data.

We next evaluated our ability to predict the presence of each
value in the simulated datasets. These simulations confirmed
that our MCAR simulation had a low AUROC (Figure 3, part
A). The MAR data (Figure 3, part B) and MNAR data (Figure
3, part C) were often well predicted, particularly for the MAR
data and when data were missing from the tails of distributions.
The AUROCs rarely exceeded 0.75 in the MNAR simulations,
while values above 0.75 were typical in the MAR simulations.
This provided additional support for our decision to restrict our
focus to the top 28 laboratory measures, since they all had
AUROCs between 0.9 and 0.75, which was outside the range
of MNAR simulations (Figure 2, part F and Figure 3, part C).

We chose to test the accuracy of imputation for several methods
from 2 popular and freely available libraries: the MICE package
for R and the fancyimpute library for Python. We first applied
each of these methods across simulations 1 to 3. For each
combination, Figure 4 depicts the overall root mean square
errors. Multimedia Appendix 1 (Supplemental Table and Figures
3-21) shows a breakdown of all the methods and parameters.
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Figure 2. Summary of missing data across 143 clinical laboratory measures. (A) After ranking the clinical laboratory measures by the number of total
results, the percentage of patients missing a result for each test was plotted (red points). At each rank, the percentage of complete cases for all tests of
equal or lower rank were also plotted (blue points). Only variables with a rank ≤75 are shown. The vertical bar indicates the 28 tests that were selected
for further analysis. (B) The full distribution of patient median ages is shown in blue, and the fraction of individuals in each age group that had a complete
set of observations for tests 1-28 are shown in red. (C) Within the 28 laboratory tests that were selected for imputation analyses, the mean number of
missing tests is depicted as a function of age. (D) Within the 28 laboratory tests that were selected for imputation, the mean number of missing tests is
depicted as a function of body mass index (BMI). (E) Accuracy of a random forest predicting the presence or absence of all 143 laboratory tests. AUROC:
area under the receiver operating characteristic curve. (F) Accuracy of a random forest predicting the presence or absence of the top 28 laboratory tests,
by Logical Observation Identifiers Names and Codes (LOINC).
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Table 1. Logical Observation Identifiers Names and Codes (LOINC) and descriptions of the most frequently ordered clinical laboratory measurements.
The assays are ranked from the most common to the least.

DescriptionLOINC

Hemoglobin [Mass/volume] in Blood718-7

Hematocrit [Volume Fraction] of Blood by Automated count4544-3

Erythrocyte mean corpuscular volume [Entitic volume] by Automated count787-2

Erythrocyte mean corpuscular hemoglobin concentration [Mass/volume] by Automated count786-4

Erythrocyte mean corpuscular hemoglobin [Entitic mass] by Automated count785-6

Leukocytes [#/volume] in Blood by Automated count6690-2

Erythrocytes [#/volume] in Blood by Automated count789-8

Erythrocyte distribution width [Ratio] by Automated count788-0

Platelet mean volume [Entitic volume] in Blood by Automated count32623-1

Platelets [#/volume] in Blood by Automated count777-3

Glucose [Mass/volume] in Serum or Plasma2345-7

Creatinine [Mass/volume] in Serum or Plasma2160-0

Potassium [Moles/volume] in Serum or Plasma2823-3

Urea nitrogen [Mass/volume] in Serum or Plasma3094-0

Sodium [Moles/volume] in Serum or Plasma2951-2

Chloride [Moles/volume] in Serum or Plasma2075-0

Carbon dioxide, total [Moles/volume] in Serum or Plasma2028-9

Calcium [Mass/volume] in Serum or Plasma17861-6

Alanine aminotransferase [Enzymatic activity/volume] in Serum or Plasma by With P-5'-P1743-4

Aspartate aminotransferase [Enzymatic activity/volume] in Serum or Plasma by With P-5'-P30239-8

Bilirubin.total [Mass/volume] in Serum or Plasma1975-2

Protein [Mass/volume] in Serum or Plasma2885-2

Anion gap 3 in Serum or Plasma10466-1

Neutrophils [#/volume] in Blood by Automated count751-8

Cholesterol [Mass/volume] in Serum or Plasma2093-3

Triglyceride [Mass/volume] in Serum or Plasma2571-8

Cholesterol in HDLa [Mass/volume] in Serum or Plasma2085-9

Cholesterol in LDLb [Mass/volume] in Serum or Plasma by calculation13457-7

aHDL: high-density lipoprotein.
bLDL: low-density lipoprotein.
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Figure 3. Area under the receiver operating characteristic curve (AUROC) of a random forest predicting whether data will be present or missing. (A)
Missing completely at random simulation. (B) Missing at random simulation. (C) Missing not at random simulation.

Figure 4. Imputation accuracy measured by root mean square error (RMSE) across simulations 1-3. (A) Missing completely at random (MCAR). (B)
Missing at random (MAR). (C) Missing not at random (MNAR). FI: fancyimpute; KNN: k-nearest neighbors; MICE: Multivariate Imputation by Chained
Equations; pmm: predictive mean matching; RF: random forest; SVD: singular value decomposition.
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Figure 5. Imputation root mean square error (RMSE) for a subset of 10,000 patients from simulation 4. A total of 12 imputation methods were tested
(x-axis), and each color corresponds to a Logical Observation Identifiers Names and Codes (LOINC) code. The black line shows the theoretical error
from random sampling. FI: fancyimpute; KNN: k-nearest neighbors; MICE: Multivariate Imputation by Chained Equations; pmm: predictive mean
matching; RF: random forest; SVD: singular value decomposition.

We next measured imputation accuracy based on the patterns
of missingness that we observed in the real data (Figure 5). The
main difference compared with simulations 1 to 3 was lower
error for some of the deterministic methods (mean, median, and
KNN). It is worth mentioning that the error was highly
dependent on the variable that was being imputed. Specifically,
for the fancyimpute MICE predictive mean matching (pmm)
method, multicollinearity within some of the variables caused
convergence failures that led to extremely large errors (Figure
5, method MICE pmm [FI]). These factors were relatively easy
to address in the R package MICE pmm method by adjusting
the predictor matrix [15].

In addition to evaluating the accuracy of imputation, it is also
important to estimate the uncertainty associated with imputation.
One approach to address this is multiple imputation, where each
data point is imputed multiple times using a nondeterministic
method. To determine whether each method properly captured
the true uncertainty of the data, we compared the error between
an imputed dataset and the observed data versus the error
between 2 sets of imputed values for each method (Figure 6).
If these errors are equal, then multiple imputation is likely
producing good estimates of uncertainty. If, however, the error
between 2 imputed datasets is less than that between each
imputed dataset and the known values, then the imputation
method is likely underestimating the variance.

Our results (Figure 6) demonstrate that many of the imputation
methods are not suitable for multiple imputation. Of the methods
that had the lowest error in the MCAR, MAR, and MNAR
simulations we found 3 (softImpute, MICE col (fancyimpute),
MICE norm.pred (R)) to have minimal variation between
imputations. This was also true of KNN, singular value
decomposition (SVD), mean, and median imputation. Only 3
methods (random sampling, MICE norm (R), and MICE pmm
(R)) seemed to have similar error between the multiple
imputations and the observed data and thus appear to be
unbiased. The latter 2 had very similar performance and are the
best candidates for multiple imputation. Two methods had
intermediate performance. MICE random forest (R) was similar
to several other MICE methods in terms of error relative to the
observed data, but it produced slightly less variation between
each imputed dataset. This seemed to affect some variables
more than others but there was no obvious pattern. The MICE
pmm (fancyimpute) was not deterministic but it did seem to
achieve low error at the expense of increased bias. In this case,
the variables that could be imputed with the lowest error also
seemed to have the most bias. Since this method claims to be
a reimplementation of the MICE pmm (R) method, this may be
due to multicollinearity among the variables that could not easily
be accounted for, as there was no simple way to alter the
predictor matrix.
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Figure 6. Assessment of multiple imputation for each method. Using simulation 4, missing values were imputed multiple times with each method. The
x-axes show the root mean square error (RMSE) between the imputed data and the observed values. The y-axes show the RMSE between multiple
imputations of the same data. The axis scales vary between panels to better show the range of variation. The laboratory tests are indicated by the color
of the points. The black diagonal line represents unity (y=x). Panels are ordered by each method’s mean deviation (MD) from unity, indicated in the
top left corner of each panel. In the last 7 panels, the unity line is not visible because the variation between multiple imputations was close to zero. FI:
fancyimpute; KNN: k-nearest neighbors; MICE: Multivariate Imputation by Chained Equations; pmm: predictive mean matching; RF: random forest;
SVD: singular value decomposition.

Discussion

Principal Results
It is not possible, or even desirable, to choose “the best”
imputation method. There are many considerations that may
not be generalizable between different sets of data; however,
we can draw some general conclusions about how different
methods compare in terms of error, bias, complexity, and
difficulty of implementation. Based on our results, there seem
to be 3 broad categories of methods.

The first category is the simple deterministic methods. These
include mean or median imputation and KNN. While easy to
implement, mean or median imputation may lead to severe bias
and large errors if the unobserved data are more likely to come
from the tails of the observed distribution (Figure 4, parts A-C,
methods mean, median, and KNN). This will also cause the
variance of the distribution to be underestimated if more than
a small fraction of the data is missing. Since these methods are
deterministic, they are also not suitable for multiple imputation
(Figure 6, bottom row).

KNN is a popular choice for imputation that has been shown
to perform very well for some types of data [18,19], but it was
not particularly well suited for our data, regardless of the choice
of k. This may be due to issues of data dimensionality [20] or
to individuals not falling into well-separated groups based on
their clinical laboratory results. This method is also not suitable
for large datasets, since a distance matrix for all pairs of

individuals is stored in memory during computation, and the

size of the distance matrix scales with n2.

The second category of algorithms could be called the
sophisticated deterministic methods. These include SVD,
softImpute, MICE col, and MICE norm.pred. SVD performed
poorly compared with its counterparts and sometimes produced
errors greater than simple random sampling (Figure 5, method
SVD). The reasons for this are not clear, but we cannot
recommend this method. SoftImpute, MICE col, and MICE
norm.pred were among the lowest-error methods in all of our
simulations (Figure 5, methods MICE col and norm.pred). The
main limitation of these methods is that they cannot be used for
multiple imputation (Figure 6, middle row).

The third broad category of algorithms comprises the stochastic
methods, which included random sampling and most of the
remaining methods in the MICE library. Random sampling
almost always produced the highest error (Figure 4 and Figure
5, method random sample), but it has the advantage of being
easy to implement and it requires no parameter selection. The
MICE methods based on pmm, random forests, and Bayesian
linear regression tended to perform similarly in terms of error
in most of our simulations (Figure 4 and Figure 5, methods
MICE pmm, RF, and norm).

Imputation methods that involve stochasticity allow for a
fundamentally different type of analysis called multiple
imputation. In this paradigm, multiple imputed datasets (a
minimum of 3 and often 10-20 depending on the percentage of
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missing data) [21-23] are generated, and each is analyzed in the
same way. At the end of all downstream analyses, the results
are then compared. Typically, the ultimate result of interest is
supported by a P value, a regression coefficient, an odds ratio,
etc. In the case of a multiply imputed dataset, the researcher
will have several output statistics that can be used to estimate
a confidence interval for the result.

Multiple imputation has been gaining traction recently, and the
MICE package has become one of the most popular choices for
implementing this procedure. This package is powerful and
very well documented [15] but, like all methods for imputation,
caution must be exercised. In MICE, each variable is imputed
one by one. This entire process is then repeated for a number
of iterations such that the values imputed in 1 iteration can
update the estimates for the next iteration. The result is a chain
of imputed datasets, and this entire process is typically
performed in parallel so that multiple chains are generated.

In MICE, several choices must be made. The first obvious
choice is the imputation method (ie, equation). Many methods
are available in the base package, additional methods can be
added from other packages [24], and users can even define their
own. We thoroughly evaluated 3 methods in the context of our
dataset: pmm, Bayesian linear regression (norm), and random
forest.

The pmm is the default choice, and it can be used on a mixture
of numeric and categorical variables. We found pmm to have
a good trade-off between error and bias, but for our dataset it
was critical to remove several variables from the predictor
matrix due to strong correlations (R>.85) and multicollinearity.
Bayesian regression performed similarly but was less sensitive
to these issues. If a dataset contains only numeric values,
Bayesian regression may be a safer option. Random forest
tended to produce results that were slightly biased for a subset
of the variables without an appreciable reduction in error. Aside
from random sampling, none of the other methods we evaluated
were suitable for multiple imputation (Figure 6).

Conclusions
Many factors must be considered when analyzing a dataset with
missing values. This starts by determining whether each variable
should be considered at all. Two good reasons to reject a
variable are if it has too many missing values or if it is likely
to be MNAR. If a variable is deemed to be MNAR, it may still
be possible to impute, but the mechanism of missingness should
be explicitly modeled, and a sensitivity analysis is recommended
to assess how much impact this could have on the final results
[25,26]. While a statistical model of the mechanism of
missingness is useful, there is no substitute for a deep familiarity
with the data at hand and how they were generated.

Having selected the data, one must select an imputation method.
Ideally, several methods should be tested in a realistic setting.
Great care should be taken to construct a set of complete data
that closely resemble all of the relevant characteristics of the
data that one wishes to impute. Similar care should then be
taken to remove some of these data in ways that closely resemble
the observed patterns of missingness. If this is not feasible, one
may also simulate a variety of datasets representing a range of
possible data structures and missingness mechanisms. Any
available imputation methods can then be applied to the
simulated data, and error between the imputed data and their
known values provide a metric of performance.

While the minimization of error is an important goal, a singular
focus on this objective is likely to lead to bias. For each missing
value, it is also important to estimate the uncertainty associated
with it. This can be achieved by multiple imputation using an
algorithm that incorporates stochastic processes. Multiple
imputation has become the field standard because it provides
confidence intervals for the results of downstream analyses.
One should not naively assume that any stochastic process is
free of bias. It is important to check that multiple imputation is
providing variability that corresponds to the actual uncertainty
of the imputed values using a set of simulated data.
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BMI: body mass index
EHR: electronic health record
KNN: k-nearest neighbors
LOINC: Logical Observation Identifiers Names and Codes
MAR: missing at random
MCAR: missing completely at random
MICE: Multivariate Imputation by Chained Equations
MNAR: missing not at random
pmm: predictive mean matching
SVD: singular value decomposition
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